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A computational approach to aid 
clinicians in selecting anti‑viral 
drugs for COVID‑19 trials
Aanchal Mongia1, Sanjay Kr. Saha2, Emilie Chouzenoux3* & Angshul Majumdar1*

The year 2020 witnessed a heavy death toll due to COVID-19, calling for a global emergency. The 
continuous ongoing research and clinical trials paved the way for vaccines. But, the vaccine efficacy 
in the long run is still questionable due to the mutating coronavirus, which makes drug re-positioning 
a reasonable alternative. COVID-19 has hence fast-paced drug re-positioning for the treatment 
of COVID-19 and its symptoms. This work builds computational models using matrix completion 
techniques to predict drug-virus association for drug re-positioning. The aim is to assist clinicians 
with a tool for selecting prospective antiviral treatments. Since the virus is known to mutate fast, 
the tool is likely to help clinicians in selecting the right set of antivirals for the mutated isolate. The 
main contribution of this work is a manually curated database publicly shared, comprising of existing 
associations between viruses and their corresponding antivirals. The database gathers similarity 
information using the chemical structure of drugs and the genomic structure of viruses. Along with 
this database, we make available a set of state-of-the-art computational drug re-positioning tools 
based on matrix completion. The tools are first analysed on a standard set of experimental protocols 
for drug target interactions. The best performing ones are applied for the task of re-positioning 
antivirals for COVID-19. These tools select six drugs out of which four are currently under various 
stages of trial, namely Remdesivir (as a cure), Ribavarin (in combination with others for cure), 
Umifenovir (as a prophylactic and cure) and Sofosbuvir (as a cure). Another unanimous prediction is 
Tenofovir alafenamide, which is a novel Tenofovir prodrug developed in order to improve renal safety 
when compared to its original counterpart (older version) Tenofovir disoproxil. Both are under trail, 
the former as a cure and the latter as a prophylactic. These results establish that the computational 
methods are in sync with the state-of-practice. We also demonstrate how the drugs to be used against 
the virus would vary as SARS-Cov-2 mutates over time by predicting the drugs for the mutated 
strains, suggesting the importance of such a tool in drug prediction. We believe this work would open 
up possibilities for applying machine learning models to clinical research for drug-virus association 
prediction and other similar biological problems.

There has been an exponential rise in the total active cases and deaths due to COVID-19 (COrona VIrus Dis-
ease-2019) since the first case in Wuhan, China in December, 20191. The disease results in severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), which is known to be highly transmittable and has spread across 
more than 100 countries. This pandemic has wreaked havoc on people’s social life, the global economy, and most 
importantly the health of the human race. The death numbers are frightening, confirming about 467 K deaths 
worldwide till mid-June, 20201.

As medical professionals are striving to save lives, research scientists specialized in drug development, are 
racing against time to develop a vaccine against SARS-CoV-22. The investigation involved for developing a vac-
cine (or even a new drug) is time consuming, requiring several phases of extensive trials. Experts believe that it 
is highly unlikely that a vaccine will be ready before a year or more. In such circumstances the best bet may be 
to re-position existing drugs for treating COVID-19. This is a well known approach where existing drugs (which 
have already been approved for release in the market) are investigated for new diseases3. Drug re-positioning 
is usually cost effective and fast (compared to developing a new drug/vaccine) since its effects are well studied. 
One classic example for drug re-positioning is Chlorocyclizine , which was initially developed as an anti-allergic 
but later found to act against the hepatitis C virus4. Another example is Imatinib mesylate (sold under the trade 
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name Gleevec), it was originally used as a treatment for leukemia but later was found to be effective against genes 
associated with gastrointestinal-stromal tumors5,6.

Given the relatively large drug-virus association space, manual investigation in wet-labs is not a scalable 
strategy. Putting all the anti-virals in trials for treating corona is not very feasible either; especially because time 
is of essence. In such a scenario, computational approaches can help; they can be used to prune down the search 
space for the drugs to be investigated7. Practically, such approaches could also assist the clinicians to come up 
with treatments for rapidly mutating viruses by pruning the anti-viral drug space (see “Discussion” section). 
Specifically, a computational approach which takes into account the genomic structure of the latest viral isolate 
or its similarity with the previously occuring strains of viruses would be helpful in deciding the treatment. With 
this objective, we have manually curated a comprehensive database called DVA (Drug Virus Association), hav-
ing the approved (anti-viral) drug-virus associations in the literature along with the similarity measures associ-
ated with drugs (chemical structure similarity) and viruses (genome sequence similarity). To the best of our 
knowledge there is no existing database for drug virus association. There are several recent studies such as8–11 
that have used docking for finding a treatment for COVID-19 infection. Our work however contrasts with the 
docking approach. While docking is based on biological simulation, our approach is based on machine learning.

The DVA database we propose in this work lies the foundation for further computational studies on this 
topic. There can be various methodologies to predict drug virus association. The prediction problem can be 
approached via feature-based classification models, neighborhood models, matrix completion models, network 
diffusion models etc. A recent empirical study on well established drug-target interaction databases exhibit the 
best prediction performance by matrix completion models7. In computer science, matrix completion is used 
routinely in recommendation systems . The general problem of drug-disease association can actually be thought 
of as a recommendation system, where drugs are being recommended for treating a disease. Given the suc-
cess of matrix completion techniques in drug target interaction, we deploy state-of-the-art matrix completion 
techniques on our curated DVA database. We perform a thorough comparative analysis of those for predicting 
assessed drug-disease associations. Then, we apply the methodology for pruning the search space of potential 
candidates for COVID-19 trial drugs. Finally, we show how the tool helps in selecting drugs as the virus mutates.

Our objective is to make our solution user friendly for clinicians and scientists. In pursuit of this goal, we have 
made the solution (dataset and algorithms) available as a webserver. The webserver can be used in two ways. First, 
given the genome of the virus, the webserver can predict (and rank) the probable antivirals. Second, given a drug 
and a virus, it can output a normalized score depicting how effective the drug will be against the virus. The func-
tionalities and usage of the webserver have been described in Supplementary sect. 3 (Supplementary Figs. 1–7).

Results
We assess the performance of different matrix completion techniques in this section. The techniques have been 
described in the “Methods” section. Six matrix completion methods were used, which can be categorized into 
three families provided below.

•	 Basic frameworks (MF: Matrix factorization12 and MC: Matrix completion or Nuclear norm minimization12).
•	 Deep frameworks (DMF: Deep matrix factorization)13.
•	 Graph regularized frameworks (GRMF: graph regularized matrix factorization14, GRMC: graph regularized 

matrix completion15, GRBMC: graph regularized binary matrix completion16).

Matrix factorization (MF) is the traditional matrix completion method which factorizes the data matrix into 
two latent factor matrices (tall and short) and the algorithm recovers these factor matrices to recover the origi-
nal matrix. Since this problem is non-convex, it may not converge to a global minimum of the cost function. 
Nuclear-norm minimization based matrix completion (MC) was proposed as a (mathematically) better alter-
native; it directly recovers the matrix by penalising its nuclear norm (convex surrogate of rank). Deep matrix 
factorization (DMF) generalises MF to more than two factors. None of the techniques mentioned so far can take 
advantage of genomic structure of the viruses or chemical structure of the drugs. The said pieces of information 
can be incorporated into the graph regularized matrix completion techniques (GRMF, GRMC, GRBMC). These 
techniques have been explained in detail in the “Methods” section.

Overview: DVA prediction.  The typical anti-viral drug discovery process involves genomic and biophysi-
cal understanding of the virus. It aims to target the enzymes or peptides involved in the viral replication cycle 
and takes years for successful clinical validation. Other approaches involve screening all the broad-spectrum 
anti-viral drugs or chemical libraries comprising large numbers of existing compounds/databases (having infor-
mation on transcriptional signatures in different cell lines) to be further evaluated by standard anti-viral assays17. 
In view to assist acceleration of this process (by pruning down the search space), we create and share a publicly 
available DVA database, along with a number of matrix completion techniques (mentioned above) for drug-
virus association prediction.

The originality of the proposed work lies in the formalization of the drug-virus association prediction as a 
matrix completion problem, without the need for any anti-viral assays. Such a computational approach requires 
the chemical structure of the drugs and, in case of graph-regularized matrix completion techniques, the genome 
of the viruses, or existing associations otherwise. Figure 1 depicts the schematic flow of the proposed work involv-
ing data curation and implementation overview explicitly showing the input to the algorithm (DVA matric and 
the drug/virus similarity matrices) and the predicted output.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9047  | https://doi.org/10.1038/s41598-021-88153-3

www.nature.com/scientificreports/

Empirical evaluation.  In this sub-section, we carry out extensive experimental protocol to illustrate and 
compare the ability of the different methods to retrieve the drug-disease associations available in our curated 
dataset. The protocol dictates three variants of 10-fold cross-validation setting (CV). In the first setting CV1 
(cross validation 1), 10% of the associations selected at random are left out as testing set. This allows to assess 
each algorithm’s ability to predict associations between existing drugs and viruses. To evaluate an algorithm for 
its ability to predict association for novel drugs and viruses i.e. those which have no association information, 
we use two other (more stringent) CV settings. In CV2 and CV3, 10% of the complete virus and drug entities 
selected at random are left out as test set respectively.

The standard metrics for evaluation are the AUC (Area under the Receiver Operating Characteristic curve) 
and AUPR (Area under the precision-recall curve). AUC is more common in machine learning literature, it 
assumes that the classes are evenly balanced. Problems in drug-disease association have highly imbalanced 
classes, in such a scenario the AUPR is a more appropriate metric for evaluation14,18.

Table 1 shows how each of the 6 tested algorithms performs in retrieving the associations. A clear observa-
tion from the experiments is that the graph regularized-based matrix completion algorithms that incorporate 
the similarity information associated with the drugs and viruses, perform fairly well giving an AUC greater or 
equal than 0.83 in CV1. The best performing algorithm (GRBMC) exhibits an AUC and AUPR of 0.88 and 0.54 
respectively. Predicting the associations for novel drugs and viruses also have a reasonable performance with 

Figure 1.   Schematic diagram depicting the DVA framework.

Table 1.   Results for association prediction for all techniques under the 3 cross validation settings.

Metric MC MF DMF GRMF GRMC GRBMC

CV1
AUC​ 0.5959 0.6753 0.6974 0.8652 0.8279 0.8834

AUPR 0.3238 0.2656 0.2615 0.4812 0.4445 0.5220

CV2
AUC​ 0.4909 0.5033 0.5704 0.7346 0.6705 0.6632

AUPR 0.1106 0.0504 0.0855 0.3112 0.2951 0.2746

CV3
AUC​ 0.5438 0.5215 0.4529 0.7806 0.7507 0.8181

AUPR 0.0538 0.0637 0.0824 0.4265 0.4333 0.4383
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the best AUC/AUPR of 0.81/0.44 and 0.73/0.31 by GRBMC and GRMF. It can be noted that the standard matrix 
completion methods, which do not take into account the metadata, fail to learn from the association data giving 
a near-random performance as far as the prediction on novel viruses is concerned, depicting how very important 
the similarity information is.

Association prediction for new drugs.  DVA database and its associated computational tools can also be 
used on new drugs without any previously known virus association information. For evaluating this ability, we 
identified in our database all the drugs which are known to interact with only one virus (drugs associated with 
a single virus only) and hide that association to the methods. This allows us to assess the performance of the 
algorithms in predicting viruses associated with the new drugs in the database.

We hide the only virus corresponding to each of the 76 drugs (with only a single virus associated with it) and 
run matrix completion to predict candidate viruses for these drugs. The drugs for which the test virus associated 
with it is the top-ranked virus predicted by the algorithm would have the maximum precision value (MPV) of 1. 
The number and percentage of drugs with a maximum precision value of 1 are reported in Table 2.

Nearly 34 % (26/76) of single association drugs with a maximum precision of 1 were predicted using GRMF. 
Other graph regularized frameworks show comparable performance in terms of predicting drugs with MPV of 1.

SARS‑CoV‑2 prediction.  In this experiment, we add the SARS-CoV-2 sample in our database by provid-
ing its ONF based d2* similarity19 in the virus similarity matrix.

We then apply the matrix completion algorithms to predict the associations and rank prediction scores cor-
responding to SARS-CoV-2 to predict the top ten recommended drugs.

As can be seen from the results of “Empirical evaluation” (Table 1), MC, MF and DMF often yield considerably 
worse results than their graph regularized counterparts (GRMF, GRMC and GRBMC). Such poor performance 
of non-graph regularized versions of matrix completion methods could be explained as they do not incorporate 
any knowledge about the genomic structure of the viruses and the chemical structure of the drugs. Since the three 
graph-based methods perform reasonably well in the prediction task, we consider these techniques for the drug 
prediction on the novel coronavirus. The top-10 drugs they predicted have been reported in Table 3 (ranked by 
their predicted scores). Drugs highlighted with blue text are unanimously predicted drugs by the three considered 
matrix completion techniques and those in red text are predicted by two methods. We also highlighted with 
yellow cells the drugs which are under trial/investigation as a potential cure/prophylactic against COVID-19.

It can be seen that the three techniques have consistently and unanimously selected six drugs, namely Rem-
desivir, Ribavarin, Sofosbuvir, Taribavirin, Tenofovir alafenamide and Vidarabine. Umifenovir has been recom-
mended by two (GRMF and GRBMC) out of three techniques. Amongst these recommendations, Remdesivir20, 
Ribavarin21,22, Sofosbuvir23 and Umifenovir24 are under clinical trials. Taribavirin is similar to Ribavirin but it is 
not approved by the FDA. Tenofovir alafemanide (an antiretroviral for HIV-1) is on undergoing trial25. GRMF 
has additionally selected Ibuprofen which is expected to be investigated in UK26,27. The fact that three techniques 
unanimously select the aforementioned drugs make us confident about these recommendation results.

Predictions evolution with mutating novel coronavirus.  In the previous sub-section, we have estab-
lished that the results from our models are mostly in sync with clinical practice. In this sub-section, we will 
demonstrate how our proposed approach can be of help to clinicians.

All the results generated so far have been generated using the reference sequence of the SARS-Cov-2 strain 
(collected in December, 2019 in Wuhan). The novel coronavirus is rapidly mutating28. In such a scenario, it is 
necessary to select drugs that are effective against the mutated strain. While mutating, the virus isolates may 
develop resistance to previous drugs used for its treatment. Our model may be of help to clinicians in this 
respect. Before proposing a treatment regime (trial, for e.g.) for COVID-19 treatment, the practitioner may 
use our approach to check the drugs selected for the particular isolate of novel coronavirus. In Table 4, we have 
experimented with three isolates of the novel coronavirus (collected over an interval of 2 months), in addition 
to the reference sequence (collected in December 2019). Those three isolates have been collected in February 
(from USA), April (from Australia) and June (from India).

One can note from the Table 4 that the selected drugs change with mutations. Baloxavir marboxil was not 
selected even once for the reference sequence from December 2019, but has been selected by two methods for 
the February isolate. A recent pre-print29 reports the results of this antiviral on COVID-19 patients. The drug 
Ibuprofen, was selected by one of the methods for the December reference sequence, it was not selected for 
the February isolate, then it was selected by two methods for the April isolate and selected by all three for the 
June isolate. It may be worthy to note that lipid Ibuprofen is being considered in a trial in UK from starting 
June, 202026. Similarly, Pleconaril has been selected for by all three methods for the most recent (June) isolate, 
it was selected by only one of the techniques for the reference sequence (December) and was not selected for 
the February or June sequences. Pleconaril, although developed for treating enterovirus and rhinovirus, is not 

Table 2.   Number and percentage of drugs predicted with MPV = 1 by the matrix completion methods.

MC MF DMF GRMF GRMC GRBMC

# drugs with MPV = 1 2 4 4 26 22 8

% drugs with MPV = 1 2.6316 5.2632 5.2632 34.2105 28.9474 10.5263
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FDA approved. Rilpivirine and Etravirine are two antiretrovirals developed for treating HIV positive subjects. 
Both of them have been predicted by all three methods in the latest isolate, but not in the previous isolates or in 
the reference sequence. To the best of our knowledge, this antiretroviral is not under study for COVID-19 tri-
als. Note that Vidarabine, which was getting predicted for the reference sequence (albeit wrongly) has not been 
predicted from the later ones. Based on this discussion, we can see that how the mutations in genomic structure 
results in different predictions of drugs. Since the novel coronavirus is mutating, it may be judicious to account 
for the structure of the latest isolate while deciding the treatments to be put in trial. In such a case, our model 
may be of help to clinicians.

Execution time.  We recorded the time taken by each of the matrix completion algorithms for a single run 
(Table 5), on a single core machine with a clock speed of 2.8 GHz, 64 GB RAM (Intel(R) Xeon(R) CPU E5-1603 
v3 processor). All the methods have relatively low computational requirements. Matrix factorization methods 
are faster than the nuclear norm minimization based techniques, with a difference of few seconds. Such differ-
ence may not be practically significant, given the nature of our problem as an improved anti-viral prediction in 
pandemic is much more crucial than the running time in the order of seconds.

Discussion
We have collected a comprehensive dataset comprising of all the anti-viral drugs which act against viruses 
known to infect humans, along with the similarity information associated with the drugs and the viruses (see 
“Methods” section). On this database, we deploy state-of-the-art drug target interaction techniques based on 
matrix completion.

General discussion.  The drug-virus associations and the similarity information are assembled as three 
matrices: drug-virus association matrix (Y), drug similarity matrix ( Sd ) and virus similarity matrix ( Sv ). Sev-
eral matrix completion methods have then been implemented and compared. The matrix completion methods 

Table 3.   Top-10 drugs predicted for SARS-Cov-2 by the DVA computational methods.

Technique SARS-Cov-2
GRMF Remdesivir

Ribavirin
Sofosbuvir
Umifenovir
Taribavirin
Tenofovir alafenamide
Ibuprofen
Pleconaril
Geldanamycin
Vidarabine

GRMC Remdesivir
Ribavirin
Sofosbuvir
Taribavirin
Tenofovir alafenamide
Vidarabine
Telaprevir
Boceprevir
Simeprevir
Palivizumab

GRBMC Remdesivir
Ribavirin
Sofosbuvir
Umifenovir
Taribavirin
Vidarabine
Brivudine
Tenofovir alafenamide
Paritaprevir
Peginterferon alfacon-1
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which are not designed to incorporate the similarity information take association matrix as input (assuming it 
to be a partially filled matrix from which the full low-rank association matrix would be recovered) along with 
the masking operator which stores information on the position of train and test indices. On the other hand, 
the graph regularized frameworks utilize similarity information and give an improved prediction performance 
in the cross-validation evaluation (Best AUC = 0.88, AUPR = 0.52). The graph regularized matrix completion 
methods are not only capable of predicting associations between existing drugs and viruses but can also take 
into account novel viruses and drugs for which no association information is known (as can be seen in the latter 
two cross-validation settings). The similarity information for such novel drugs/viruses ( Sd and Sv ) can be added 
to the metadata using the chemical structure and sequence information of the drug and virus respectively. The 
validity of the proposed pipeline is illustrated by the fact that 4 out of the 6 drugs unanimously predicted in top-
10 prediction by the graph regularized methods are already under trial for treating SARS-Cov-2.

Drug recommendations for the novel coronavirus.  From the prediction provided by graph regular-
ized methods, we observe a consensus over the recommendation of six drugs, namely Remdesivir, Ribavarin, 
Sofosbuvir, Taribavirin, Tenofovir alafenamide and Vidarabine (7th common drug being Umifenovir recom-
mended by two models). Note that Umifenovir is under investigation as per FDA. It has been approved in 
countries like Russia, India and China for treating COVID-19. Remdesivir has obtained approval for emergency 
use by FDA. It is also been approved for treating moderate to severe COVID-19 patients in India, Russia, China 

Table 4.   Top-10 drugs predicted for three isolates of SARS-Cov-2 (collected at an interval of 2 months) by the 
DVA computational methods.

Technique SARS-Cov-2: February SARS-Cov-2: April SARS-Cov-2: June

GRMF

Remdesivir Remdesivir Remdesivir

Ribavirin Sofosbuvir Umifenovir

Umifenovir Umifenovir Pleconaril

Taribavirin Ribavirin Ibuprofen

Sofosbuvir Tenofovir alafenamide Sofosbuvir

Baloxavir marboxil Ibuprofen Rilpivirine

Geldanamycin Pleconaril Etravirine

Tenofovir alafenamide Hydroxychloroquine Tenofovir alafenamide

Tecovirimat Valomaciclovir Rimantadine

Peramivir Dexamethasone Ribavirin

GRMC

Remdesivir Remdesivir Umifenovir

Umifenovir Sofosbuvir Remdesivir

Ribavirin Tenofovir alafenamide Ibuprofen

Taribavirin Boceprevir Pleconaril

Sofosbuvir Telaprevir Sofosbuvir

Vidarabine Palivizumab Chloroquine

Tenofovir alafenamide Simeprevir Etravirine

Nelfinavir Ribavirin Rilpivirine

Amprenavir Umifenovir Tenofovir alafenamide

Boceprevir Ibuprofen Nelfinavir

GRBMC

Remdesivir Remdesivir Umifenovir

Ribavirin Umifenovir Remdesivir

Umifenovir Sofosbuvir Pleconaril

Taribavirin Ribavirin Ibuprofen

Sofosbuvir Taribavirin Sofosbuvir

Paritaprevir Paritaprevir Rilpivirine

Tenofovir alafenamide Brivudine Etravirine

Atazanavir Vidarabine Ribavirin

Baloxavir marboxil Daclatasvir Tenofovir alafenamide

Favipiravir Beclabuvir Trifluridine

Table 5.   Running time of the DVA computational methods.

MC MF DMF GRMF GRMC GRBMC

Time (s) 0.0859 0.0149 0.0529 0.0457 10.55 5.22
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and others. Researchers working on Ribavarin trials argue that since it is an established drug with ready avail-
ability and established supply chains, it is worthy to investigate its potency against COVID-19. Ribavirin21,22, 
in combination with other antiviral drugs has recently been studied for the effectiveness and safety of different 
antiviral regimens (combination therapies) for the treatment of COVID-19. More recent studies on the use 
of this antiviral showed encouraging results in both mild and severe COVID-19 infections30–32. Sofosbuvir is 
used specifically for hepatitis C infection. Currently it is under trial for treating COVID-19 patients. This is 
because, superposition of the hepatitis C virus polymerase bound to sofosbuvir, with the SARS-CoV polymer-
ase shows that the residues that bind to the drug are present in the latter23. There are many recent studies that 
have shown the efficacy of this drug in combination with others for treating moderate to severe COVID-19 
patients33–35. The clinical trial of Tenofovir disoproxil as a prophylactic, is based on recent albeit sparse literature 
that shows that RNA synthesis nucleos(t)ide analogue inhibitors, acting as viral RNA chain terminators, like 
Tenofovir disoproxil, abacavir or lamivudine, amongst others, could have an effect against SARS-CoV-236. Our 
algorithm selects Tenofovir alafenamide, which is less harmful to the kidneys than Tenofovir disoproxil. Teno-
fovir alafenamide is known to have large antiviral efficacy at ten times lesser dose than Tenofovir disoproxil. It is 
also under investigation as a combination therapy (emtricitabine/tenofovir-alafenamide and lopinavir/ritonavir) 
to treat COVID-19 patients25. Some variants of Tenofovir have also shown encouraging results in the treatment 
of COVID-19 patients37,38.

Symptomatic treatment options from unanimously predicted drugs.  In this sub-section, our 
objective is to establish that the drugs selected by our algorithms for SARS-Cov-2 are clinically sensible predic-
tions, in the sense that they are known to be effective against a significant number of the COVID-19 symptoms. 
The Table 3 shows that out of the top ten selections, six are common across all the three techniques and another 
(Umifenovir) have been predicted by two out of three. Although Vidarabine has been selected by all three mod-
els, it is an antiviral effective against DNA viruses. Since the novel coronavirus is an RNA virus this antiviral is 
not supposed to work. We have discussed the rest of the six antivirals in Supplementary sect. 1. The descriptions 
have been primarily taken from drugbank.ca.

Symptoms of different virus infections have been discussed in Supplemetary sect. 2. From a symptomatic 
aspect, Umifenovir, Remdesivir and Ribavarin covers most of the symptoms for COVID-19, as can be seen from 
Fig. 2. All of them are now under clinical trials as discussed in the previous subsection. Figure 2, hence estab-
lishes the efficacy of the model in predicting clinically sensible drugs which work against most of the symptoms 
of SARS-Cov-2.

Effect of viral mutations on treatments.  Furthermore, significance of such computational models for 
predicting anti-viral therapeutics would correlate with the rate at which a virus mutates. RNA viruses (like HIV, 
flu virus) are known to mutate at a much faster rate than the DNA viruses39, helping them to evade the human 
immune system and develop drug resistance. SARS-CoV-2 is no exception and has been mutating over the past 
few months40. Clinically keeping up with the evolving viruses and drug resistance could be a major challenge for 
development of an anti-viral treatment41. Hence, artificial intelligence, and in particular the presented matrix 

Figure 2.   List of COVID-19 symptoms treated by drugs unanimously predicted by the three graph-regularized 
matrix completion methods.
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completion techniques, could help the clinicians to prune down the drug space for viral strains which have been 
mutating rapidly and avoid unnecessary testing on drugs for the new viral strain/s.

Conclusion
Computational techniques have the inherent advantage of learning from the data (which can be huge) and scale 
to a large number of drugs and viruses and hence be of immense importance to the clinicians by narrowing down 
the search space for the clinical trials to be carried out. Through this work, we not only show how such techniques 
can be leveraged to infer the drugs which could act against a viral infection using the novel coronavirus as a use 
case but also we show how the predicted drugs (Remdesevir, Ribavirin, Umifenovir and Sofosbuvir here predicted 
for SARS-Cov-2) would vary as the virus mutates.

We would like to emphasize that the proposed DVA database and methods are not particular to the novel 
coronavirus. Such computational approaches have the general capability to help for identification of drugs which 
might be effective against a broad spectrum of viruses42, or the viruses which can be targeted by multiple drugs 
(since many drugs could target specific elements of viral replication)43. We believe that the proposed work will 
pave the way for more scientific ideas for anti-viral drug re-positioning and assist clinicians in the process.

A limitation of our approach is that it gives a pointwise prediction but, as it is not probabilistic, it cannot give 
any quantitative measure of uncertainty about the prediction. However, the confidence of the models on the 
prediction can be assessed qualitatively by inspecting the averaged ranking of the predicted drugs, over random 
initializations (for example). The higher the averaged rank, the more confident is the model in the efficacy of 
the drug.

Methods
Drug‑virus associations database.  The proposed DVA dataset aims at being exhaustive. It compiles 
various existing sources, housing together all the anti-viral drugs proved clinically to be effective against viruses 
infecting humans. We believe such resource would be highly useful for analysing and proposing anti-virals not 
only for the novel coronaviruses but other viruses too. Along with that, it may also be used to computationally 
identify viruses that a newly discovered drug may target. The associated metadata (information about the drugs 
and viruses) may also help clinicians in manual analysis and having a deeper insight.

All the associations corresponding to anti-viral drugs clinically shown to act against human host viruses have 
been assembled from standard DrugBank database44 (https://​www.​drugb​ank.​ca/​categ​ories/​DBCAT​000066). To 
ensure that the database is fully comprehensive, other literature works45–53 and resources such as ViPR54 were 
also scanned for any additional drug-viral associations. ViPR or NIAID Virus Pathogen Database and Analysis 
Resource (http://​www.​viprb​rc.​org/) is a repository of data and analysis tools for virology research54 capturing 
various types of information derived from comparative genomics analysis and visualization tools. It has antiviral 
drug information (for 21 viral species) derived imported from DrugBank (https://​www.​drugb​ank.​ca/)44.

The drug-virus indications have been stored (see “Supplementary data section”) and processed in a matrix 
form of size m× n (m being no of drugs in the database and n being the number of viruses) to be used as input 
for any of the 6 matrix completion algorithms we made available in our repository.

The DrugBank Identifier (DrugBank ID) of the anti-viral drugs involved is considered as the unique key for 
the drugs, obtained from DrugBank vocabulary (https://​www.​drugb​ank.​ca/​relea​ses/​latest#​open-​data). Along 
with the viral association information, we also store the target pathway and mechanism of action of each drug 
for quick reference in any further investigation. Apart from this, each drug is mapped to its corresponding 
KEGG Identifier (KEGG ID) from the KEGG Compound/KEGG Drug database (https://​www.​genome.​jp/​kegg/​
drug/, https://​www.​genome.​jp/​kegg/​compo​und/) of the KEGG (Kyoto encyclopedia of genes and genomes)55. 
The KEGG IDs were taken from the linking file provided at https://​www.​drugb​ank.​ca/​relea​ses/​latest#​exter​nal-​
links44 or manually added in the case of drugs missing in the linking file.

Each virus is identified by an acronym assigned to it (in case of no acronym, full virus name is used). The 
viral family, genome type, transmission route and incubation period is also available in the virus metadata file 
along with the accession number of the complete genomic sequence of the viruses fetched from NCBI (National 
Center for Biotechnology Information) Viral genome browser https://​www.​ncbi.​nlm.​nih.​gov/​genom​es/​Genom​
esGro​up.​cgi56).

Similarity computation.  To integrate the similarity information to the drug-virus associations, we have 
computed similarities between the drugs based on their chemical structures and between the viruses using their 
complete genomic sequences.

•	 DRUG SIMILARITY: All the DrugBank IDs were mapped to KEGG IDs of the corresponding drug/com-
pound in the KEGG database55. The chemical structure similarity was measured between the drugs by com-
puting the SIMCOMP score57 based on the maximum common substructures between the chemical structure 
of the compounds using the KEGG API page at GenomeNet (https://​www.​genome.​jp/​tools/​gn_​tools_​api.​
html). The drugs for which the SIMCOMP score was less than the set cutoff (0.001) and the drugs with no 
KEGG IDs available were assigned a similarity score of 1 to themselves and 0 to other drugs in the dataset.

•	 VIRUS SIMILARITY: The d2∗ distance based on ONF (Oligonucleotide frequency) measure between the 
DNA sequences was shown to be the best amongst various other ONF metrics with several k-mers length in 
host prediction accuracy at the genus level19. Hence, we compute d2* dissimilarity/distance (at k=6) between 
the viral genome sequences obtained from NCBI56. The reference sequences of viruses were saved in FASTA 
format to be used by the distance computation software (https://​github.​com/​jessi​eren/​VirHo​stMat​cher) pro-
posed by19. The d2∗ distance was subtracted from 1 to obtain the similarity measure. For the viruses with 

https://www.drugbank.ca/categories/DBCAT000066
http://www.viprbrc.org/
https://www.drugbank.ca/
https://www.drugbank.ca/releases/latest#open-data
https://www.genome.jp/kegg/drug/
https://www.genome.jp/kegg/drug/
https://www.genome.jp/kegg/compound/
https://www.drugbank.ca/releases/latest#external-links
https://www.drugbank.ca/releases/latest#external-links
https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi
https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi
https://www.genome.jp/tools/gn_tools_api.html
https://www.genome.jp/tools/gn_tools_api.html
https://github.com/jessieren/VirHostMatcher
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segmented structure (Influenza A virus, Influenza B virus, Influenza C virus, Lassa mammarenavirus), the 
coding sequence in the nucleotide sequence of each genomic segment (taken in decreasing order of length 
was taken) was combined to form the complete viral sequence.

Proposed method: matrix completion.  In this subsection, we describe each of the matrix completion 
algorithms used (www.​github.​com/​Aanch​alMon​gia/​DVA), along with their mathematical formulations and 
resolution strategies.

Let Xm×n be the complete drug-virus association matrix (with m drugs and n viruses) with binary entries (1 
denoting that the drug is known to act against the virus and 0 denoting no association). Here X is the matrix to 
be recovered from its sampled (partially known) entries in Y. Let M denote the masking operator (elementwise 
multiplied to X) having 1’s at positions where associations are known and 0 otherwise. Then, the matrix comple-
tion problem can be formulated as searching for X satisfying:

under specific constraints. In particular, it is typically assumed that similar drugs act in a similar manner, hence 
X to be recovered (from Y and M) is of low-rank.

Matrix factorization (MF).  The most straightforward technique of solving low-rank matrix completion is 
matrix factorization, where the data matrix Xm×n is decomposed into two latent factor matrices Um×k and Vk×n , 
where k denotes the number of latent (hidden) factors deciding if a drug is associated with a virus or not. X is 
recovered by solving for U and V in the following minimization problem:

The above problem is solved in an alternating manner, by first decoupling the mask using a majorization-
minimization technique58,59 and then using alternating least squares method60 to obtain U and V. The complete 
algorithm is described in12.

Deep matrix factorization (DMF).  An extension of matrix factorization has been proposed motivated by the 
success of deep dictionary learning61, where the data matrix X is decomposed into multiple factor matrices 
(analog to multiple layers) to capture more complex hidden features in the data. The formulation of the minimi-
zation problem in the case of 2-layer matrix factorization is given below:

The above problem is solve alternatively. The minimization with respect to variables U1 and V, is done in a similar 
way to that of matrix factorization, while the update on U2 can be obtained as shown in62.

Graph regularized matrix factorization (GRMF).  Another variant of Matrix factorization has been proposed 
to incorporate metadata associated with the row and column entities (drug and virus similarities in this case)14. 
Here, the drug and virus entities form the nodes of two separate graphs and the similarity between them is 
assumed to be the weights between the nodes. Regularization is imposed by adding graph Laplacian penalties to 
the cost function of matrix factorization as shown below:

where µ1 > 0 and µ2 > 0 are coefficients penalizing the graph regularization Laplacian terms and tr denotes 
the trace of the matrix. Ld = Dd − Sd and Lv = Dv − Sv are the graph Laplacians63 for Sd (row/drug similarity 
matrix) and Sv (column/virus similarity matrix), respectively, and Dii

d = �jS
ij
d and Dii

v = �jS
ij
v  are the associated 

degree matrices. A resolution technique for the above formulation has been shown in14.

Matrix completion (MC).  Matrix factorization based approach leads to a non-convex minimization problem 
and hence rarely benefits from global convergence guarantees. To limit the space of minimizers, it may be use-
ful to impose a low-rank constraint on the solution X. Since rank minimization is still an NP-hard problem, it 
was proposed to relax the above constraint to its closest convex surrogate by making use of the nuclear norm 
penalty64,65. The formulation for the resulting nuclear norm minimization problem (referred to as matrix com-
pletion by the authors) is:

The above problem can be solved alternatively, by invoking majorization-minimization arguments59 to deal 
with the mask operator M and by applying thresholding operations on the singular values to process the nuclear 
norm term12.

Graph regularized matrix completion (GRMC).  Just like matrix factorization, nuclear norm minimization based 
matrix completion can also be graph regularized by incorporating graph Laplacian penalties to take metadata/
similarity information into account. The formulation for the minimization problem is given by:

(1)Y = M(X),

(2)min
U ,V

||Y −M(UV)||2F .

(3)min
U1,U2,V

||Y −M(U1U2V)||2F such that U1 ≥ 0,U2 ≥ 0.

(4)min
U ,V

||Y −M(UV)||2F + µ1tr(U
⊤LdU)+ µ2tr(VLvV

⊤),

(5)min
X

||X||∗ such that Y=M(X) .

http://www.github.com/AanchalMongia/DVA
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The above formulation can either be solved using ADMM (alternating direction method of multipliers)66,67 as was 
done in15 (referred as GRMC here) or by explicitly taking care of the constraint that the recovered values should 
be in the range [0, 1]. If the latter range constraint is taken into account, we obtain then a new variant called 
graph regularized binary matrix completion. The minimization with respect to X can be solved by making use 
of the PPXA (parallel proximal algorithm)68. Such approach allows to decouple the constraints by introducing 
proxy variables and then solving each subproblem in a parallel fashion as shown in16 (referred as GRBMC here).

Setting of hyperparameters.  The stepsize, regularization parameters and latent factor dimensions, for 
the above techniques have been tuned using cross-validation on training set (after hiding 10 % of the data) in 
each of the three cross-validation settings (see “Empirical evaluation”). The parameters obtained after extensive 
cross-validation on the setting CV2 (randomly hiding the virus entities) have been further used in predicting 
drugs for SARS-Cov-2 and the corresponding isolates (see “SARS-CoV-2 prediction” and “Predictions evolution 
with mutating novel coronavirus”). Similarly, the parameters selected for the setting CV3 (randomly hiding drug 
entities) have been used to evaluate the performance of the approaches in “Association prediction for new drugs”.

Data availability
The dataset along with the solution is made available publicly at https://​github.​com/​aanch​alMon​gia/​DVA and 
the prediction tool named DVApred (Drug-virus association prediction server) with a user-friendly interface is 
available as a webserver at http://​dva.​salsa.​iiitd.​edu.​in.
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