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Multistability in a star network 
of Kuramoto‑type oscillators 
with synaptic plasticity
Irmantas Ratas1*, Kestutis Pyragas1 & Peter A. Tass2

We analyze multistability in a star-type network of phase oscillators with coupling weights governed 
by phase-difference-dependent plasticity. It is shown that a network with N leaves can evolve into 
2
N various asymptotic states, characterized by different values of the coupling strength between the 

hub and the leaves. Starting from the simple case of two coupled oscillators, we develop an analytical 
approach based on two small parameters ε and µ , where ε is the ratio of the time scales of the phase 
variables and synaptic weights, and µ defines the sharpness of the plasticity boundary function. The 
limit µ → 0 corresponds to a hard boundary. The analytical results obtained on the model of two 
oscillators are generalized for multi-leaf star networks. Multistability with 2N various asymptotic 
states is numerically demonstrated for one-, two-, three- and nine-leaf star-type networks.

Real-world networks often consist of connected active elements and change their structure over time. Typically, 
links between network elements are reorganized in response to changes in the states of the elements. Examples 
of such behavior can be found in chemical, biological and social systems1. One of the most intriguing systems 
that can reconfigure its connections is a neural network.

Spike-timing-dependent plasticity (STDP) refers to a concept of neural network formation in which the rela-
tive timing between the presynaptic inputs and postsynaptic firing dictates the direction of the synaptic strength 
modulation2,3. Presynaptic firing followed by a postsynaptic spike induces potentiation (the synaptic weight 
increases), while postsynaptic firing occurring before presynaptic firing leads to depression (the synaptic weight 
decreases)4,5. It is believed that such activity-dependent changes in synaptic transmission provide a neural basis 
for the realization of higher brain functions, such as learning and memory.

STDP models prescribe the functional relation between the synaptic modification and the time difference 
between a pair of pre- and postsynaptic action potentials. Effective modification of the synaptic weight takes 
place only when the spike-timing difference is within a certain time interval (learning window). Typically, asym-
metrical learning windows are observed with a change in the sign of the spike-timing difference6–8. Numerical 
simulations of STDP-driven neuronal networks show that the asymmetry between potentiation and depression 
leads to multistability characterized by different levels of synchrony9–11. The effect of STDP on synaptic weights 
depends not only on the STDP learning function, but also on how the boundaries are implemented in the model 
to maintain synaptic weights in the allowable range. Various types of boundaries were considered, including 
soft (multiplicative) boundaries12,13, hard (additive) boundaries14,15, as well as interpolation between soft and 
hard boundaries16.

Modeling plastic neural networks is a complex numerical task for two reasons: (i) neural dynamics and adap-
tation of synaptic weights usually occur at different time scales; (ii) the number of dynamic variables associated 
with the slow adaptation of synaptic weights increases quadratically with the size of the network. Because of these 
difficulties, various simplifications are used. One way is to implement networks with simplified neural models. 
Most popular in numerical analysis are plastic networks of leaky integrate-and-fire neurons17–19, which enable 
event-driven simulations20. Other type of models used in plastic networks are phase oscillators9,21 (Kuramoto-
type networks22,23). These models often implement simplified STDP rules10,11,24–28.

In this paper, we consider Kuramoto-type networks with coupling weights governed by a phase-difference-
dependent plasticity (PDDP) rule, first introduced in Ref.10. The PDDP rule is built similarly to the STDP rule, 
but instead of the time difference, the phase difference of the oscillators is used, and the instantaneous change 
in synaptic weights is replaced by their continuous change in time. The relationship between PDDP and STDP, 
obtained by averaging STDP over time, is discussed in Ref.27. PDDP has an advantage over STDP in that it is 

OPEN

1Center for Physical Sciences and Technology, 10257 Vilnius, Lithuania. 2Department of Neurosurgery, School of 
Medicine, Stanford University, Stanford, CA 94305, USA. *email: irmantas.ratas@ftmc.lt

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-89198-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9840  | https://doi.org/10.1038/s41598-021-89198-0

www.nature.com/scientificreports/

more amenable to analytical analysis. We investigate the PDDP effect on the formation of a star-type network. 
In the star network, there is a center node (hub), and each of the other nodes (leaves) is connected only to this 
center but not between each other. The star network can be considered as an essential building block in real 
neural networks29–31; it is the simplest network model that captures the sparse, clustering, small-world and other 
important properties of many real-world networks32–34. An advantage of a star network over more complex net-
works is that the number of dynamic variables associated with synaptic weights increases linearly, rather than 
quadratically, with the size of the network. Non-plastic star networks of phase oscillators were considered in 
Refs.35–37. Here we analyze the multistable dynamics of such networks caused by PDDP.

Model
We consider a star network with N + 1 nodes described by Kuramoto-type phase oscillators: 

Here θ0 is the phase of the central node (hub) and ω0 is its natural frequency (spiking rate). The variables θj 
and the parameters ωj for j = 1, . . . ,N are the phases and the natural frequencies of the leaves, respectively. The 
hub is forced by all leaves, and each leaf is forced by the hub. The parameter Ak indicates the synaptic weight of 
the directional link from the kth leaf to the hub, and Bj is the synaptic weight of the directional link from the hub 
to the jth leaf. We modify the synaptic weights Aj and Bj in dependence on the phase difference

between the hub and the jth leaf. For PDDP, we adopt STDP rules typical of excitatory synapses6,15. When the leaf 
phase is ahead of the hub phase ( ϕj < 0 ), the synaptic weight Aj increases, and the synaptic weight Bj decreases. 
In the opposite case, ϕj > 0 , the weight Aj decreases, and the weight Bj increases. More specifically, we modify 
synaptic weights using the time-continuous form of the PDDP rule introduced in Ref.10: 

Here ε ≪ 1 is a small but not vanishing parameter that takes into account the slow change in synaptic weights 
relative to the fast phase dynamics. The learning windows over which post- (pre-) synaptic spikes will cause 
synaptic potentiation (depression) are indicated as τ+ ( τ− ). Following experimental evidences6–8, we assume 
τ− > τ+ . In numerical experiments below, we choose10: τ− = 0.3 and τ+ = 0.15 . The function F(x) is introduced 
to satisfy the boundary conditions, that is, to keep the synapses from achieving unrealistically large values or 
becoming inhibitory, namely 0 ≤ Aj ≤ α and 0 ≤ Bj ≤ α . Various types of boundary functions are considered in 
the literature. A soft boundary is associated with the linear function F(x) = x as in Refs.12,13, and a hard boundary 
is determined by the Heaviside step function H(x), F(x) = H(x) as in Refs.14,15. Interpolation between soft and 
hard boundaries can be achieved by a power function16

with a sharpness parameter µ varying in the interval 0 < µ ≤ 1 . For µ = 1 this function corresponds to the soft 
boundary, and for µ → 0 it is the case of the hard boundary. In this paper, to analyze the transition to a hard 
boundary, we will mainly use the sigmoid function

Like function (4), this function vanishes at x = 0 and monotonically increases with an increase of x. The 
parameter µ determines the sharpness of the transition from zero to one: F(x) ≈ x/µ for x ≪ µ and F(x) ≈ 1 
for x ≫ µ . The hard boundary corresponds to the limit µ → 0 . Note that the function (5) is analytic at x = 0 
for any µ , while the function (4) is non-analytic at x = 0 for 0 < µ < 1.

From the Eq. (1) we can derive equations for phase differences (2):

Thus, the dynamics of a star-type plastic network with N leaves is determined by a closed system of 3N dif-
ferential Eqs. (3) and (6). In this system, 2N Eq. (3) describe the slow adaptation of synaptic weights, and N 
Eq. (6) determine the fast variation of phase differences.

(1a)θ̇0 =ω0 +
N
∑

k=1

Ak sin (θk − θ0),

(1b)θ̇j =ωj + Bj sin
(

θ0 − θj
)

, j = 1, . . . ,N .

(2)ϕj = θ0 − θj , j = 1, . . . ,N

(3a)Ȧj =ε

{

F(α − Aj) exp
(

ϕj/τ+
)

, ϕj ∈ [−π , 0),

−F(Aj) exp
(

−ϕj/τ−
)

, ϕj ∈ [0,π),

(3b)Ḃj =ε

{

−F(Bj) exp
(

ϕj/τ−
)

, ϕj ∈ [−π , 0),

F(α − Bj) exp
(

−ϕj/τ+
)

, ϕj ∈ [0,π).

(4)F(x) = xµ

(5)F(x) = tanh(x/µ).

(6)ϕ̇j = ω0 − ωj − Bj sin(ϕj)−
N
∑

k=1

Ak sin(ϕk).
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Methods
Two oscillators under PDDP. The case of two oscillators allows for analytical treatment. The analytical results 
obtained in this section are used to predict the asymptotic behavior of multi-leaf star networks. In the case of 
two oscillators, N = 1 and the system’s state is characterized by three dynamical variables A1 , B1 and ϕ1 . Since 
the variable ϕ1 is fast with respect to the variables A1 and B1 , we can eliminate it from the system’s equations. The 
slow variables A1 , B1 are governed by the Eq. (3) with j = 1 , and the Eq. (6) for the fast phase variable ϕ1 reads

where

is the sum of the synaptic weights, and

is the frequency detuning between the oscillators. Without loss of generality, we assume ω0 > ω1 , so the param-
eter � is positive. Due to the small parameter ε , we can neglect the variations of the slow variables38 A1 and B1 on 
the fast time scale of the variable ϕ1 . For the constant K, the solution of Eq. (7) depends on the ratio K/� . When 
this ratio is greater than one, the phases of the oscillators are locked, and when it is less than one the oscillators 
are not synchronized. Below we consider these two cases separately.

(i) Case K > � . Under this condition, the Eq. (7) has two fixed points, one of which is stable:

It determines the phase difference of the locked oscillators in dependence of the variable K. Substituting this 
phase difference in Eq. (3) and taking into account that ϕ∗

1 (K) ∈ (0,π) , we obtain the following approximate 
system to describe the slow dynamics of the synaptic weights A1 and B1 : 

The condition F(0) = 0 implies that this system has a fixed point

Linear stability analysis of the system (11) shows that the fixed point (12) is stable due to F ′(0) > 0 . This fixed 
point describes an asymptotic synchronized state of the system in which the oscillators become unidirectionally 
coupled. The directional link from the slower oscillator (with the natural frequency ω1 ) to the faster oscillator 
(with the natural frequency ω0 ) becomes disconnected, while the synapse associated with the directional link 
from a faster oscillator to the slower oscillator, reaches the maximum value α . The instantaneous frequencies of 
the synchronized oscillators become equal to the natural frequency of the faster oscillator: θ̇1 = θ̇0 = ω0 . Since 
Eq. (11) are valid for A1 + B1 > � , the necessary condition for the existence of the synchronized state (12) is

It is important to note that the above synchronized state also exists in the original (non-reduced) system of 
Eqs. (3) and (7) without the assumption that the parameter ε is small. Indeed, in the three-dimensional state space 
(A1,B1,ϕ1) of this system there is always a stable fixed point (A∗

1,B
∗
1 ,ϕ

∗
1 ) = (0,α, arcsin(�/α)) if the condition 

(13) is met. Thus, the synchronized state with disabled synaptic connection A1 = 0 and maximum synaptic 
connection B1 = α is exact for any values of the parameters ε and µ.

(ii) Case K < � . Under this condition, the oscillators are not synchronized and the phase difference ϕ1 shows 
fast oscillations. Again, we neglect the slow variations of A1 and B1 on the fast time scale. For constant K, the 
oscillation period can be obtained from the Eq. (7) in analytical form:

Now an approximate system of equations for the slow variables A1 and B1 can be obtained by averaging the 
Eq. (3) over the period of fast oscillations39: 

 where

(7)ϕ̇1 = �− K sin(ϕ1),

(8)K = A1 + B1

(9)� = ω0 − ω1

(10)ϕ∗
1 (K) = arcsin (�/K).

(11a)Ȧ1 =− εF(A1) exp
[

−ϕ∗
1 (K)/τ−

]

,

(11b)Ḃ1 =εF(α − B1) exp
[

−ϕ∗
1 (K)/τ+

]

.

(12)(A∗
1,B

∗
1) = (0,α).

(13)α > �.

(14)T(K) =
∫ 2π

0

dϕ1

�− K sin(ϕ1)
=

2π√
�2 − K2

.

(15a)Ȧ1 =
ε

T(K)

[

F(α − A1)

∫ 0

−π

G+(K ,ϕ1) dϕ1 − F(A1)

∫ π

0
G−(−K ,−ϕ1) dϕ1

]

,

(15b)Ḃ1 =
ε

T(K)

[

F(α − B1)

∫ π

0
G+(−K ,−ϕ1) dϕ1 − F(B1)

∫ 0

−π

G−(K ,ϕ1)dϕ1

]

,
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To summarize, the Eqs. (11) and (15) together with expressions (8), (10), (14) and (16) constitute a complete 
system of reduced differential equations for describing the dynamics of the system in the entire plane ( A1,B1 ) 
of slow variables. Unlike the original system of three differential Eqs. (3) and (7), here the fast variable ϕ1 is 
eliminated. The line A1 + B1 = � in the plane of slow variables divides the areas of synchronized and unsyn-
chronized motion of oscillators (see the red dashed line in Fig. 1a). The region A1 + B1 > � corresponds to 
synchronized motion and is described by Eq. (11), while the region A1 + B1 < � represents unsynchronized 
motion and is defined by Eq. (15).

To justify the validity of the reduced system Eqs. (11) and (15), in Fig. 1 we compare the phase portrait in 
the plane of variables ( A1,B1 ) obtained from the reduced system (Fig. 1a) with the projection of the solution of 
the original system of three differential Eqs. (3) and (7) to the same plane ( A1,B1 ) (Fig. 1b). For ε = 0.01 , we see 
excellent agreement between these two results. The red star is the fixed point (12) described above, which cor-
responds to the synchronized state of oscillators with a maximum synaptic weight B1 and a vanishing synaptic 
weight A1 . We see that there is another stable fixed point located in the unsynchronized region below the red 
dashed line marked by green square. This means that the system is bistable with coexisting synchronized and 
unsynchronized steady states. The basins of attraction of stable fixed points are separated by the stable separatrix 
of the saddle point, which is marked with a red circle. The saddle is in the unsynchronized region, just below the 
red dashed line. Strictly speaking, the term “fixed point” in the unsynchronized region is correct only within the 
framework of the reduced system of Eq. (15). In the original system of Eqs. (3) and (7), the variables A1 and B1 
show high-frequency oscillations around the usynchronized steady state with a small amplitude proportional to ε . 
The period of these oscillations is determined by the Eq. (14). At ε → 0 the amplitude of these oscillations tends 
to zero. Numerical simulation of the original system of Eqs. (3) and (7) showed that convergence to asymptotic 
states does not depend on the initial conditions of the fast variable ϕ1 for almost all initial conditions of the slow 
variables (A1,B1) , except for the case when they are in the close vicinity of the stable separatrix of the saddle point.

Dependence of unsynchronized steady state on the sharpness parameter µ . The reduced system of Eq. 
(15) is convenient for analyzing the dependence of an unsynchronized steady state on the sharpness parameter 
µ of the boundary function. Especially in the limit of the hard boundary, µ → 0 , the results can be obtained in 
analytical form. For the power boundary function (4), the stationary solutions of Eq. (15) at any µ can be dem-
onstrated graphically. By equating the right hand sides of Eq. (15) to zero, we obtain two equations, A1 = f1(K) 
and B1 = f2(K) , where

The stationary value of the variable K = A1 + B1 satisfies the equation K = f1(K)+ f2(K) . Figure 2a shows 
the graphical solution of this equation for different values of the parameter µ . We see that the stationary point K∗ 
obtained as intersection of the curve f1(K)+ f2(K) with the identity line moves towards zero as µ is decreased. 

(16)G±(K ,ϕ1) =
exp (ϕ1/τ±)

[�− K sin (ϕ1)]
.

(17)

f1(K) = α



1+
�

� π

0 G−(−K ,−ϕ1) dϕ1
� 0
−π

G+(K ,ϕ1) dϕ1

�
1
µ





−1

, f2(K) = α



1+
�

� 0
−π

G−(K ,ϕ1) dϕ1
� π

0 G+(−K ,−ϕ1) dϕ1

�

1
µ





−1

.

Figure 1.   Comparisson of (a) the phase portrait in the plane of slow variables ( A1,B1 ) obtained from the 
reduced system of Eqs. (11) and (15) with (b) the projection of the solution of the original system of Eqs. 
(3) and (7) to the same plane ( A1,B1 ). The red dashed line A1 + B1 = � divides the areas of synchronized 
( A1 + B1 > � ) and unsynchronized ( A1 + B1 < � ) motion of the oscillators. The red star and green square 
indicate the stable fixed points of the synchronized and desynchronized system, respectively. The red circle 
marks a saddle point, and red trajectories represent its separatrices. The stable separatrix separates the basins 
of attraction of the two stable fixed points. The red circle and green square represent true fixed points in panel 
(a) only, while in panel (b) they can only be roughly interpreted as fixed points (see main text for details). The 
results are presented for the sigmoid boundary function (5) whith the parameter µ = 0.2 . Other parameters are: 
ω0 = 1 , ω1 = 0.5 , α = 1 , τ+ = 0.15 , τ− = 0.3 , and ε = 0.01.
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Since the synaptic weights A1 and B1 are always positive, the stationary values of A∗
1 and B∗1 also move towards zero 

with decreasing µ . This is demonstrated in Fig. 2b, were the dependence of the stationary values A∗
1 and B∗1 on the 

parameter µ is depicted. Thus in the limit of the hard boundary µ → 0 the fixed point responsible for the unsyn-
chronized state of the oscillators approaches the origin of the phase space, (A∗

1,B
∗
1) → (0, 0) . This means that in 

the limit µ → 0 , the oscillatorsbecomes completely disconnected. To verify whether this property is universal, 
in Fig. 2c we plot the dependence of the stationary values of A∗

1 and B∗1 on the parameter µ for the case of the 
sigmoid boundary function (5). We see that here the stationary values of A∗

1 and B∗1 also tend to zero for µ → 0.
Now we generalize the above results for any continuous boundary function F(x), which for 0 ≤ x ≤ α has 

the following properties: (i) F(x) is a monotonically increasing function, i.e., F ′(x) > 0 ; (ii) in the interval 
0 ≤ x ≤ µ ≪ α , the function increases sharply from F(0) = 0 to F(µ) � 1 , and in the interval µ ≤ x ≤ α , it 
slowly increases to a value F(α) ≈ 1 . In the examples above, we saw that for small µ the fixed point corresponding 
to the unsynchronized state was placed in the region K ≪ � . Here we assume that this condition is valid for any 
boundary function with the above properties and will show that the obtained results confirm this assumption. 
The assumption K ≪ � allows us to simplify the Eq. (15) and treat the problem analytically. Under this assump-
tion, the Eqs. (14) and (16) can be approximated as T(K) ≈ 2π/� and G±(K ,ϕ1) ≈ exp (ϕ1/τ±)/� , respectively. 
Substituting these expressions into Eq. (15) and evaluating the corresponding integrals, we get 

We see that the equations for A1 and B1 are identical and independent of each other. This means that their 
stationary solutions coincide A∗

1 = B∗1 and it is enough to analyze only one of the two equations, say, the Eq. (18a). 
The stationary solution of Eq. (18a) satisfies:

where

is a parameter depending on PDDP learning windows τ+ and τ− . At any τ+ < τ− , this parameter is less than 
one. Specifically, for τ+ = 0.15 and τ− = 0.3 used in this paper, the value of this parameter is q = 0.5 . For small 
µ , the function F(x) is close to 1 for all x except for a small region 0 ≤ x ≤ µ ≪ α , where it sharply increases 
from F(0) = 0 to F(µ) � 1 . From this property it follows that for q < 1 the Eq. (19) can be fulfilled only at 
A∗
1 ∼ µ ≪ α . Taking F(α − A∗

1) ≈ F(α) ≈ 1 , we get F(A∗
1) ≈ q and obtain the stationary solution of Eq. (18) 

in the form

(18a)Ȧ1 =
{

F(α − A1)τ+
[

1− exp(−π/τ+)
]

− F(A1)τ−
[

1− exp(−π/τ−)
]}

/2π ,

(18b)Ḃ1 =
{

F(α − B1)τ+
[

1− exp(−π/τ+)
]

− F(B1)τ−
[

1− exp(−π/τ−)
]}

/2π .

(19)
F(A∗

1)

F(α − A∗
1)

= q,

(20)q =
τ+

[

1− exp(−π/τ+)
]

τ−
[

1− exp(−π/τ−)
] ,

Figure 2.   Sharpness parameter µ effect on synaptic weigths. (a) Graphical solution of the equation 
K = f1(K)+ f2(K) at different values of the parameter µ of the power boundary function (4). The stationary 
value of the variable K is defined by the intersection of the function f1(K)+ f2(K) with the identity line. 
The values of the parameters are the same as in Fig. 1. (b,c) Stationary solutions of Eq. (15) corresponding 
to unsynchronized state of the system in dependence of the sharpness parameter µ for (b) power (4) and (c) 
sigmoid (5) boundary functions. The dashed curves in (b,c) show the analytical predictions (22) and (23), 
respectively, which are valid for small values of the parameter µ.
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where F(−1) denotes the inverse of the function F. This solution is stable since F ′(A∗
1) > 0 and F ′(α − A∗

1) > 0 . 
Due to the assumptions made for the function F(x), the value of F(−1)(q) tends to zero for µ → 0 . Therefore, for 
any boundary function with the above properties, the fixed point (A∗

1,B
∗
1) of the unsynchronized state approaches 

the origin of the phase plane when µ → 0 . Choosing a sufficiently small value of µ , we can always satisfy the 
condition K ≪ � , which was used to derive the Eq. (18).

The general Eq. (21) can be used to estimate unsynchronized stationary states for specific boundary functions 
(4) and (5) presented above. In the case of the power boundary function F(x) = xµ , we get

According to this law, the fixed point very quickly approaches the coordinate origin as µ decreases. In the 
case of a sigmoid boundary function F(x) = tanh(x/µ) , the fixed point approaches the origin linearly with 
decreasing µ:

The dependencies (22) and (23) are shown by dashed curves in Fig. 2b,c, respectively. For small µ they are in 
good agreement with the results obtained by numerical solution of Eq. (15).

Numerical examples in Fig. 3(I) and (II) columns show the dynamics of the system state variables for two 
different initial conditions that converge to different asymptotic modes: the synchronized state (I) and the 
unsynchronized state (II). The results are presented for the sigmoid boundary function (5) with the parameter 
µ = 0.2 . Panels (a) and (b) show the dynamics of the slow variables A1(t) and B1(t) obtained from the original 
system of Eqs. (3) and (7), as well as the reduced system of Eqs. (11) and (15). For ε = 0.001 , these results are 
indistinguishable in the figure. In panel (a), the synaptic weight A1 asymptotically vanishes ( A1 → 0 ), and the 
synaptic weight B1 reaches the maximum value ( B1 → α = 1 ). The phases of the oscillators remain locked dur-
ing this process, as can be seen from the dynamics of the phase difference ϕ1(t) , shown in panel (c). In panel (b), 
both synaptic weights approach small values close to the value of the parameter µ = 0.2 . Here the dynamics of 
the phase difference ϕ1(t) is more complex [see panel (d)]. The phases are locked when the sum K = A1 + B1 of 
the synaptic weights is greater than the frequency detuning � = 0.5 . When K becomes smaller than � , the phase 

(21)A∗
1 = B∗1 = F(−1)(q),

(22)A∗
1 = B∗1 = q1/µ.

(23)A∗
1 = B∗1 = µ atanh (q).

Figure 3.   Dynamics of state variables of two oscillators under PDDP. Columns (I) and (II) represent 
two different initial conditions, which lead to different asymptotic modes: synchronized state (I) and 
unsynchronized state (II). (a,b) Dynamics of slow variables A1(t) and B1(t) . (c,d) Dynamics of the phase 
difference ϕ1(t) . The values of the parameters are the same as in Fig. 1 except for ε = 0.001 . (e,f) Dynamics of 
the absolute value |δK(t)| of the deviation of the solution of the reduced system of Eqs. (11) and (15) from the 
solution of the original system of Eqs. (3) and (7) for different values of the parameter ε : 0.1 (blue), 0.01 (red) 
and 0.001 (orange). (g) Dynamics of the variable K(t) = A1(t)+ B1(t) obtained from Eqs. (3) and (7) for the 
sigmoid boundary function with different values of the parameter µ : 0.2 (red), 0.1 (blue), 0.01 (green), and 0.001 
(black). The curves move downward as the parameter µ decreases. The lower yellow curve corresponds to the 
Heaviside step boundary function. The initial conditions are the same as in the second column and ε = 0.001.
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difference experiences fast oscillations. Panels (e) and (f) demonstrate the accuracy of the reduced Eqs. (11) and 
(15) depending on the parameter ε . The dynamics of the absolute value of the deviation δK(t) = Kred(t)− K(t) 
in semi-log plot is shown for different values of the parameter ε : 0.1 (blue curves), 0.01 (red curves), and 0.001 
(orange curves). Here K(t) is the sum of the synaptic weights A1(t)+ B1(t) obtained from the original system 
of Eqs. (3) and (7), and Kred(t) is the same variable obtained from the reduced system of Eqs. (11) and (15). We 
see that the deviation |δK | decreases in proportion to the ε parameter.

Figure 3g shows the dynamics of the variable K(t) obtained from the original system of Eqs. (3) and (7), for 
fixed ε = 0.001 and different values of the parameter µ : 0.2 (red curve), 0.1 (blue curve), 0.01 (green curve), and 
0.001 (black curve). These results are presented for the sigmoid boundary function F(x) = tanh(x/µ) . The lower 
yellow curve shows the result for the Heaviside step boundary function, F(x) = H(x) . The initial conditions 
are the same as in the (II) column, which correspond to the unsynchronized asymptotic state of the system. As 
expected from the above analytical results [see Eq. (23)], the asymptotic values of the variable K decrease in pro-
portion to the µ parameter. Note that Eq. (23) was derived in the limit ε → 0 and predicts stationary asymptotic 
values of K. Here we observe small amplitude oscillations in the asymptotic dynamics due to the finite value 
of ε . The oscillations with a small amplitude of order ε remain also in the case of the Heaviside step boundary 
function (see the lower yellow curve in the figure).

To conclude this section, we formulate the main results concerning the asymptotics of two coupled oscillators 
with PDDP. Below, we will be interested in the case of small parameters ε and µ , since this case allows to predict 
the number of possible states in a star network with an arbitrary number of leaves. In this case the system of 
two oscillators can demonstrate bistability with coexisting synchronized and unsynchronized attractors. The 
synchronized attractor is characterized by a unidirectional coupling, in which directional link from a slower 
oscillator to a faster oscillator is disconnected, A1 = 0 , and the synapse associated with the directional link from 
a faster oscillator to a slower oscillator is maximal, B1 = α . This attractor exists only when the maximum value 
α of the synaptic weight is greater than the frequency mismatch � between the oscillators. The unsynchronized 
attractor is characterized by low values of both synaptic weights A1 and B1 . In the limit µ → 0 and ε → 0 , the 
oscillators in the unsynchronized state are completely disconnected, A1 = B1 = 0 . In the next section, we will 
use these results to predict the asymptotic behavior of multi-leaf star networks.

Results
We show that a star network with N leaves described by Kuramoto-type phase oscillators Eq. (1), with synaptic 
weights satisfying the PDDP rule (3), can evolve into 2N various stable configurations. This result was obtained 
under the assumption of small parameters ε and µ . We use the analytic results obtained for two oscillators to 
predict the asymptotic behavior of an arbitrary star network. A generalization for an N-leaf star network is 
obtained by gradually enlarging the number of leaves. We prove our prediction numerically for the cases of two, 
three, and nine leaves.

For simplicity, we assume that there are no oscillators with coinciding natural frequencies. Then, without loss 
of generality, let us number the natural frequencies of the leaves in ascending order:

We will consider all possible options for choosing the natural frequency ω0 of the hub, which can fall into 
different frequency intervals of the leaves, i.e., it can satisfy N + 1 various inequalities: ω0 < ω1 , ωj < ω0 < ωj+1 
for j = 1, . . . ,N − 1 , and ωN < ω0 . Finally, we assume that the limiting value α of synaptic weights is greater 
than the frequency mismatches �j = |ω0 − ωj| between the hub and all leaves:

The last inequalities are a generalization of the necessary condition (13) for the existence of synchronized 
states.

Two-leaf star network. We begin our analysis with a two-leaf star network. We assume that each leaf in the 
network can be either synchronized or unsynchronized with the hub. We also assume that the fastest oscillator 
always wins in the synchronization process, so that unidirectional links from the fastest oscillator to the slower 
oscillators are established with the maximum synaptic weights. Since the fastest oscillator dominates the slower 
oscillators, no more than one synchronized link can go to the hub. Using these assumptions, we constructed seven 
possible configurations, shown in Fig. 4a–g. Solid arrows correspond to the synchronized states of the oscilla-
tors, in which the connection is unidirectional with the maximum synaptic weight. Dotted arrows correspond 
to unsynchronized states between oscillators, in which synaptic weights in both directions are small. We assume 
that they vanish in the limit ε → 0 and µ → 0 . The presented configurations can be realized only when certain 
frequency inequalities are met. These inequalities are written above each configuration. The inequalities were 
obtained using the Eqs. (1) and (3). Below we illustrate this with examples of three configurations (a), (c) and 
(e). In these examples, we also show that these configurations satisfy the Eqs. (1) and (3).

In configuration (a), the coupling weights A1 and A2 are zeros, and both leaves are synchronized with the hub. 
In this case, the phases of the oscillators satisfy the equations: 

(24)ω1 < ω2 < · · · < ωN .

(25)α > �j , j = 1, . . . ,N .

(26a)θ̇0 =ω0,

(26b)θ̇1 =ω1 + B1 sin (θ0 − θ1),
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The hub is not influenced by leaves, so the instantaneous frequencies of the leaves must be equal to the natural 
frequency of the hub, θ̇1 = θ̇2 = ω0 , to ensure synchronization. This leads to two equations for the phase dif-
ferences as defined by Eq. (2) [ ϕ1,2 = θ0 − θ1,2 ]: sin

(

ϕ1,2
)

=
(

ω0 − ω1,2

)

/B1,2 . From Eq. (3a) we conclude that 
the phase differences ϕ1,2 must be in the interval (−π , 0) in order to satisfy the conditions A1 = A2 = 0 . Then 
from the stationary solution of the Eq. (3b), we get B1 = B2 = α , and from the above equations for the phase 
differences, we obtain two inequalities: ω1 < ω0 and ω2 < ω0 . In Fig. 4a–g we have presented only the second 
inequality corresponding to this configuration, since the first inequality holds due to the assumption (24).

As a second illustrative example, consider configuration (c). Here, as in the previous example, all oscillators 
are synchronized, but now A1 and B2 are zeros, and the Eq. (1) for the phases can be written as: 

The second leaf is not influenced by the hub and it oscillates freely with its natural frequency ω2 . To ensure 
synchronization between all oscillators, we must require θ̇0 = θ̇1 = ω2 . As a result, we get two equations for the 
phase differences ϕ1,2 : sin (ϕ1) = (ω2 − ω1)/B1 and sin (ϕ2) = (ω0 − ω2)/A2 . It follows from the first equation 
that the phase difference ϕ1 is in the interval (0,π) , since ω2 > ω1 . This provides A1 = 0 and B1 = α as stationary 
solutions to the Eqs. (3a) and (3b). To satisfy the condition B2 = 0 , we must require that the phase difference ϕ2 
is in the interval (−π , 0) . Then from the stationary solution of the Eq. (3b) we get A2 = α , and from the above 
equations for the phase difference ϕ2 we obtain the inequality ω0 < ω2 , which gives the necessary condition for 
this configuration.

(26c)θ̇2 =ω2 + B2 sin (θ0 − θ2).

(27a)θ̇0 =ω0 − A2 sin (θ0 − θ2),

(27b)θ̇1 =ω1 + B1 sin (θ0 − θ1),

(27c)θ̇2 =ω2.

Figure 4.   Asymptotic configurations for a two-leaf star network. (a–g) Predicted configurations. Solid arrows 
show the unidirectional coupling with maximum synaptic weight that results in synchronization between the 
leaf and the hub. Dashed arrows correspond to a weak synaptic connections, so the leaf is not synchronized with 
the hub. The required frequency inequality is indicated above each configuration. The two characters in brackets 
under each configuration represent its code. (h) Distributions of color-coded asymptotic values of coupling 
weights Aj and Bj for a two-leaf star network, obtained by integrating Eqs. (3) and (6). The results presented 
in three rows correspond to three different possibilities of the hub frequency to fall into different frequency 
intervals of the leaves: ω0 < ω1 (top row), ω1 < ω0 < ω2 (middle row), and ω2 < ω0 (bottom row). The top row 
of (h) (from left to right) match configurations (g,b,e,a). For the middle and bottom rows, the corresponding 
configurations are, respectively, as follows: (g,d,e,c) and (g,d,f,c). All frequencies are taken from the array 
(0.55, 0.85, 1). The parameter ε = 0.001 , and the parameter µ = 0.01 corresponds to the sigmoid boundary 
function (5). The values of the parameters α , τ+ and τ− are the same as in Fig. 1.
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Our third example is configuration (e). Here, the first leaf is synchronized with the hub and the second leaf 
is not synchronized. Considering that A1 = 0 and the weights A2 and B2 are small, the Eq. (1) for the phases 
take the form: 

Here O(A2) and O(B2) are small terms proportional to the weights A2 and B2 respectively, which we assume to 
be zero for ε → 0 and µ → 0 . If we neglect these terms, then we will see that the hub and the second leaf freely 
oscillate with their natural frequencies. The synchronization condition of the first leaf with the hub, θ̇1 = ω0 , 
leads to the equation sin (ϕ1) = (ω0 − ω1)/B1 . From the Eq. (3a) it follows that the phase difference ϕ1 must be 
in the interval (−π , 0) in order to satisfy the condition A1 = 0 . Then from the stationary solution of the Eq. (3b), 
we get B1 = α , and from the above equation for the phase difference ϕ1 , we obtain the inequality ω1 < ω0 , which 
is the necessary condition for the realization of configuration (e).

For further classification of asymptotic states, it is convenient to introduce the following notations. We encode 
each asymptotic configuration of an N-leaf network as an array of N characters (s1s2 . . . sN ) , where sj defines the 
state of the jth leaf. Each element sj of the array is represented by one of three possible symbols: “0” (zero), “ 1H ” 
(one with subscript H), and “ 1L ” (one with subscript L). The symbol “0” denotes an unsynchronized state of the 
leaf with small (vanishing for ε → 0 and µ → 0 ) synaptic weights. The symbols “ 1H ” and “ 1L ” represent the 
synchronized state with maximum coupling strength directed to the hub and leaf, respectively. The correspond-
ing codes are written under each configuration in Fig. 4.

All asymptotic configurations shown in Fig. 4a–g were numerically validated for different sets of hub and 
leaves frequencies. Using these configurations, we can predict all possible asymptotic states of a two-leaf network 
for any given value of the hub frequency when it falls into different frequency intervals of the leaves. When the 
hub frequency is less than the frequencies of both leaves, ω0 < ω1 , then, depending on the initial conditions, 
the configurations (c), (d), (f) and (g) can be asymptotically attained. When the hub frequency falls within the 
interval between leaf frequencies, ω1 < ω0 < ω2 , the admissible asymptotic configurations are (c), (d), (e), and 
(g). Finally, when the hub frequency is greater than the frequencies of both leaves, ω2 < ω0 , we identify (a), (b), 
(e), and (g) as admissible configurations. Thus, at any value of the hub frequency, a two-leaf star network can 
asymptotically reach four different configurations, characterized by different values of synaptic weights.

In Fig. 4h, we confirm the above statement with a specific numerical example. Taking different initial con-
ditions, we integrated the system of Eqs. (3) and (6) over a long period of time until the values of the weights 
Aj and Bj became saturated, and then displayed these values in color code. The results presented in three rows 
correspond to three different possibilities of the hub frequency to fall into different frequency intervals of the 
leaves: ω0 < ω1 (top row), ω1 < ω0 < ω2 (middle row), and ω2 < ω0 (bottom row). In all cases, four different 
asymptotic states were found, as predicted above. On each row, we order the asymptotic states so that we get 
similar sequences of configuration codes. If we remove the subscripts at “ 1H ” and “ 1L ” in these codes, we get an 
identical sequences of configuration codes for each row: (0 0) , (0 1) , (1 0) , and (1 1) . This is a binary sequence of 
natural numbers from 0 to 3, which gives us a convenient way to index the various asymptotic configurations for 
any given hub frequency. We will use this way of numbering different asymptotic configurations when consider-
ing star networks with a larger number of leaves.

Three-leaf star network. The classification of various asymptotic states in a three-leaf star network can be 
done in the same way as for a two-leaf star network. Using arguments similar to those given above, we have 
constructed fifteen possible asymptotic configurations of the three-leaf star network, which are shown in Fig. 5. 
They are designated by letters from (a) to (o). The three characters in brackets below each configuration represent 
its code. The required frequency inequality is indicated above each configuration.

Figure 5 allows predicting all possible asymptotic states of a three-leaf star network for any given value of the 
hub frequency when it falls into different frequency intervals of the leaves. In all cases, there are eight different 
admissible asymptotic states presented in Table 1. The first column lists four different possible inequalities for 
the hub frequency, and the next eight columns show the codes of the corresponding allowed configurations. 
For example, when the hub frequency falls within the interval between the frequencies of the second and third 
leaves, ω2 < ω0 < ω3 , the codes listed from left to right in the third row correspond to configurations (o), (h), 
(i), (g), (m), (f), (j), and (e) in Fig. 5. We order the configurations in the same way as in the case of a two-leaf 
star network. After removing the subscripts at “ 1H ” and “ 1L ” in the configuration codes, we get identical binary 
sequence of natural numbers from 0 to 7 in all rows of the Table 1. We use this numbers to index the correspond-
ing asymptotic configurations for any given hub frequency.

All asymptotic configurations presented in Table 1 were numerically validated for different sets of hub and 
leaves frequencies. An example of numerical testing of asymptotic states of a tree-leaf star network, when the 
hub frequency is in the interval between the frequencies of the second and third leaves, ω2 < ω0 < ω3 , is shown 
in Fig. 6a. By integrating the system of Eqs. (3) and (6) with many different initial conditions over a long period 
of time, we obtained eight different asymptotic configurations, as predicted in the third column of the Table 1. 
The probability distribution of the various asymptotic configurations, numbered as described above, is shown in 
Fig. 6b. This graph was constructed using 1000 randomly selected initial conditions. The initial values of the slow 
variables Aj and Bj were randomly and independently taken from uniform distribution [0,α] . Each of the 1000 
numerical experiments resulted in one of eight predicted asymptotic configurations, and no other asymptotic 

(28a)θ̇0 =ω0 + O(A2),

(28b)θ̇1 =ω1 + B1 sin (θ0 − θ1),

(28c)θ̇2 =ω2 + O(B2).
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solutions were observed. For given parameter values, configuration (1L1L1H) with all synchronized oscillators 
(Fig. 5e) is most likely, and configuration (0 0 0) with all unsynchronized oscillators (Fig. 5o) is the least likely.

N-leaf star network. The results obtained for two- and three-leaf star networks can be generalized for a 
star network with an arbitrary number of leaves. Assuming that each leaf in a N-leaf star network can be either 
synchronized or unsynchronized with the hub, we can construct 2N different asymptotic configurations for 
any given hub frequency. Let us denote the code of the nth asymptotic configuration of an N-leaf star network 
as C(k)n  , where n is a natural number that varies from 0 to 2N − 1 , and the superscript (k) identifies a specific 
frequency range of the hub. We assign k = 1 when the hub frequency is less than the lowest frequency of the 
leaves ω0 < ω1 . The values k = 2, . . . ,N  correspond to the inequalities ωk−1 < ω0 < ωk . Finally, we assign 

Figure 5.   (a-o) Possible asymptotic configurations for a three-leaf star network. See capture to Fig. 4 for details.

Table 1.   Theoretically predicted asymptotic configurations of a three-leaf star network for four different 
possibilities of the hub frequency to fall into different frequency intervals of the leaves. The first column 
lists the possible inequalities for the hub frequency, and the next eight columns show the codes of the 
corresponding allowed configurations.

ω0 < ω1 (0 0 0) (0 0 1H) (0 1H0) (0 1L1H) (1H0 0) (1L0 1H) (1L1H0) (1L1L1H)

ω1 < ω0 < ω2 (0 0 0) (0 0 1H) (0 1H0) (0 1L1H) (1L0 0) (1L0 1H) (1L1H0) (1L1L1H)

ω2 < ω0 < ω3 (0 0 0) (0 0 1H) (0 1L0) (0 1L1H) (1L0 0) (1L0 1H) (1L1L0) (1L1L1H)

ω3 < ω0 (0 0 0)  (0 0 1L) (0 1L0) (0 1L1L) (1L0 0) (1L0 1L) (1L1L0) (1L1L1L)
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k = N + 1 , when the hub frequency is greater than the highest frequency of the leaves, ωN < ω0 . Summarizing 
the results of sections dedicated to two and three leaf networks, we found that the code C(k)n  of the nth asymp-
totic configuration for any N can be written as follows. First, we represent the decimal number n in binary: 
n = (dN−1dN−2 . . . d0)2 =

∑N−1
j=0 dj2

j , were dj are digits equal to 0 or 1. Then the rightmost digit 1 in the posi-
tions p ≥ k of the array (dN−1dN−2 . . . d0) is assigned the subscript H. After that, all the remaining digits 1 in 
the array are assigned the subscript L, and this gives us the required code C(k)n  . To demonstrate these rules, let’s 
write the code for the third asymptotic configuration of a three-leaf star network when the hub frequency is in 
the range ω1 < ω0 < ω2 . In this case k = 2 , N = 3 and n = 3 . The number n in binary is (0 1 1) . Assigning the 
rightmost digit 1 in the positions p ≥ 2 to the subscript H, and the remaining digits 1 to the subscript L, we 
obtain the code C(2)3 = (0 1L1H) , which is the same as shown in the second row of the fifth column of Table 1. 
As an example of applying the above rules to a more complex case, we present the code of the 25th asymptotic 
configuration of a five-leaf star network when the hub frequency is in the range ω4 < ω0 < ω5:

To verify the validity of the predicted asymptotic states in a star network with a large number of leaves, we 
will consider the dynamics of a 2N-dimensional state vector

in the complete phase space of slow variables. By integrating the system of Eqs. (3) and (6) with different initial 
conditions, we will check whether the state of the network approaches the predicted asymptotic states. The state 
vector

of the nth predicted asymptotic configuration, determined by its code C(k)n = (s1s2 . . . sN ) is constructed as fol-
lows. In the first half of the vector components, we assign A∗

j = α if the corresponding character sj in the code is 
“ 1H ”, and we assign A∗

j = 0 if the character sj is “ 1L ” or “0”. In the second half of the vector components, we assign 
B∗j = α if the character sj is “ 1L ”, and we assign B∗j = 0 if the character sj is “ 1H ” or “0”. For example, the state 
vector of the 25th predicted asymptotic configuration in a five-leaf star network defined by the code Eq. (29) is:

In Fig. 7, we confirm the validity of the predicted asymptotic states for a nine-leaf star network when the 
hub frequency is in the range ω8 < ω0 < ω9 . Panel (a) shows the results obtained with the sigmoid boundary 
function (5) at µ = 0.01 , and panel (b) corresponds to the Heaviside step boundary function. To numerically 
check the existence of the predicted asymptotic configurations in the system of Eqs. (3) and (6), we prepared 
512 different initial states R(0) so that they are at the same small distance |R(0)− R

(9)
n | = 0.05 from different 

(29)C
(5)
25 = (1L1L0 0 1H).

(30)R(t) = (A1,A2, . . . ,AN ,B1,B2, . . . ,BN )
T

(31)R
(k)
n = (A∗

1,A
∗
2, . . . ,A

∗
N ,B

∗
1 ,B

∗
2 , . . . ,B

∗
N )

T

(32)R
(5)
25 = (0, 0, 0, 0,α,α,α, 0, 0, 0)T .

Figure 6.   Results of three leaf star modeling. (a) Distributions of color-coded asymptotic values of coupling 
weights Aj and Bj for a three-leaf star network, obtained by integrating Eqs. (3) and (6) with different initial 
conditions. The leaves natural frequencies are (ω1,ω2,ω3) = (0.55, 0.7, 1). The hub natural frequency ω0 = 0.85 
satisfies the inequality ω2 < ω0 < ω3 . The resulting distributions are labeled with codes that agree with 
the theoretically predicted asymptotic configurations shown in the third column of Table 1. (b) Probability 
distribution of eight different asymptotic configurations for a three-leaf star network, when the hub frequency 
is in the interval between the frequencies of the second and third leaves, ω2 < ω0 < ω3 . In panel (a), the 
configurations are numbered according to the decimal representation of the binary codes shown above 
each pattern in panel (a) (see main text for details). The distribution is constructed using 1000 randomly 
selected initial conditions for Eqs. (3) and (6). The initial values of the weights Aj and Bj were randomly and 
independently taken from the uniform distribution [0,α].
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theoretical configurations defined by state vectors R(9)
n  , n = 0, . . . , 511 . These initialdistances are depicted asblue 

squares on the top horizontal line. The evolution of the distances obtained by integrating the Eqs. (3) and (6) for 
the initial conditions chosen in this way is presented by two snapshots. The yellow dots show the values of the 
corresponding distances |R(t)− R

(9)
n | at time t = 300 , and the red circles at time t = 76,000 . We see that for both 

boundary functions, the distances from the predicted states decrease with time, which means that these states 
are stable asymptotic network configurations. However, the distances (except for the case n = 511 ) do not vanish 
even after a fairly long time. This is because we integrate the Eqs. (3) and (6) for finite values of the parameters 
µ and ε , while our theoretical prediction of asymptotic states is based on assumption µ → 0 and ε → 0 . Excep-
tional configuration n = 511 corresponds to the state with all synchronized oscillators. The distance from this 
state tends to zero, since this state is an exact solution of the Eqs. (3) and (6) even for finite µ and ε . All other 
predicted asymptotic states are approximate solutions of the system of Eqs. (3) and (6). Note that the Heaviside 
boundary function results in better match of the asymptotic solutions of the Eqs. (3) and (6) with the predicted 
ones than the sigmoid function; the final distances |R(t)− R

(9)
n | at time t = 76,000 in Fig. 7b are smaller than 

in Fig. 7a. This is due to the fact that in the case of the sigmoid boundary function, both parameters µ and ε are 
finite, and in the case of the Heaviside boundary function only ε is finite.

Discussion
We analyzed the multistability in a star network of Kuramoto-type phase oscillators in the presence of phase-
difference-depended plasticity. A star-type network is the simplest network model that captures many of the typi-
cal properties of real-world networks; it can be considered an essential building block of neural networks29–31. The 
relative simplicity of the network allowed us to accurately estimate the number of possible asymptotic configura-
tions which can be attained during the plastic evolution of the network. We have shown that, depending on the 
initial conditions, an N-leaf star plastic network can evolve into 2N various stable configurations characterized by 
different values of the coupling strength between the hub and the leaves. This result is independent of the relative 
magnitude of the natural frequency of the hub in relation to the natural frequencies of the leaves. We classified the 
various asymptotic states of the network by introducing configuration codes. The code is an array of N symbols 
that define the asymptotic state of each leaf. Each leaf can be synchronized or unsynchronized with the hub.

Results for an arbitrary N-leaf star network were obtained by generalizing the results derived from the analy-
sis of networks with a small number of leaves. We started our analysis from a simple model consisting of two 
oscillators. Using the small parameter ε , which determines the ratio of the characteristic time scales of phase 
variables and synaptic weights, we obtained a reduced system of two differential equations for slowly varying 
synaptic weights. These equations were treated analytically. We have shown that this system is bistable with 
coexisting synchronized and unsynchronized attractors. The synchronized attractor is characterized by a uni-
directional coupling, in which the directional link from a slower oscillator to a faster oscillator is disconnected, 
and the synapse associated with the directional link from a faster oscillator to a slower oscillator is maximal. 
The unsynchronized attractor is characterized by low values of both synaptic weights. In the limit of the hard 
boundary, when the sharpness parameter µ of the PDDP boundary function tends to 0, the oscillators in the 
unsynchronized state are completely disconnected. Using these results, we predicted all possible asymptotic 
states for a two- and three-leaf star networks and confirmed our prediction with numerical examples. Next, we 
generalized our prediction for an arbitrary N-leaf star network. In the limit of two small parameters ε → 0 and 
µ → 0 , we developed an algorithm for constructing 2N different asymptotic configurations. As an example, we 
demonstrated the applicability of this algorithm to a nine-leaf star network. Using our algorithm, we predicted 
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Figure 7.   Numerical simulation of Eqs. (3) and (6) for a nine-leaf star network with 512 different initial 
conditions R(0) , each of which is close to the state R(9)

n  of a particular predicted asymptotic configuration with 
number n = 0, . . . , 511 . Panels (a) and (b) correspond to the sigmoid boundary function with µ = 0.01 and 
the Heaviside step boundary function, respectively. The frequencies (ω1, . . . ,ω8,ω0,ω9) , written in ascending 
order, are equidistantly distributed in the interval [0.6, 1]. The states R(0) are chosen so that the initial distances 
|R(0)− R

(9)
n | shown in blue squares are the same for all configurations. The yellow dots show the values of the 

corresponding distances |R(t)− R
(9)
n | at time t = 300 , and the red circles at time t = 76,000 . Parameter values: 

ε = 0.001 , τ+ = 0.15 , τ− = 0.3 , and α = 1.
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512 different asymptotic configurations and numerically proved their existence in a network model with small 
values of the parameters ε and µ.

Multistability of neuronal networks is relevant to a number of applications. For instance, as shown numerically 
in Refs.9,40–42, plasticity-mediated multistability enables desynchronizing and/or decoupling stimulus patterns to 
move neuronal networks from dynamic states characterized by abnormally strong synchrony and correspond-
ingly increased synaptic weights to dynamic states with reduced synchrony and reduced synaptic strengths. 
Coordinated Reset (CR) stimulation43 is a spatio-temporally patterned desynchronization stimulation protocol 
which was computationally designed to induce cumulative and long-lasting therapeutic desynchronizing effects 
by shifting neuronal networks from abnormally synchronized attractors with strong synaptic weights to desyn-
chronized attractors with reduced synaptic weights9,44. Cumulative and long-lasting therapeutic and desynchro-
nizing effects were observed in Parkinson’s disease (PD) patients45 and Parkinsonian monkeys46,47 treated with 
CR-deep brain stimulation as well as in PD patients treated with vibrotactile CR stimulation delivered to the 
fingertips48,49. By the same token, acoustic CR stimulation induced cumulative and long-lasting reduction of tin-
nitus loudness and tinnitus annoyance along with a reduction of tinnitus-related abnormal cortical synchrony50,51.

Our analysis strategy, extending analytical results obtained in small systems to larger networks, enables thor-
ough analysis of plastic mechanisms of high-dimensional dynamical systems, as e.g. also performed by applying 
two-neuron loop analysis in the context of recurrent networks of oscillatory neurons with propagation delays11. 
As a further plan of this study, it is interesting to check the universality of the results obtained. The question is 
whether the number of different asymptotic states in a star network remains the same if we replace phase oscil-
lators with realistic neuron models and use the more precise STDP rule. A computationally attractive model for 
this problem would be a star network of integrate-and-fire neurons, which enables event-driven simulations20. 
It is also interesting to extend this study to more complex network topologies. The existence of desynchronized 
states with low coupling weights allows us to assume that our model will lead to the appearance of multi-cluster 
states in complex network topologies, as was observed in Refs.52,53. The effect of noise is also of great interest as 
it may induce new states in the network27,54.
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