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Estimating the heavy metal
concentrations in topsoill

in the Daxigou mining area,

China, using multispectral satellite
Imagery

YunYang®?*, Qinfang Cui?, Peng Jia*, Jinbao Liu'> & Han Bai?

A precise estimation of the heavy metal concentrations in soils using multispectral remote sensing
technology is challenging. Herein, Landsat8 imagery, a digital elevation model, and geochemical data
derived from soil samples are integrated to improve the accuracy of estimating the Cu, Pb, and As
concentrations in topsoil, using the Daxigou mining area in Shaanxi Province, China, as a case study.
The relationships between the three heavy metals and soil environmental factors were investigated.
The optimal combination of factors associated with the elevated concentrations of each heavy metal
was determined combining correlation analysis with collinearity tests. A back propagation network
optimised using a genetic algorithm was trained with 80% of the data for samples and subsequently
employed to estimate the heavy metal concentrations in the area. The validation results show that
the RMSE of the proposed model is lower than those of the existing linear model and rule-based M5
model tree. From the spatial distribution map of the three metals concentrations using the proposed
method, there are findings that high concentrations of the heavy metals studied occur in the mining
area, across the slag storage area, on the sides of the road used for transporting ore materials, and
along the base of slopes in the area. These findings are consistent with the survey results in the field.
The validation and findings validate the effectiveness of the proposed method.

Heavy metal pollution of soils around mining areas remains a major concern because of its impacts to the ecologi-
cal environment and human health'. Knowledge on the heavy metal concentrations in soils in mining areas can
be exploited for pollution control, ecological protection, and safe-guarding human health. Therefore, accurate
determination of heavy metals in soils is currently of significant interest in China. To address this problem, Zhang
et al.? built a partial least squares regression model to estimate heavy metals in soils based on soil spectral data
measured using an ASD spectrometer. In addition, Gu et al.* employed laser-induced spectroscopy (LIBS) and
geochemical data derived from soil samples to estimate heavy metal concentrations in soils around a smelter.
However, this site-to-site measurement approach is expensive for large-scale investigations. Therefore, Qu et al.*
exploited hyperspectral imagery involving multispectral characteristics to estimate the heavy metal concentra-
tions in soils through regression analysis. Further, Yang et al.® evaluated the feasibility of utilising multiple veg-
etation indices derived from hyperspectral imagery to estimate the heavy metal concentrations in soils in Yushu
County, China. Wang et al.® summarised previous studies on the estimation of heavy metal concentrations in
soils based on different data sources and highlighted the challenges and unresolved issues.

Owing to the high cost of acquiring hyperspectral imagery, efforts have been devoted in many studies to assess
environmental factors and estimate heavy metal concentrations in soils using multispectral satellite imagery.
For example, Peng et al.”® proposed the use of Landsat 8 imagery to extract spectral indices, in combination
with auxiliary data like proximity to road, which were then utilised to establish a model for estimating the heavy
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Figure 1. Maps showing (a) the location of the Daxigou mining area (enlarged map of Shangluo City) and (b)
the distribution of sampling sites in a Landsat 8 image involving the spectral bands B4, B3 and B2.

metal concentrations in soils. Subsequently, Liu® used Sentinel-2A multispectral imagery to investigate the stress
exerted by heavy metals in soils on crops.

According to previous studies, many environmental factors affect the concentrations and spatial distribu-
tion of heavy metals in soils'®, and the interactions among factors such as the soil moisture, clay minerals, metal
oxides, and heavy metals have been described'!. Therefore, determining the optimal combination of environmen-
tal factors controlling the accuracy of the estimated heavy metal concentrations is critical. In practice, establish-
ing a high-precision physical model for estimating the heavy metal concentrations in soils is quite challenging.

Therefore, in many studies, shallow machine learning models, such as the random forest algorithm?, extreme
learning machine'” and back propagation (BP) network'* have been applied. Compared with deep learning
networks, these shallow learning models involve fewer training samples and less time.

Therefore, the estimation of the heavy metal concentrations in soils using remote sensing technology has
been significantly advanced by previous studies. However, choosing optimal environmental factors for a precise
estimation of the heavy metal concentrations of soils in the mountainous and vegetation-covered mining areas
has received little attention. Therefore, in the present study, an approach for accurately estimating the heavy
metal concentrations in soils in such areas is investigated for pollution control, ecological protection, and safe-
guarding human health.

Study area and data sources

Study area. The Daxigou mining area is located in the town of Xiaoling in Zhashui County, Shaanxi Prov-
ince, China (Fig. 1a). This area hosts the largest siderite deposit in China, which accounts for 47.6% of the
total iron ore reserves in Shaanxi Province. In 1982, Northwest Metallurgical Geological Exploration Company,
China, reported the abundance of Cu, Pb, As, Ag and other elements in the Daxigou-Yindongzi deposit. In the
present study, 39 km? of the Daxigou mining area delineated in Fig. 1b was utilised as the study area. The study
area is characterised by elevated Cu and Pb concentrations. This mountainous area involves many intermediate
depth and shallow gullies. This area, in combination with significant height differences, represents a complex
terrain. Although mining officially began in the area in 1988, open-pit mining was restricted until 2007. The
principal land use categories in the area include: mining, cultivation, forest, grass, industrial, and residential.
Owing to the long-term mining activities in the area, heavy metal pollution of soils and environmental damage
has occurred". Therefore, routine investigations and monitoring of soil heavy metal pollution in the area are
necessary.

Soil sample collection and laboratory analysis.  Soil sample collection. Forty-four soil samples were
collected from the field by technicians in October 2017. Based on the geomorphology and land use in the area,
samples were collected to ensure representativeness and uniform distribution along the three main ridges. The
sampling sites were mainly in the central portion of the hillsides, which are easily accessible, but near valleys.
Heavy metals are commonly transported to the bottom of trenches after scouring, and thus, sampling at the base
of slopes was performed at depths of approximately 20-30 cm, while sampling upslope occurred at depths vary-
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ing between 10 and 20 cm. The distribution of the sampling sites resembled a plum blossom, and each soil sam-
ples was collected within a 30 m x 30 m grid of sampling point as the center. Each sample collected comprised a
mixture of 1 kg of soils around a sampling location. The geographical coordinates of the area, the soil attributes,
and land use categories were documented, and the sampling sites are displayed in Fig. 1b.

Physical and chemical analyses of soil samples. The samples were sieved to remove animal and plant remains
and dried and crushed before analysis. To determine the heavy metals of interest in the area, a composite soil
sample was prepared by taking a little soil from each of the 44 samples. The contents of heavy metals commonly
responsible for soil pollution, including Cu, Pb, As, Hg, Cd, Ni, Zn and Cr were determined using conventional
methods'® by a commercial laboratory in China. Cu and Pb contents were measured using flame atomic absorp-
tion spectrophotometry, while the As concentration was determined using the silver diethyldithiocarbamate
photometric method. The measured Cu, Pb, As, Hg, Cd, Ni, Zn and Cr concentrations are 68.65, 163.52, 34.8,
0.11, 0.20, 44.4, 130.24 and 35.2 mg kg™, respectively.

The concentrations of the eight elements were compared with background values for the area published in
1990". Based on the differences between the measured and background values as well as the geochemical explo-
ration data for the ore belt, Cu, Pb and As were determined as the heavy metals of interest in the present study.

Statistical analysis of the sampling data. A histogram was used to assess the concentrations of each element
in all the samples and to remove outliers. Then, all the effective sample data includes 44 samples for Cu, 40 for
Pb, and 43 for As. Based on the correlations between the three heavy metals from the least squares regression
analysis, each element is examined in more detail subsequently.

Remote sensing data preparation. Twenty-four Landsat8 images covering the study area that were
acquired between 1 January 2017 and 31 December 2017 were retrieved from the US Geological Survey website
(https://LPDAAC.usgs.gov); the images affected by cloud cover were excluded. Owing to the lower influence of
vegetation from November to March each year, satellite data for this period are more conducive for the assess-
ment of soil properties, and this period was close to that for sample collection. Based on these considerations, in
the present study, Landsat 8 images acquired in December 2017 were utilised for estimating the Cu, Pb, and As
concentrations in the soils in the study area. The images were corrected for atmospheric effects using the ENVI
software, while a digital elevation model (DEM) with a resolution of 30 m for the area was obtained from the
geospatial data cloud website (http://www.gscloud.cn/).

Methodology

Spectral and terrain factors.  Spectral reflectance factors. ~According to previous studies'?, soils contami-
nated by heavy metals display spectral characteristics that differ from those of uncontaminated soils. In the
present study, the Landsat 8 images were characterised by strong absorption between 400 and 500 nm. The
spectral reflectance showed an increasing trend between 500 and 780 nm and a decreasing trend between 780
and 900 nm; the reflectance of images associated with polluted soils exhibited an increasing trend in the range
of 1200-2500 nm. These results suggested that these four spectral ranges were suitable for distinguishing heavy
metal-contaminated and uncontaminated soils. In this paper, the reflectance of the B2-B7 bands displayed
strong correlations with the Pb concentrations of the soils, while those of the B2-B4 bands showed stronger
correlations with the Cu and As concentrations. Therefore, based on the geomorphic characteristics of the study
area, the spectral values of the B2-B7 bands from the Landsat 8 images were selected. The wavelength ranges for
the B2-B7 bands are as follows: B2 (450-510 nm), B3 (530-590 nm), B4 (640-670 nm), B5 (850-880 nm), B6
(1570-1650 nm) and B7 (2110-2290 nm).

Spectral index factors. Considering that soil comprises of a mixture of components, the heavy metal content
is usually low. Therefore, their characteristics are commonly very weak, which makes it difficult to estimate the
heavy metal concentration of soils directly from their spectra, as reported previously'*-*!. However, these con-
centrations can be obtained indirectly from the adsorption or occurrence relationships between the soil water
content, clay mineral content, and environmental factors reflecting vegetation growth, terrain, etc.

Consequently, eight spectral indices reflecting the soil properties associated with heavy metals were derived
from the spectral values of the B2-B7 bands of the Landsat 8 images, and these are presented in Tablel. The
clay mineral ratio (CMR)? is used to highlight the clay mineral content of the soil, and it can indirectly affect
the distribution of heavy metals in the soils. The improved normalised water index (MNDWI)?* enhances the
estimation of the soil water content using satellite images. In an area covered by vegetation, the vegetation growth
conditions represented by the normalised vegetation index (NDVT), differential vegetation index (DVI), and
enhanced vegetation index (EVI)* can indirectly highlight the soil type?> and heavy metal concentrations®. In
addition, the greenness, brightness, and humidity components generated by the tasselled cap transformation?’
discriminate the vegetation and soil information.

The indices in Table 1 enhance the spectral characteristics associated with the heavy metal concentrations
in soils, and thus, are better for estimating the heavy metal concentrations than the spectral reflectance data
provided by the Landsat 8 imagery.

Terrain factors. Terrain is also reported to significantly affect the spatial distribution of heavy metals in soils*.
In the study area, the mountains are partially covered by vegetation, with prominent height differences and steep
slopes, which promote the downward movement of heavy metals in the soils around the mining area located in
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Type Factors Definition
MNDWI (B3 — B6)/(B3 + B6)
DVI B5/B4
CMR B6/B7
EVI 2.5 x (B5 — B4)/(B5+6 x B4 — 7.5 x B2 + 1)

Spectral indices
NDVI (B5 — B4)/(B5 + B4)

Greenness | —0.294 x B2 — 0.243 x B3 — 0.542 x B4 4 0.728 x B5 + 0.071 x B6 — 0.161 x B7
Brightness | 0.303 x B2 4 0.279 x B3 4 0.473 x B4 + 0.56 x B5 4+ 0.508 x B6 + 0.187 x B7
Wetness 0.151 x B2+ 0.197 x B3 4 0.328 x B4 + 0.341 x B5 — 0.712 x B6 — 0.456 x B7

Table 1. Spectral indices used for assessment of the concentrations of Cu, Pb, and As in the soils.

Type Factors Cu Pb As
B2 0.518** 0.419** 0.184
B3 0.466** 0.418** 0.154

Spectral reflectance b 0363 04287 | 0115
B5 0.005 0.288 -0.065
B6 —-0.088 0.313* | -0.080
B7 0.023 0.332* | -0.038
DVI -0.251 0.115 -0.173
EVI -0.364* | -0.286* | -0.095
CMR -0.453** | - 0.024 -0.221

Spectral indices NDVI -0.371* | -0.001 -0.276
MNDWI 0.396** | - 0.169 0.297
Brightness 0.074 0.354% | - 0.022
Greenness | - 0.386** | -0.001 -0.215
Wetness 0.207 -0.265 0.120

Table 2. Correlation coefficients between the three heavy metals and different spectral factors.

the elevated areas. In addition, the slope direction influences the vegetation growth conditions by, for example,
inhibiting the transport of heavy metals in soils towards the base of the mountains by runoft. Therefore, terrain
factors impact the spatial distribution of heavy metals in soils. In the present study, altitude, slope, and aspect
were utilised in evaluating the spatial distribution of heavy metals in the soils.

Analysis of environmental factors and optimization. Correlations between spectral and terrain fac-
tors. The correlations between the concentrations of the three heavy metals and six spectral bands as well as
eight spectral indices based on least squares regression are presented in Table 2.

In Table 2, * represents the significance level at P <0.05, while ** denotes the significance level at P <0.01. The
results in Table 2 reveal significant correlations between the concentrations of Cu and the spectral reflectance
values of the B2, B3, and B4 bands, as well as the values of the CMR, MNDWI, Greenness, EVI, and NDVI. The
Pb concentrations are also significantly correlated with the reflectance values of the B2, B3, and B4 bands as well
as the EVI and brightness factors. The concentrations of As display less significant correlations with spectral fac-
tors, such as the CMR, MNDWI, and NDVTI because of less amount of As in soils of the studied area. Therefore,
the six spectral bands and eight spectral indices in Table 2 were employed as parameters for estimating the Cu,
Pb, and As contents of soils in the area.

To assess the influence of terrain on the spatial distribution of heavy metals in soils in the area, the relation-
ships between terrain factors (altitude, slope, and aspect) and the heavy metals(Cu, Pb and As) were investigated.
The metals showed weak correlations (especially Pb and As) with the slope factors. However, by simply consid-
ering the correlation coefficients for the study area, the utility of terrain factors in estimating the heavy metal
contents in soils cannot be adequately evaluated.

Therefore, in the present study, a comparison of the linear regression before and after the incorporation of
terrain factors was conducted. Multivariate linear regression analyses (termed Model I) of the fourteen spectral
factors versus the concentrations of the three heavy metals were conducted. In addition, the three terrain fac-
tors were incorporated into Model I to produce a new model (Model II), and the regression scores obtained for
Models I and II are presented in Table 3.

In general, the coefficients of determination (R?) for Model II are higher than those for Model I, while the
RMSE values for Model II are lower than those for Model I for the three heavy metals. These results indicate
that the accuracy of the linear model involving both spectral and terrain factors is superior to that without ter-
rain factors in estimating the concentrations of the three heavy metals in the soils studied. This validates the
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Model R P RMSE
ModelI | 0.41 |0.00 |42.08
cu ModelII | 0.59 | 0.00 |29.87
- ModelI |0.29 |0.04 | 2581
Model II | 0.35 |0.03 | 2451
ModelI | 0.28 |0.00 |20.55
As Model IT | 0.42 | 0.00 | 18.48

Table 3. Comparison of the linear regression before and after incorporating terrain factors in estimating the
heavy metal contents.

Cu Pb As
Correlation Correlation Correlation
Factors coefficients VIE Factors coefficients VIF Factors coefficients VIF
Aspect 0.023 1.145 | B2 0.419** 3.337 | Aspect -0.050 1.318
DEM -0.084 1.024 | Aspect -0.262 1.295 | DEM -0.021 1.344
DVI -0.251 8.420 | DEM -0.179 1.324 | Slope -0.156 1.841
EVI -0.364* 2.485 | Slope -0.186 1.810 | EVI -0.095 3.219
CMR - 0.453** 3.660 | EVI —-0.286% 2.751 | CMR -0.221 5.494
CMR -0.024 5.638 | MNDWI 0.297 7.268
MNDWI 0.396** 9.318
MNDWI | -0.169 2.718 | Brightness | -0.022 4.901

Table 4. Correlation and VIF values highlighting the optimal factors associated with the concentrations of Cu,
Pb, and As in the soils. *represents the significance level at P < 0.05, **denotes the significance level at P < 0.01.

integration of terrain and spectral factors as a better estimation method. Therefore, subsequently, terrain factors
were considered as indicators of the Cu, Pb, and As concentrations in the soils.

Optimal factors determination. To determine the optimal factors associated with the concentrations of the
three heavy metals in the soils from the 14 spectral and 3 terrain factors, collinearity tests were performed.
According to proposed criteria®, the collinearity between two factors is weak if their variance expansion fac-
tor (VIF) is <10, and the tested factor is considered as an optimal factor. The optimal factors for Cu, Pb, and As
obtained based on this approach are presented in Table 4.

Genetic algorithm-back propagation model construction. Traditional BP network. In contrast to
machine learning regression models such as the random forest algorithm, the back propagation (BP) network?
and the M5 model tree' are advantageous because of the associated low training cost and universal applica-
bility. Compared with other networks, the BP network is a multilayer feed-forward type suitable for solving
complex nonlinear problems. It involves a signal forward transmission and an error back propagation structure.
Weights are dynamically adjusted, and the error is estimated by the BP algorithm. However, the random weights
and thresholds adopted in the original BP network commonly produce local optimal solutions during gradient
descent™.

Proposed GA-BP model construction. In the present study, a genetic algorithm (GA) for optimising the initial
weights and thresholds of the conventional BP model to improve the estimation accuracy and stability is intro-
duced. The steps involved in establishing this GA-BP model are summarised as follows:

(1) Initially, the BP network structure was determined. In the present study, a three-layer network comprising
the input, hidden, and output was established. The neurons in the input layer were equal to the optimal
factors for each metal, whereas the output layer involved just one neuron. In the hidden layer, 4 neurons
were assigned randomly, while the Tansig function served as the transfer function.

(2) The population of the genetic algorithm was then initialised, and the BP network was trained using training
samples. The absolute error between the estimated and the expected output values was considered as the
individual fitness value, and this enabled the calculation of the population fitness value. Iterations of both
the evolution and the size of the population of the genetic algorithm were set to 15, and the roulette method
was used to select the best. The probability of the mutation operation was set to 0.1, and at a crossover
probability of 0.3, a real crossover operation was performed. Finally, the optimal individuals obtained from
the GA were assigned to the initial weights and the interlayer thresholds of the BP network.

(3) In the BP network training using the Levenberg Marquardt nonlinear least squares algorithm, the initial
weights and interlayer thresholds were updated according to the error size until the expected error was
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Figure 2. Spatial distribution maps of the concentrations of (a) Cu, (b) Pb, and (c) As in soils in the study area.

Concentration (mgkg™) |0-50 |50-180 | 180-300 |300-350 |350-400

cu Percent (%) 0 70.3 10.1 18.3 1.3

- Concentration (mgkg™) |0-50 |50-70 70-90 90-150 150-200
Percent (%) 428 | 315 20.2 34 2.1

As Concentration (mgkg™) | 0-40 | 40-60 60-70 70-80 80-100
Percent (%) 0 73.5 15.2 5.4 5.1

Table 5. Estimated concentrations of Cu, Pb, and As in soils in the study area.

obtained. The maximum training iterations was 500, with a training accuracy of 0.0001 and learning rate
of 0.01. Finally, the GA-BP network was trained using 80% of the data for samples after a random selection
(35, 32, and 34 samples for Cu, Pb and As, respectively).

Results
Spatial distributions of the three heavy metals in soils in the study area based on the GA-BP model are displayed
in Fig. 2.

The data in Fig. 2 reveal that the highest concentrations of the three heavy metals mainly occur in the min-
ing area, the slag stacking area, and the sides of the associated road of the study area. According to the field
survey, the ore material is routinely transported from the mining area upslope to roads in the valley. Therefore,
because of the accumulation of fallen ore material, all the three metals exhibit high concentrations along roads.
The concentrations of Cu, Pb, and As in the study area were evaluated, and the results are presented in Table 5.

The data in Table 5 reveal the following: (1) The Cu concentrations in the study area vary between 0 and
400 mg kg™, and 70% of the area involves Cu concentrations ranging between 50 and 180 mg kg™'. Pb concentra-
tions ranging between 0 and 200 mg kg™ exist in 94.5% of the area, whereas As concentrations vary between 40
and 100 mg kg™, with concentrations of 40-70 mg kg™' in 88.7% of the area. (2) Cu exhibits the highest concen-
tration, followed by Pb, with As yielding the lowest concentrations in soils in the area. These results are consist-
ent with the geochemical data previously reported®'. Notably, the concentrations of the three elements in some
areas exceed the average values published by the Environmental Protection Administration of China in 1990.

Discussion and conclusions

To evaluate the estimation error of our model, 20% of the data for the samples unused in the training (9, 8 and
9 for Cu, Pb and As, respectively) were employed for the root mean square error (RMSE) and mean relative
estimation error (MRE) calculation using Egs. (1) and (2), given as follows:

N J— .
RMSE = w (1)
N [ IM;—Pi|
MRE = M (2)
N

where M; and P, represent the measured and estimated values of the heavy metal concentrations of the ith test
sample, respectively, and # denotes the number of test samples. The RMSE and MRE correspondingly reflect the
accuracy and average reliability of the estimates from a given model.
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Table 6. Comparison of the estimation errors for Cu, Pb, and As based on three models.

Residuals distribution of Pb element Residuals distribution of As element

(b) M Linear regression 60 (c) —M— Linear regression
5
~ !\ A M5 model tree o M A M model ree
- 5080 . ! o
7S £ [\ —e-oaBp Z / ® GA-BP
\ o e | E [\ B .
> v | ¢ [a 7 n\
\‘ = E} \ E & / [
X / ] S \ § 209 / \ [\ /)
Ny > 40 \ > \ / [ N
¢ 5 \ = 7 \ / \ /A N\
“ E A 2 o L% / s/ =
/ 2 ] = (] g
2 / 2 2 SN \ )
) ) - / - \ A o Al o / \a
—®- Linear regression 2, ¥ ° —a—Ly 5201 A \ J
A~ M5 model tree E | & s E Ao
= \ , 3 -
® GA-BP 3 e 8-40 =
o & o
& : &

-60 T

1 1 .
The number of test samples The number of test samples

Figure 3. Residual distributions of (a) Cu (b) Pb and (c) As based on the three models.

To further evaluate the effectiveness of the GA-BP model in improving the estimation accuracy, RMSE and
MRE values were also obtained using a multivariate linear model and an M5 model tree'* for comparison, and
the results are presented in Table 6.

The RMSE values obtained using the proposed model are 58.30%, 50.87% and 11.77% lower than those
obtained from the linear model for Cu, Pb, and As, respectively. The values shown by the proposed model are also
lower than those generated using the M5 model tree. Further, the RMSE value for Cu concentrations estimated
using the proposed model is higher than those for the other two metals. However, the estimated Cu concentra-
tions using the random forest model also produced an RMSE value of 15.698, which is significantly higher than
the value of 6.395 obtained using our model.

The estimated residual errors of test samples of Cu, Pb, and As from the three models are shown in Fig. 3. The
residual errors based on the GA-BP model are almost 0, and the residual errors for Cu and Pb are significantly
lower than those of the linear model and the M5 model tree.

These results demonstrate that the GA-BP model improves the accuracy of estimating the three metals in soils
in the study area, and the results are more reliable compared to those of the linear model and the M5 model tree.

Considering the Daxigou mining area in Shaanxi Province, China, as an example, several spectral and terrain
factors were integrated in the present study to establish a GA-BP model. The proposed model produced spatial
estimates of the concentrations of Cu, Pb, and As in soils in the study area. The main findings of the present study
are summarised as follows: (1) Compared with the linear model and the M5 model tree, the proposed GA-BP
model improved the accuracy of estimating the Cu, Pb, and As concentrations in soils in the study area. (2) Cu
yielded the highest concentration in the soils, followed by Pb and As, and these results are consistent with the
geochemical data for the area reported in 1982.The concentrations of the three metals in some soils in the area
exceeded the reported background values. (3) The highest concentrations of the three metals occurred near the
mining area, across the slag storage area, along road sides, and at the base of the slopes. The spatial distribution
produced using the proposed model was also consistent with the field survey results, and thus, validated its
effectiveness.

However, the present study is limited, thermal infrared bands of remote sensing imagery will be exploited for
additional indices in the future. In addition, the relationships between organic matter, metal oxides, and heavy
metals in soils will be considered to highlight the most effective indicators.
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