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High precision implicit function
learning for forecasting
supercapacitor state of health
based on Gaussian process
regression

Jiahao Ren’23, Junfei Cai%23 & Jinjin Li%*

State of health (SOH) prediction of supercapacitors aims to provide reliable lifetime control and

avoid system failure. Gaussian process regression (GPR) has emerged for SOH prediction because of
its capability of capturing nonlinear relationships between features, and tracking SOH attenuations
effectively. However, traditional GPR methods based on explicit functions require multiple screenings
of optimal mean and covariance functions, which results in data scarcity and increased time
consumption. In this study, we propose a GPR-implicit function learning, which is a prior knowledge
algorithm for calculating mean and covariance functions from a preliminary data set instead of
screening. After introducing the implicit function, the average root mean square error (Average RMSE)
is 0.0056 F and the average mean absolute percent error (Average MAPE) is 0.6%, where only the first
5% of the data are trained to predict the remaining 95% of the cycles, thereby decreasing the error by
more than three times than previous studies. Furthermore, less cycles (i.e., 1%) are trained while still
obtaining low prediction errors (i.e., Average RMSE is 0.0094 F and Average MAPE is 1.01%). This work
highlights the strength of GPR-implicit function model for SOH prediction of energy storage devices
with high precision and limited property data.

Supercapacitors (SCs) are widely utilized and deployed in various systems because of their high power density,
long cycle life, and operability over a wider temperature range'™*. However, the performance of SCs is con-
strained by irreversible aging problems, which threatens their reliable operation and leads to unpredictable system
failures®™. State of health (SOH), an important indicator for managing health and avoiding system failures, has
received much attention and its prediction methods are developed rapidly. The challenge of SOH prediction is
that, for one thing, it is difficult to construct an accurate failure model to simulate a real complex degradation
process with multiple physical and chemical reactions. For another thing, many important parameters are dif-
ficult to measure which require expensive test equipment. Therefore, the methods of predicting SOH usually
focus on capturing the internal state from easily measured parameters®.

The SOH can be predicted mainly by two different methods: model-based and data-driven. Model-based
method uses complex mathematical equations to simulate degradation mechanisms, necessitating a deeper
understanding of electrochemical principles. Recently, various filtering models with model-based methods are
applied in the previous research about the SOH prediction®'. For example, Mejdoubi et al.'! proposed a particle
filter (PF) model to estimate the SOH of SCs, in which the capacitance and resistance could be predicted accu-
rately under various conditions by considering the aging temperature and voltage. Walker et al.'> compared the PF
model with Kalman filter (KF) model for predicting the remaining useful life of a lithium-ion battery, and found
the PF model to be superior to a KF model. Mohamed et al.'* proposed an enhanced mutated PF (EMPF) model
for the SOH prediction of a lithium-ion battery and proved that the model can effectively capture dynamic system
behaviors. These studies can effectively capture part of the dynamic behaviors of the system by establishing accu-
rate mathematical models. However, such prediction methods have the following problems'*: (1) The physical
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and chemical processes in energy storage devices are very complex. Therefore, establishing physical models of
RUL and SOH for energy storage devices is quite difficult. (2) These methods cannot accurately simulate the
real attenuation process, because the trajectory of the attenuation is affected by the surrounding environment
and load conditions, which are constantly changing. (3) The model-based method is semi-empirical, so the cor-
responding results depend on the knowledge of the researchers and the quality of the experiment equipment.

Compared with the model-based methods, the data-driven methods focus on finding the interaction rela-
tionship between data and do not make any assumptions about the RUL degradation of the device. Data-driven
methods avoid building accurate electrochemical models, and have attracted significant attention, gradually
becoming the mainstream for SOH prediction'. Various machine learning methods have been proposed for
predicting SOH, for example, linear or nonlinear regression models'®', support vector machine method!®-%!,
artificial neural network method*»%, long short term memory algorithm?*%, and so on. The goal of these models
are the same: to find the mapping of input features for SOH prediction. However, the mapping from cycle of
charging and discharging based on these conventional data-driven methods is over-simplistic due to the uncer-
tainty of vectors in degradation process®*. Compared to conventional data-driven methods, Gaussian process
regression (GPR), a data-driven SOH prediction method, possesses hyper-parameter adaptive acquisition and
can be easily implemented, does not involve parameters. Because of the non-parametric characteristic”” of GPR,
the model can be calibrated naturally according to data requirements. Furthermore, GPR can not only give a
specific output, but also provides confidence for the predicted results of the model, so as to make an informed
decision. According to the research of Chen et al.?®, GRP is very suitable for solving complex regression prob-
lems, including high-dimensional and nonlinear predictions. Therefore, GPR has attracted great attention in
the prediction of SOH, which is a complex nonlinear regression problem. For example, Liu et al.”? applied linear
and quadratic polynomial mean function with compound covariance function composed of squared exponen-
tial and periodic covariance function to predict the SOH of self-recharging lithium-ion batteries (the first 100
cycles for training, the rest 68 cycles for test). Richardson et al.?® used power function as a mean function and
analyzed prediction results with different covariance functions, including squared exponential, periodic, and
Matérn covariance functions (approximately the first 72 cycles for training, approximately the rest 108 cycles for
test). Yang et al.”” selected four input features based on charging curves, analyzed these features based on gray
relational analysis, and proposed a compound covariance function called double squared exponential for SOH
prediction (the first 80 cycles for training, approximately the rest 90 cycles for test). These pioneering studies
with satisfactory prediction accuracy are based on the explicit functions (i.e., having a specified equation) of GPR
methods, and mainly focus on the selection of input features, mean function, and covariance function. In these
studies, at least 40% of the data set were used as training data, which helps improve the accuracy of SOH predic-
tion; however, finding the most suitable configuration is time-consuming. In addition, once the system changes,
the previously selected input features, mean function, and covariance function are not necessarily applicable
anymore, which means researchers must find different configurations for different systems. To solve the problem
mentioned above and find GPR with higher efficiency and accuracy, numerous methods have been proposed to
improve the performance of GPR (efficiency and accuracy) recent years. For example, Li et al. combined GPR
with other regression methods and proposed a multi-time-scale framework for predicting the SOH and RUL of
Lithium ion batteries®’; Wang et al. used a modified kernel GPR algorithm to simulate the degradation process
of batteries®; Hu et al. designed a dual GPR model for the SOH and RUL prognosis of battery packs*’. These
studies are all aimed at improving the accuracy and efficiency of the GPR methods in the prognosis of SOH and
RUL, illustrating the necessity of modifying the GPR to obtain better performance.

In this study, we present a more general method based on the use of implicit mean and covariance functions
of GPR methods. Specifically, this study presents the following procedure of SOH prediction: (1) a batch of SCs
undergo cyclic charge and discharge tests (called preliminary data set), following which the capacitance after
each cycle is collected to calculate the mean value of each cycle (regarded as the implicit mean function) and the
covariance between a pair of cycles (regarded as the implicit covariance function)®; (2) the explicit and implicit
mean and covariance functions are used to perform GPR predictions, respectively; and (3) the SOH predictions
with reduced cycle data are discussed. The workflow of SOH prediction with a GPR-implicit function model
is shown in Fig. 1, where the blue parts correspond to traditional SOH prediction with explicit functions and
the green parts correspond to GPR-implicit function model proposed in this study. The compound mean and
covariance functions indicate that the mean function and covariance function contain the explicit function and
implicit function simultaneously. Since the test set contains 22 SCs and each SC will produce a RMSE and a
MAPE, we use average root mean square error (average RMSE) and average mean absolute percent error (average
MAPE) to reasonably evaluate models (see “Evaluation” section for details). In this study, the predicted Average
RMSE is 0.0056 F and the Average MAPE is 0.6% after introducing the implicit function, where only the 5% of
the cycles are used as the training data to predict the remaining 95% of the cycles. Compared with the previous
studies based on explicit functions, the GPR-implicit function model decreases the prediction error by more
than three times. We further use less cycles as the training data, that is, 1% of the cycles, to predict the remaining
99% of the cycles, which also produce reasonable prediction errors (i.e., Average RMSE of 0.0094F and Average
MAPE of 1.01%). Although only the univariate model, that is, capacitance vs. cycle, is applied, the GPR-implicit
function model’s high prediction accuracy and good robustness with less training data highlights the ability of
implicit functions to model the real SOH of SCs. The method proposed in this study is applicable not only to
SOH prediction of SCs, but also to other energy storage devices such as lithium-ion batteries.
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Figure 1. The workflow of SOH prediction. The blue parts correspond to the conventional methods of SOH
prediction, where explicit functions are used in GPR. The green parts correspond to the GPR-implicit function
model presented in this study, where the used implicit mean and covariance functions are derived from the
preliminary data set.

Data preprocessing

The research framework is shown in Fig. S1 of Supplementary Materials (SM). As shown in Fig. Sla, the super-
capacitors undergo cycles of charging and discharging, which provides a preliminary data set for the subsequent
predictions of the Gaussian process. Then, based on the preliminary data set, we predict the SOH of supercapaci-
tors by different Gaussian regression processes (i.e., with different mean or covariance functions), and obtained
their RMPE and MAPE as the judging criteria for performance prediction. This comparison shows the precision
advantage of GPR with implicit functions. Figure S1b shows the comparison of accuracy when using different
proportions of data as the training set, where the GPR with an implicit function has a higher accuracy than
conventional GPR even if the proportion of the training set is reduced. More details can be found in “Results
and discussion” section.

Definition of SOH. SOH is an indicator for characterizing the degree of aging in SCs, providing users with
basic information on health status, thereby ensuring a stable operation of energy storage devices (i.e., SCs or
lithium-ion batteries). There are two widely-adopted definitions of SOH: one based on equivalent series resist-
ance (ESR) increase, and the other based on capacitance decrease***. The SOH in this study refers to the defini-
tion of capacitance ratio, which is expressed in Eq. (1), where SOH; represents the SOH value of the i-th cycle, C;
is the capacitance of the i-th cycle, and Cy is the rated capacitance of the SC. As the number of cycles increase,
the SC ages because of an irreversible reaction during the charge and discharge processes, leading to a decrease
in capacitance. In fact, the rated capacitance of the SC used in this study is 1C; therefore, SOH; and C; are equal.

SOH; = &-. (1)

Experimental data and analysis. In this work, the cycle data of 88 SCs are obtained, and each SC is
cycled 10,000 times with a charging and discharging policy in a temperature-controlled environment (28 C).
All SCs are discharged at a constant current of 20 mA. To conform to the actual charging process, we apply two
different charging policies for SCs. The first is a 20 mA constant current charging policy, and the second is a
stepped charging policy which refers to a stepped current of 15 mA from 1 to 1.85V, 10 mA from 1.85 to 2.36 V,
and 5 mA from 2.36 to 2.7 V.
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Figure 2. SOH trajectories of SCs as a function of cycle number, calculated from the preliminary data set. The
inset shows the distribution of capacitance at 500th cycle which approximates the Gaussian distribution.
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Figure 3. Mean capacitance as a function of cycle number, calculated from the preliminary data set. The

black point indicates that the mean capacitance at 500th cycle is 0.943 E. The blue shaded area represents the
positive and negative standard deviations of capacitance between mean-o and mean + o, where o represents the
capacitance dispersion degree of a given cycle, and is used to calculate the implicit covariance function in GPR.

Preliminary data set refers to the data set of previous SCs that have been tested before a new SC cycle. For
example, for a user who has tested 10 SCs, the cycle data for these 10 SCs can be used as the preliminary data set
to predict the SOH of 11th SC. Figure 2 shows the SOH trajectories of preliminary data set of SCs used in this
study, most of which intersect each other and follow a similar aging rate: from fast to slow. Such an aging behavior
is different from the observed battery aging behavior*>*’. To better understand the data from a statistical point
of view, the inset of Fig. 2 presents the capacitance distribution of the 500th cycle, which is remarkably close to
the Gaussian distribution. Such Gaussian distribution can also be observed in other cycles, which inspires us to
use the GPR-implicit function model for predicting the SOH of SCs, according to the GPR assumption that each
predicted output follows (i.e., capacitance) a Gaussian distribution, and any pair of outputs obey a joint Gaussian
distribution. These concepts will be detailed in the subsequent sections.

Different from the explicit function used widely in GPR methods, the implicit function, coming from the
preliminary data set, does not have a specific equation. To achieve a high-precision SOH prediction with appro-
priate implicit functions, we calculate the mean and standard deviation of capacitance for each cycle based on
the attenuation curves of preliminary data set of 66 SCs. Figure 3 shows the mean capacitance (blue curve) and
its positive and negative standard deviations (blue shaded area) as a function of cycle number, where the decay
goes from fast to slow with increasing cycle number. The decay behavior in Fig. 3 is the same as in Fig. 2. The
standard deviation in Fig. 3 quantifies the dispersion degree of capacitance of each cycle in Fig. 2, which can
be used to calculate the implicit covariance function in GPR. Specifically, the average capacitance of the 500th
cycle calculated from 66 SCs is 0.943 F, corresponding to a standard deviation of 0.015 F, which is shown as the
black point in Fig. 3. Therefore, the implicit mean function and covariance function can be obtained from the
preliminary data set for high-precision SOH predictions.

Method

GPR is a nonparametric stochastic process based on probability®. Unlike most machine learning algorithms that
give only a specific output, GPR gives the probability distribution of an output based on the Bayesian theory.
The key idea behind Bayesian theory is that the posterior probability can be modified based on prior probability
after observing an event. Such a result gives credibility to the prediction from a probabilistic perspective, and
provides more adequate prediction information.

GPR. The goal of GPR is to learn the n_l@)piE€ from 151?,{( vector x to some Gaussian distribution f(x), given
the observed input-output data points =UXi, Vi) 5i=15, where n is the total number of training data
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points, x; is the i-th n-dimensional input vector, and y; is the i-th output. In this study, x; refers to the i-th cycle
number, and y; refers to the i-th capacitance.

To obtain the mapping, a joint distribution among these distributions should be considered. That is, the prop-
erties of multivariate distribution f(x) can be completely determined by a mean function m(x) and a covariance
function « (x,x’), which is denoted as

f&x) ~ 27(mx), k(x,x")) @

where m(x) and « (x, x ) are denoted by

mx) = E[f )]
{ k(x,x) =E[(fx) —m®X)(f(x) —m(x))] €)

In a basic GPR, the mean function is usually set to zero, and the covariance function is usually composed of
a squared exponential (SE) covariance function and noise function, as shown in Eq. (4).

K(X,X/) :KSE(X,X’) +/cn(x,x’). (4)

i (x,x) denotes the nx m matrix of the covariance evaluated at all pairs of training and test points, where
X contains 7 training points and x’ contains m test points. In practice, the covariance between two points, x; and

x; can be calculated by

2
kij = Ufz exp (—sz>, (5)

where o and [ are hyper-parameters for controlling the vertical scale and length scale of the Gaussian function,

respectively. Many types of covariance functions exist, and most have their own application scenarios. These

covariance functions can also be combined with each other by affine transformations to produce a compound

function for discovering more subtle data rules. In essence, a covariance function describes the correlation

strength between the inputs of two points, and will finally affect the predicted probability distribution through a

joint distribution. This means the choice of covariance function plays a crucial role in the final prediction result.
In a regular regression problem, the output y of the model consists of two parts as follows:

y=f(x)+e, (6)

where f (x) represents the actual rule and €~ (0, 0.721) is invisible noise. In GPR, f(x)is the Gaussian process
we expect to obtain. Here, the observed y is also a Gaussian process restricted by Gaussian joint distribution.
Therefore, when calculating the n-dimensional symmetric positive definite covariance matrix of training points
Kk (X, X), the noise function is expectedly considered, and denoted as

Kn(X,X) = 031, (7)

where o, is a hyper-parameter of noise and I is a n-dimensional identity matrix.
After the covariance function is determined, the corresponding hyper-parameters,© = [02, I, cr,ﬂ, are opti-
mized by maximizing the log-likelihood function with training points, which is defined as

1 1 _
L=logp(yx,0) = - log (det (k(x,x) +021)) — EYT [k(x,%) +0.1] 1y - glome (8)

Based on the above implementation, the training phase of GPR is completed. Then, the posterior distribu-
tion of test points is derived from the conditions of prior distributions, joint distributions, and training points
through the Bayesian formula for performing the regression prediction. Specifically, for a given set of inputs x*
of test points, we assume that their corresponding outputs f* also follow a Gaussian distribution, and are limited
to the joint Gaussian distribution with training points. This relationship can be described as

Y\ o k(%,%) + 021 Kk (x,x*)
(f*) (0’( K (x*,X) K(x*,x*)) ) ©)
The posterior distribution is derived as
p(f*|x,y,x*)~./ (f_*, cov(f*)) (10)

This means that when x, y, x* are known, f* obeys a multivariate Gaussian distribution with mean vector f*
and covariance matrix cov(f*), where

£* =k (x*,%) [k (x,X) +a,%1}_1y, (11)
cov(f*) = k (x*,x*) — kK (x*,X) [K(X, x) + 031] _IK(X, x*), (12)
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when a specific predicted value is required, the mean set, f*, is used as the output of GPR model. Meanwhile,
the matrix cov(f*) is used for determining the confidence area by the variance of output extracted from the
matrix diagonal.

The input vector x; and output f(x;) in this article are both one-dimensional scalars, where x; is a time series,
that is, the number of cycles?®®, rather than physical features'*****?, and the output is the corresponding dis-
charge capacitance. However, when needed, a similar study for obtaining better results can be performed in the
case of a high-dimensional input, although it requires some feature engineering.

Improved GPR. In most cases, especially for an interpolation prediction problem (the input of the test SC
is located between the inputs of the training SC), setting the mean function to 0 is acceptable because of the
flexibility of GP to model the real mean*!. However, when the test input is far from the training input, such as a
prediction problem based on time series, the prediction ability of GPR will be limited, and the prediction perfor-
mance will decline rapidly with the increase of the distance. In this case, most covariance functions are difficult
to obtain effective information, so the final prediction is mainly determined by the mean function, which is set
as a constant of 0. For example, in the case of the basic GPR mentioned above, when the distance between x;
(training input) and x;(test input) is relatively large, the covariance term k;; is almost zero, resulting in the output
; being zero.

If the mean function is adjusted so that it can capture some rules embedded in the model, the prediction
performance can be improved. Most existing studies mainly focus on parametric function fitting, whose mean
function is obtained by fitting the training set, for example, using a linear function, a quadratic function, or other
degradation formulas. However, for energy storage devices such as batteries and SCs, a parametric function
describing the degradation process is difficult to determine, and it also can hardly describe the entire degrada-
tion process accurately, since degradation is a complex nonlinear process. Here, the mean function is improved
by prior knowledge from the preliminary data set, rather than by curve fitting. Specifically, for a given input x;,
its mean function is

(k)

V1
mpre(xl)—NkEZDpyi : (13)

where D, is the preliminary data set, N is the size of preliminary data set, and yi(k) is the observed output at i-th
point of k-th SC. The mean function remains unchanged after the preliminary data set determined.

By adjusting the mean function in this way, the posterior distribution can similarly be derived from the prior
distribution. The prior distribution is denoted as

Y\ o Mypye (X) k(%,%) + 021 Kk(x,x*)
f* My (x*) /)’ k(x*,x)  k(x*,x*) ’ (14)
And the posterior distribution is
p(f*|x,y,x* )~/ (f_*, cov(f*)) (15)

This means that when x, y, x* are known, f* obeys a multivariate Gaussian distribution with mean vector f*
and covariance matrix cov(f*), where

= mpre () + k(5 %) [k (5%) + 021 (y — mpre(x)), (16)

cov(f*) = k (x*,x*) — K (x*,X) [K(x, X) + 031] 71K(X, x*), (17)

where the cov(f*) is the same as Eq. (12). More details can be found in Ref.”’.

The prior knowledge includes not only the mean but also the covariance matrix. The traditional covariance
matrix is calculated by an explicit covariance function, such as the SE covariance function mentioned above.
However, it is also difficult to determine the covariance function, which requires more modeling ability than
the mean function. This is because it plays a bigger role in GPR. Since the mean function is obtained from the
preliminary data set, a similar procedure can be used for the covariance function. For any two inputs x; and x;,
the covariance term is defined as

1 k) (k 1 k k
ky = max) — meam(e) = 5 >y =55 > " Yy (1)
keDP ker keDP

A covariance function composed of these terms is called kpr. At this point, the final covariance function can
be extended as follows:

K(X,X/) = Kp,e(x, x/) + KSE<X, x/) + K (x, x/). (19)

The acquisition process of the above-mentioned mean and covariance functions is shown in Fig. S2, which
corresponds to the green part of Fig. 1.
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Evaluation. The GPR model is evaluated using RMSE, MAPE, and confidence intervals. RMSE and MAPE
are used to quantitatively evaluate the predicted capacitance error, reflecting the model accuracy. Given a certain
cycle c as the dividing point, cycle ¢ and cycles before ¢ are the training phase, and cycles after c are the test phase.
RMSE and MAPE only apply to the test points, and are defined as

ct+m 2
k ~(k
RMSE® = \/; > (-0 (20)

i=c+1

ct+m (k) _~(k)
i )i
(k)

i

1

k
MAPE® =, /-~
i=c+1

; 21

where RMSE® and MAPE™® are the RMSE and MAPE of the k-th SC, respectively. m is the number of points in
test phase. Each test SC produces a RMSE and a MAPE. However, an accidental error in a single SC may result in
a failure to accurately evaluate the model. Therefore, in order to further improve the evaluation ability of metrics,
Average RMSE and Average MAPE are proposed, and defined as

M

Average RMSE = - kzl RMSE®, (22)
M
Average MAPE = & 5~ MAPE®, (23)

k=1

where M is the number of test SCs, which equals 22 in this study.

Since the output of GPR is a probability distribution, confidence intervals can be used to measure the model’s
credibility. Confidence interval provides an interval estimation of the predicted value of a test point, and also
represents the probability that the predicted value falls within a given interval. A confidence interval of 95% is
usually adopted, and the bounds for Gaussian distribution are defined as*

Upper bound = p + 1.960
Lower bound = u — 1.960, (24)

where p and o are the mean and standard deviation of the Gaussian distribution, respectively.

Results and discussion

An SC labeled No. 10 is randomly selected from the test SCs, and the corresponding prediction result is ana-
lyzed. This randomly selected SC is representative since most of the SCs have a similar SOH trend. Cycle 500 is
selected in most models as the boundary between training data and test data, implying that only the first 5% of
the data (first 500 cycles) are used to predict the remaining 95% of the cycles. The data set is divided into three
groups: preliminary data set, training data set, and test data set, where the preliminary data set comes from the
previous SCs that have been tested before a new SC cycle. The training data set and test data set come from the
5% training cycles and the remaining 95% test cycles for a selected SC, respectively. In Table S1, seven models
with different mean and covariance functions are used for comparison: (1) Model 1: with explicit logarithmic
function, where the mean function is described as m(x) = Alogx + B, and the covariance function is ksg (x, x’);
(2) Model 2: the mean function can be obtained from the preliminary data set, which is m(x) = mp(x), and the
covariance function is the same as Model 1; (3) Model 3: the mean function is the summation of Model 1 and
Model 2, which is m(x) = Alogx + B 4 my.(x), and the covariance function is the same as Model 1; (4) Model
4: the mean function is the same as Model 1, but with different a covariance function iy + sg; (5) Model 5:
the mean function is the same as Model 2, but with different a covariance function e + «sg; (6) Model 6: the
mean function is the same as Model 3, but with a different covariance function e + «sg; and (7) Model 7: the
mean function and covariance function are the same as Model 5, but use the first 1% of the cycles to predict the
remaining 99% of the cycles.

In Table S1, the prediction result for Model 1 is the worst, where the Average RMSE is 0.021 F and the Aver-
age MAPE is 2.18%. The prediction result for Model 2 is the best, where the Average RMSE is 0.0139 F and the
Average MAPE is 1.53%. The Average RMSE and Average MAPE for Model 3 is 0.0161 F and 1.72%, respectively.
The results show that with the same covariance function, the mean function, consisting entirely of an implicit
function, can achieve the lowest prediction error. Figure 4 shows the predicted capacitances and errors for models
1, 2, and 3, where the used covariance function of xksg (x, x/ ) are the same and the mean function are different. The
dotted line indicates the 500th cycle. Before the 500th cycle, the predicted results by GPR are in good agreement
with our experiment. However, with an increase in the cycle numbers, the difference between GPR prediction
and experiment increases, and the area of confidence interval increases. Figure 4 shows that the first 5% of the
data can generate excellent prediction results for the first 500 cycles, but poor results for the remaining 95% of
the cycles. As seen in Fig. 4b,d,f, the prediction errors increase with an increase in the cycle number, which is
consistent with the characteristic of GPR model, that is, the farther it is away from the training point, the larger
is the overall error. These results highlight the ability of the GPR-implicit function model to describe the degra-
dation of SCs, especially for the first 5% of the data.

The optimized covariance functions in Models 1, 2, and 3 are based on the first 500 cycles. The degradation
between the first 500 cycles and the remaining 9500 cycles is quite different; therefore, it is hard to capture the
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Figure 4. The capacitance predictions of three GPR models with different mean functions and covariance
functions, where the first 5% cycles are used for training. (a,c,e) are the predicted capacitances of an SC for
Models 1, 2, and 3, while (b,d,f) denote the predicted errors (observed — mean). The dotted line indicates the
500th cycle. The green and blue curves represent the observed and predicted mean capacitance, while the
green dots, and blue shaded areas denote the predicted training data and confidence interval, respectively. The
selection of + 1.96 for confidence interval is based on Eq. (24).

interaction between inputs and obtain a high SOH prediction accuracy. Rather than only considering the first
500 cycles in Models 1, 2, and 3, Models 4, 5, and 6 consider all cycles of an SC with prior knowledge from pre-
liminary data set by introducing the implicit function k. in the covariance function. Among Models 4, 5, and
6, the prediction accuracy of Model 4 is the worst, with the predicted Average RMSE and Average MAPE being
0.0174 F and 1.77%, respectively. The prediction accuracy of Model 5 is the best, where the Average RMSE is
0.0056 F and the Average MAPE is 0.60%. The Average RMSE and Average MAPE of Model 6 is 0.0121 F and
1.26%, respectively. Compared with Models 1, 2, and 3, the prediction errors for Models 4, 5, and 6 decrease
significantly after the introduction of implicit function. For example, by considering k. in the covariance
function, Model 4 has a better performance and lower prediction error than Model 1, while Model 5 performs
better than Model 2, and Model 6 performs better than Model 3, implying that the implicit function k. in the
covariance function provides sufficient prior knowledge and strongly captures the interactions between inputs.

In addition to the GPR models discussed in this study, we also compare several non-gaussian data-driven
methods as benchmark models, including two extrapolation models and three machine learning models (such
as Auto Regression, Support Vector Machine and Random Forest models), please see Note 1 of the SM. Among
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Figure 5. The predictions of the GPR models with different mean functions and compound covariance
functions, where the first 5% cycles are used for training. The dotted line indicates the 500th cycle. (a,c,e)

are the predicted capacitances of an SC for Models 4, 5, and 6, while (b,d,f) denote the predicted errors
(observed —mean). The green and blue curves represent the observed and predicted mean capacitance, while the
green dots and blue shaded areas denote the predicted training data and confidence interval, respectively. The
selection of + 1.96 for confidence interval is based on Eq. (24).

these GPR and benchmark models, Model 5 is still the best performer, which further demonstrates the accuracy
of implicit functions.

Figure 5 shows the predicted capacitances of an SC as functions of cycle numbers based on Models 4, 5, and
6. In Fig. 5a,c,e, the predicted mean capacitances (blue curves) based on Models 4, 5, and 6 are closer to the
observed green curves, and the areas of confidence interval are smaller than the corresponding areas in Fig. 4.
Figure 5 demonstrates that Models 4, 5, and 6, which consider all cycles of an SC with prior knowledge from the
preliminary data set, are superior to Models 1, 2, and 3, which only consider the first 500 cycles. In Table S1, the
best model is Model 5, with the lowest Average RMSE of 0.0056 and Average MAPE of 0.6%. This model uses the
implicit function myy (x) as a mean function and ke + ksg (implicit function + explicit function) as a covariance
function. Models 8 and 9 are from the pioneering studies by Yang et al.** and Liu et al.?2, with predicted RMSEs
of 0.0167 and 0.0332, respectively, having higher prediction errors than Model 5, further indicating that the
implicit functions iy (x, b'd ) and myy (x) can significantly enhance the SOH prediction accuracy. Furthermore,
the above studies usually use at least 40% of the cycles as training data for SOH prediction, but Models 1, 2, 3, 4,
5, and 6 only use the first 5% (i.e. the first 500 cycles for training, the rest 9500 cycles for test) cycles as training
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Figure 6. The prediction results of the Model 7, where only 1% of the cycles are used for training. The dotted
line indicates the 100th cycle. (a) The predicted capacitance for Model 7 as a function of cycle number. (b) The
predicted error (observed — mean) for Model 7. The curves and blue shaded areas denote the predicted training
data and confidence interval, respectively.

data, exhibiting a strong and accurate long-term ability of GPR to predict the reliable SOH of energy storage
devices and solve the data scarcity problem.

As a case study, Fig. 5 shows the strength of implicit mean and covariance functions for SOH prediction of
a selected SC. To more reasonably investigate the model performances, we predict the SOH of all test SCs, and
obtain their RMSEs and MAPEs (the values are shown in SM). The predicted Average RMSE and Average MAPE
of all SCs are 0.0056F and 0.60%, respectively.

In Table S1, Model 5 has the best performance with the first 5% cycles for training, which demonstrates the
strength of the implicit function for SOH prediction. To further test the capacity of implicit function, Model 7
shows the SOH prediction using only the first 1% of the cycles as training data, with the same mean function
and covariance function as Model 5. As shown in Fig. 6, the dotted lines indicate the 100th cycle, the first 1% of
total SC cycles. For Model 7, the predicted RMSE is 0.0156 F and the MAPE is 1.69%, and the Average RMSE
and Average MAPE of all SCs are 0.0094 F and 1.01%, respectively (Table S1). Although less information is pro-
vided, the GRP-implicit function model can still capture the SOH trend, and the performance is better than all
models excluding Model 5 that uses the first 500 cycles. Compared with Model 5, the prediction error of Model
7 is slightly larger, but the number of training data cycles is only 1%, indicating that it does not require a large
number of training data, and can ease the problem of data scarcity in SOH prediction.

In addition, models (model 10, model 11, model 12, model 13, model 14 and model 15) with different kernel
functions except SE function (ksg (x,x')) are also applied as benchmark models to illustrate the universality of
the method reported in this paper. Two kernel functions are chosen, including \f q ¢ é7n function and rational
quadratic function (RQ function), which are both common kernel functions in the prediction of SOH**. The
formula of \f gt é1n function is shown as follow:

, 21-¥ K-k k—k’
KmA(X'X ):62m \/Z_V(Pf) Ry \/2_)’%] (25)

where y is a hyperparameter to reflect the smoothness and R, represents the Bessel function. The M gt é1rn52
was a widely used for Matérn functions as kernel function of GPR*3. Therefore, the value of y was set as 2.5.

Along with SE function and )f gt é1n function, the RQ function is also a popular kernel function for the
GPR. The formula of RQ function can be obtained as follow:

(k) -
KkrQ(%,x') = SﬁQ (1 + 2a12) , (26)

RQ

where a reflects the relative weight of scale changes. 8rg and Irq are hyper-parameters for controlling the vertical
scale and length scale of the Gaussian function, respectively.

The kernel functions of model 10, model 11 and model 12 include \fqtéyn function (ka4 (x, x/)). The
kernel functions of model 13, model 14 and model 15 include rational quadratic function (RQ function,
«rQ (X, x')). The average RMSE and average MAPE of these six models are shown in Table S1. Through the
comparison between errors of these models, the superiority of GPR with implicit functions can be further
demonstrated: (1) The mean function of model 10 and model 11 is the same. The kernel function of model 11 is
Kpre (x, x/ ) + KpmA (x, x/ ) (include the implicit function) and the kernel function of model 10 is ka4 (x, x/ ) (does
not include the implicit function). As shown in Table S1, the average RMSE and average MAPE of model 11
(0.0323F, 3.17%) is much lower than model 10 (0.0715F, 7.11%), demonstrating the higher performance of GPR
with implicit function as kernel function. (2)The kernel function of model 12 and model 11 is the same. The
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mean function of model 11 is mp(x) (an implicit function) and the mean function of model 10 is Alogx + B
(an explicit function). Similarly, the average RMSE and average MAPE of model 11 is much lower than that of
model 12 (0.1148F, 11.19%), demonstrating the higher performance of GPR as a mean function.

The comparison between models 10, 11 and 12 discussed above illustrated that the GPRs with M atérn
function in the kernel functions conform to the conclusion of these paper. Similar comparation can be performed
between models 13, 14 and 15, which are based on the kernel functions with RQ function. The better performance
of model 14 (average RMSE = 0.0150F, average MAPE = 1.59%) than model 13 (average RMSE =0.0201F, average
MAPE =2.12%) and model 15 (average RMSE = 0.221F, average MAPE =2.27%) demonstrated that the modified
functions has good applicability to the RQ function based GPR method.

Conclusion

Accurate SOH prediction can grasp the working state of SCs and avoid failure in advance. This work proposes
an implicit function learning method to predict the SOH of SCs based on Gaussian process regression, where
a preliminary data set is considered in the mean and covariance functions, and only 5% of the cycles are used
as training data to predict the remaining 95% of the cycles. The predicted errors of the GPR-implicit function
method have an Average RMSE of 0.0056 F and an Average MAPE of 0.06%, which are much lower than tradi-
tional SOH predictions with only explicit functions. The present work demonstrates the GPR-implicit functions
can effectively compensate or replace the GPR-explicit functions for SOH prediction, with advantages of high
precision and low data requirement. We further investigate SOH prediction using fewer cycles (1% of the cycles)
as the training data, and produce reasonable prediction errors, indicating that the GPR-implicit function learning
has a strong ability to predict SOH.

In the future, some additional extensions can be explored to improve the prediction performance of the GPR-
implicit function method, including (1) using more comprehensive feature descriptors such as voltage, current,
and temperature, or their mathematical transformations; (2) using different explicit functions, for example,
an exponential function can be used as a mean function, and the Matérn function can be used as a covariance
function; (3) optimizing the coefficients of explicit and implicit functions. (4) The proposed method follows a
sequence from simple to complex. Since the attenuation process of supercapacitors is relatively simple, the pro-
posed method is applied to supercapacitors first. In the future, we will update and optimize the algorithm to adapt
to the attenuation process of more complex electrical systems, including a variety of different batteries. We hope
that this work can promote the study of SOH prediction for supercapacitors and other energy storage devices.

Data availability
The raw data required to reproduce these findings are available to download from https://dx.doi.org/10.6084/
m9.figshare.11522082.
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