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A new image encryption scheme
based on fractional-order
hyperchaotic system and multiple
image fusion

Xinyu Gao?, Jiawu Yu'™, Santo Banerjee?*?, Huizhen Yan! & Jun Mou***

A multi-image encryption scheme based on the fractional-order hyperchaotic system is designed in
this paper. The chaotic characteristics of this system are analyzed by the phase diagram, Lyapunov
exponent and bifurcation diagram. According to the analyses results, an interesting image encryption
algorithm is proposed. Multiple grayscale images are fused into a color image using different channels.
Then, the color image is scrambled and diffused in order to obtain a more secure cipher image. The
pixel confusion operation and diffusion operation are assisted by fractional hyperchaotic system.
Experimental simulation and test results indicate that the devised multi-image encryption scheme
can effectively encrypt multiple images, which increase the efficiency of image encryption and
transmission, and have good security performance.

In the era of big data, picture information is widely spread on the network, and the security of picture informa-
tion is also widely concerned®. Conventional encryption schemes such as AES, DES encrypt textual data and
do not apply to the encryption of images®™*. New image encryption algorithms, especially chaos-based encryp-
tion algorithms, are under increasingly investigation. Lorentz discovered chaotic attractors in 1963, and in
1997, Fridrich first applied chaotic systems to digital image encryption®~®. Chaotic systems are widely used in
image encryption and have become a hot research topic in the field of secure communication because of their
sensitivity to initial values and irregular internal random motion in deterministic systems"*'¢. Compared with
ordinary chaotic systems, hyperchaotic systems have more complex dynamics and greater sensitivity and are
more suitable for image encryption'’-?2 The fractional-order chaotic system is also more secure because the key
space is increased by adding system variables*?*~%%. Therefore, in this encryption scheme, the fractional-order
hyperchaotic system is used for image encryption.

The prerequisite for employing fractional-order chaotic systems is to be able to solve them out. Commonly
used methods for solving fractional order chaotic systems are time domain-frequency domain solution algo-
rithms, prediction-correction algorithms, and Adomian decomposition method(ADM)***. The ADM is widely
used due to the advantages of fast convergence and high solution accuracy. However, in the case of conform-
able fractional calculus, the conformable ADM (CADM) is needed to obtain the digital solution of the chaotic
system?2,

Another noteworthy point is that single-image encryption is fast but inefficient?!. Multi-image encryption
can encrypt two or more images at a time with the same computational complexity, which has increased the
effectiveness of image encryption®-*’. Many multi-image encryption schemes are already proposed by scholars.
Combined with nonlinear fractional Merlin transform and discrete cosine transform, Pan et al. proposed an
optical multi-image encryption scheme. On this basis, Zhou et al. proposed a dual image encryption algorithm
based on co-sparse representation and random pixel exchange®. Zhang et al. proposed a multi-image encryp-
tion scheme to encrypt the arbitrary number of images*” and by using a DNA encoding encryption algorithm to
accomplish encrypt multiple images simultaneously™. There also some scholars proposed the encryption schemes
that can encrypt arbitrary size multiple images or a batch of images**~**. Huang et al. proposed a double-image
encryption algorithm based on compression- sensing, which reduces data space while improving encryption
efficiency*. These encryption schemes all use chaotic systems, which greatly improve the randomness of the
encrypted image data and make the encryption schemes withstand a certain level of hacking****. However, some
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Figure 1. Memristive circuit, (a) BPF memristive Chua’s circuit, (b) equivalent circuit for the memristor W1,
(¢) equivalent circuit for the memristor W>.

of the encryption schemes still have the problem of weak security or lack of efficiency. For this reason, a new
encryption scheme based on fractional-order hyperchaotic systems and multi-image fusion is proposed*¢~>!.
The application of fractional-order hyperchaotic system makes the pseudo-random sequence more complex and
thus allows for a more secure encryption algorithm®2 The fusion of multiple images allows image encryption
efficiency to be improved.

The remaining part of the paper is arranged as the following. "Characteristic analysis of a fractional-order
hyperchaotic system" section, the circuit and the dynamic analysis of chaotic system are given. The encryption
algorithm which includes scrambling and diffusion is shown in "The complete encryption scheme" section.
"Decryption scheme" section introduces the complete encryption and decryption scheme. "Performance analysis"
section illustrates the simulation results and some security analyses. In the last section "Conclusion", this paper
ends with concluding remarks.

Characteristic analysis of a fractional-order hyperchaotic system
Fractional-order memristive hyperchaotic circuit. A new two-memristor circuit based on band pass
filter (BPF) and Chua’s circuit is obtained as shown in Fig. 1a. The two equivalent circuits of two memristors Wi
and W are shown in Fig. 1b, c.
For the Fig. 1b, V; and i; represent the input voltage and the input current, Vj is the node voltage of the
integrator U, output. Therefore, the memristor W; can be expressed as
{za = Wi(V)Vi = —g- (1= m VAV, "

= f(V) = — =

where, m; represent the total gain of multipliers M; and M. The flux¢(t) of the memristor W is
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t
p1(t) = / Vi(r)d(t) = —RaCy V4 (1) 2)

—00

For the Fig. 1¢, V; and i, represent the input voltage and the input current, Vs means that the node voltage
of the integrator Us output. Therefore, the memristor W is expressed as

iz = Wa(Vs)Va = —; (1 = myVsH) V, )
G =f(Vy) = —
where, m; represent the total gain of multipliers M3 andMjy. The flux¢,(t) of the memristor W3 is
t
(b)) = / Va(r)d(r) = —R.C5 Vs (1) (4)
—00

Chaotic system. According to the Kirchhoff’s circuit laws, current-voltage relation of capacitors and mem-
ristor model, we get the they mathematical model is

4 = —R%l(vl -V + ﬁ(l - m Vi)V

2 = 25 (Vi = V) + g (1= mVs) Vs — A= Vs

dVs _ s+l T1 2 2
Tﬁ——iﬁ(W—Vz)JrﬁdCS(l—szs W2 — g Vs (5)
vy _ 1y

A

T = TRG 2

where, s = R3/R;.
For the Eq. (5), introducing the new variables and scaling the circuit parameters as

x=V,y=V5z=Vs,w=V4,u="V;s

C=0C,=0C3,R;,C4 =R.Cs (6)
_C _,_RC _ R .__R ._ RC
c=re=ra 8= "= r0P T R

According to Eq. (6), the Eq. (5) becomes to

x=—c(x—y)+e(l —mw)x

y=—s(x—y)+sg(l— mzuz)y —2s+1)/(s+ Dnz

F=—(G+ D& —y) + 6+ Dg( — myu?)y — 2nz (7)
W= —px

U=—py

Based on Eq. (7), the fractional-order memristive hyperchaotic circuit system is denoted by

*Dix = —c(x — y) + e(1 — mywH)x

q

*thoy = —s(x —y) +sg(1 — mau?)y — (2s + 1)/(s + )nz
*Diz=—(+Dx—y) + (s+ Dg(l — myu?)y — 2nz (8)
*Dgw = —px

*Dtou = _py

where, g is order of the equation.
According to the CADM* algorithm, the linear and nonlinear terms of the fractional-order system are
obtained as follows

Lx (e—=co)x+cy Nx —emwx

Ly —sx+sy(g+1)— @2s+1)/(s+ Dnz| |Ny —sgmyuly

Lz| = | =(s+Dx+(G6+Dy@E+1)—2nz |, |Nz| =|—(s+ Dgmauy 9)
Lw —px Nw 0

Lu —py Nu 0

The before five Adomian polynomials for the nonlinear parts -cim w 2, -sgma, -u; and -(s+1)gmy u, are
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4

—(s+D)gmay(u)?

4

Afsgmzy(u)2

0 —
A;(s+1)gmzy(u)2 -
2—(S+1)gmzy(u)2 =

AZ gmayw? =
3 = —(s+ l)grr12y3(uo)2 —2(s+ l)grrzgyzuou1 —2(s+ l)gm2y0u3u° —2(s + l)gm2y°u2u1

A srgmyw? =

0 _ 0(,,0\2
pemEw? CMle(Wo)z 1,,1,,0
= —omx (W')* =2cmix'w'w
—cmyx(w)?
icmlx(w)z = — x> (W2 — 2cmxwnw® — 2empxt ww® — cmyx0(wh)?
icmlx(w)z = — x> (W% — 2cm 2w w® — 2cm xXOw3A w0 — 2cm xXOw?w! (10)
— 2cmixtw2w® — cmyxt (w!)?
‘icmlx(w)z = — emx* W% — 2cm 3 wiw® — 2cm 2wOw? — 2cmy x wPw!
— 2cmixtwAw0 — 2emixOwAnw® — 2emx®wAw0 — 2emyx? (wh)?
— 2em x0(w?)?
A° = — sgmpy’(u°)?
—sgmay(u)?
Legmayup = gm2y’ ()2 — 2sgmay’ulul
A2 = — sgﬂflzyz(uo)2 — ngmzyluluo — 25gm2y1u2u0 — ngzyo(ul)2
Qngzy(u) 30,002 20,1 0,30 0,21
A_ngzy(u)2 = —sgmpy’(u')” — 2sgmoy“uu — 2sgmoy u’u’ — 2sgmyy- ucu (11)

— ZngzyluzuO — ngz}/1 (Ml)2

= —sgmyy*(u®)? — 2sgmay®ulul — 2sgmyy?ulu? — 2sgmaytutul
— 2sgmaytudu® — 2sgmyyOutu® — 2sgmyy0ulu® — 2sgmyy? (ul)?
- sgmzyo(uz)2

— (s + Dgmyy®(u®)?
— (s + Dgmay' (u

— (s + L)gmay*(u

02 _2(s+ l)gmzyluluo
1,2,0

0y2 _ 2(s + 1)gm2y1u1u0 —2(s + Dgmay u“u’ — (s + l)gmzyo(ul)2

—2(s+ l)gmzyluzuo —(s+ l)gmzyl(ul)2
— (s + Dgmay* (®)? — 2(s + V)gmay>uOul — 2(s + Dgmay?ulu® — 2(s + 1)gmoy' v?u!
—2(s+ l)gm2y1u3u0 —2(s+ l)gm2y°u4u° —2(s+ l)gmzy0u3u0 —2(s+ l)gmzyz(ul)2

— (s + Dgmay® (u?)?
(12)
If the initial conditions are set as x0, 0, z0, w0, 40, then the first term is
x° = x(to)
y" = y(to)
2% = w(ty) (13)
w0 = w(t)
u = u(to)
Let
A =x0
&=y
g =w’ (14)
A =wd
d=u
We can get the coefficients of other term as follows
o= —c( =9 +ec? — emi(V(c)H?)
= =5 = D) + s5gcd — sema((c2)?) — 255;“11 nel
c% = — (s(;i— 1)(c? — cg) + (s + l)gcg —(s+ l)gmz(cg(cg)z) — 2nc(3) (15)
gy
€5 = — P&
= —c(cd —cb)+ect —em(cl(cH? + 20k
3= —s(ch —cd) +sgcd — sema(cd (¢2)? + 2c0¢lc?) — 2;;:11 nci
c% = —(s+ 1)(6} — c%) + (s+ l)gc% —(s+ l)gmz(c%(cg)2 + 2cgc§cg) — 2nc§ (16)
€5 = — P&
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Figure 2. Phase diagrams of fractional-order hyperchaotic system, (a) x-y plan, (b) x-w plan, (c¢) x-u plan.

3= —c(@—c2)+ect —emp(3(cH?) — emy(detcled +260¢2cY + 4cd(c))?)
cg = — s(cf — c%) + sgc% — scmz(c%(cg)z) — sgm2(4c%c§cg + 4cg(c;)2) - zss_f_rll nc%
cg’ = —(s+ 1)(c% — c%) + (s + l)gcg —(s+ l)gmz(cg(cg)z) —(s+ 1)gmy — (4cécécg W)
+4c9(ch)? + 269c2d)2nc?
= —pc
&= —pc
= —c(c} =) +ec; —emi(c}(c))? + 6cic)c))
—emy(6(clc2cd + dcic2 — cl(ch)?) —2c0¢3cd)
(:‘21 = — s(cf — c%) + sgcg — scmz(cg(cg)2 + 6c%c2cé)
— sgmp(6(cic3c? + k2 —2c9c2c?) — 29c3cl) — Zssj_rll ncs
4 3_ 3 3 30.0y2 2.0 .1 (18)
= —(+D(g —c)+ (s+1)ge; — (s+ 1gma(c;(c5)” + 6¢5c5¢35)
—(s+ l)gm2(6(c%c§cg + cgcécg — c% (cé)z) + 2c8c§cg) — 2nc§
&= —pd
5= —pc
The CADM solution of the fractional-order memristive hyperchaotic circuit system is
4 .
i (t — to)'q
. _ 1
xj(t) = Z G i (19)
i=0

wherej=1,2,3,4,5.

Deploying step size h = 0.01, ¢ = 20, e = 150/7, g = 15, n = 0.15, p = 3, s = 0.05, m; = my = 0.1, ¢ = 0.97, the
starting value are [x y z w u] = [0.1 0 0 0 0] for the Eq. (8), the phase diagrams with different planes are shown
in Figure 2. The attractor trajectories of the fractional-order hyperchaotic system are distributed over a wide
area. The bifurcation diagrams (BDs) andu Lyapunov exponent spectrums (LES) are presented in Figure 3 so
that we can study the sensitivity of the system with the varying parameter. We severally fix g € (0.5, 1), n € (0.13,
0.2), p € (2, 25) and other parameters are set as above. The fifth Lyapunov exponent is not shown in Fig. 3d-f,
because it is much less than 0. From Fig. 3d, when g € (0.5, 0.61), there is no Lyapunov exponent greater than 0.
With the increase of g, the Lyapunov exponent greater than 0 appears, and the system appears chaotic state. In
between there are alternating periodic states and chaotic states appearing. When # € (0.13, 0.2) and p € (2, 25),
the changes of Lyapunov exponent spectrum and bifurcation diagram are also consistent. It can be known that
the dynamical characteristics of the fractional-order chaotic system is variegated so that the proposed chaotic
system is suitable for cryptosystem.

Equilibrium stability. Qualitative analysis is an effective method to analyze chaos, and the calculation and
analysis of the equilibrium point of chaotic system is an important part of the qualitative analysis of chaos
mechanism. Continuous fractional-order system is used, so it is essential to find the equilibrium point of the cor-
responding integer order system to analyze its stability, and then deduce from the integer order to the fractional
order. The solution of the differential equation gives the equilibrium point O(x(()e), y(()e), z‘()e), w‘()e), u(()e)) =10, 0,0,
o, B], and o and B on behalf of arbitrary value. For the sake of analysis, if « = 1 and g = 1, then the equilibrium
point 01(x(()e), y?e), z(()e), w((]e), u((’e)) =0, 0, 0, 1, 1]. Other system parameters are set in accordance with "Chaotic
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Figure 3. Bifurcation diagrams and Lyapunov exponent spectrums, (a) BD, g € (0.5, 1), (b) BD, n € (0.13, 0.2),
(c) BD, pe(2,25), (d) LES, g €(0.5, 1), (e) LES, n € (0.13, 0.2), (f) LES, p € (2, 25).
SPI :
DSP D/A »| Oscilloscope
Figure 4. Hardware connection diagram.
system" section, and the Jacobian matrix J and its corresponding characteristic equation and eigenvalue can be
obtained as follows:
—0.7143 20.0000 0 00
—0.0500 0.7250 —0.1571 00
J = | —1.0500 15.2250 —0.3000 0 0 (20)
—3.0000 0 0 00
0 —3.0000 0 00
J2(2% +0.28932% + 3/, — 1.4464) =0 (21)
A1 =0, =0,43 = —0.3703 4+ 1.7517i, 4 = —0.3703 — 1.7517i, A5 = 0.4512 (22)
therefore, this equilibrium point is the saddle coke equilibrium point of index 1. Homoclinic and heteroclinic
orbits can be formed between saddle points or saddle focal points, which is the key to chaos.
According to the fractional order stability theorem, the system is stable when the system order q satisfies
Eq. (23), and it is unstable when the system order q satisfies Eq. (24). Because of Eq. (25), when q € (0.8764, 1),
the system is not stable.
0<g=< . mm | arg(4;) | (23)
0 mm |arg(/1)|<q<l (24)
1=
| arg(43,4) |= 1.3625 (25)
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Figure 5. Program flow diagram.

Figure 6. DSP experimental platform construction diagram.

(@) (b) ©)

Figure 7. The phase diagrams captured by oscilloscope, (a) x—y plan, (b) x-w plan, (c¢) x-u plan.
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System parameter c e gnp, s, m,my |20,150/7,15,0.15, 3, 0.05, 0.1, 0.1
System initial value | x, 3, z, w, u 0.1,0,0,0,0

Order q 0.97

Iteration step size h 0.01

Table 1. Parameter configuration.
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Figure 8. Encryption scheme.

Implementation of DSP technology. The hardware realization of chaos system can show the possibility
of applying chaos from theory to practice. Therefore, DSP experimental platform is built. Through SPI con-
nected to the D/A converter, the final output sequence displayed by the oscilloscope. Hardware connection
diagram, program flow diagram and experimental platform construction diagram are shown in the Figs. 4, 5 and
6. Parameter configuration is shown in Table 1. The chaotic phase diagram collected in the oscilloscope is shown
in Fig. 7. The output of the oscilloscope is visually consistent with the Fig. 2. This shows that the fractional-order
system used can be successfully built on the DSP experimental platform.

The complete encryption scheme

The images combine encryption algorithm based on the principle of color image channels. This is the main
discussion point of this section. The process of the proposed encryption scheme is shown in Fig. 8. Firstly, three
pictures need to be pre-processed. And then, the pictures are merged and encrypted. Finally, the cipher image is
acquired by the image is rotated 180 degrees. The detailed process is described in the following.

Image fusion. In the step of image fusion, the encrypted gray image can be processed into a color image. The
processed image is already visually meaningless.

Step 1: Control parameters and initial values of fractional-order hyperchaotic system are immobilized. The
iteration time can be ascertained according to the need.

Step 2: The chaotic sequences X, Y, Z,W, U can be got from the fractional-order hyperchaotic system based on
the Eq (8). The five chaotic sequences are pseudo-random. Simultaneous quantitative operations are performed.

Step 3: Read in three pictures and deal them with bitwise exclusive-OR operation. The bitwise exclusive-OR
method is:

R=DRgl3QY (26)

{Il:IIEBIZEBX
3=130Z7

Step 4: Merge three images into one colorful image according to the principles of R, G and B.
Step 5: Finally, the resulting output image I3 is used as the input image for the scrambling operation.

Scrambling algorithm. Arnold transform is a frequently-used method to scramble the location of the
pixels. The process of Arnold transformation is depicted as the following.

Step 1: It is the same as step one and step two of the scrambling algorithm in "Image fusion" section.

Step 2: Two sequences a; and b, are acquired from quantized random sequences. From this, index sequence
q is generated by addition and modulus through the use of a; and b;.
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Figure 9. Decryption scheme.

by = Y (30000 + 1 : 30000 + M x H) (27)

{al = X (30000 + 1 : 30000 + M x H)
g= (b1 +ar. x (1: M x H)%M x H) + 1

M and H are length and width of the original images and (b;+a;.(1:MH))%(MH)) means that chaotic sequence a;
is multiplied by the corresponding increasing sequence 1 to MH,then add it to b;, and finally take the remainder
for MH.

Step 3: Every pixel of each of the three images went through. After that, using index sequence can get a rough-
and-tumble image by scrambling severally.

Step 4: Three vectors of three images pixels can be got and shaped into matrixes.

Diffusion algorithm. The operation that the pixels position of an image is unchanged and the pixels values
are changed is called diffusion. Idiographic diffusion algorithm processes are as follows.

Step 1: It is the same as step one and step two of the scrambling algorithm in "Image fusion" section.

Step 2: The scrambled image is reused as the source image. The pixel which is located (1, 1) is disposed of.

C1(1,1) = Al(L) ® X(1,1) ® U(1,1)
{ C2(1,1) = A2(1, )@ X(1, 1) S UL, 1) (28)
C3(1,1) = A3(LD) @ X(L, ) ® U(1, 1)

where A1@X is the operation of bitwise exclusive-OR between Al and X. Al on behalf of the first scrambled
image, C1 represents the image which has been diffused. In addition, A2, A3, C2, C3 are corresponding with the
second image and third image severally.

Step 3: The first row of per image is diffused by

C1(L,j) = A1(L,)) ® X(1,j) & CL(1,j — 1)
{ C2(1,j) = A2(1,)) ® X(1,j) ® C2(1,j — 1) (29)
C3(1,)) = A3(1L,)) ® X(1,) ® C3(1,j — 1)

where j is the number of columns from 2 to end.
Step 4: The first column of per image is diffused by

Cl(,1) = Al1(,1) ® X(i, 1) ® C1(i — 1,1)
{CZ(i,l) =A2(, 1) ®X(i,1) ® C2(i — 1,1) (30)
C2(i, 1) = A3(i,1) ® X(i, 1) ® C3(i — 1,1)

where i is the number of rows from 2 to end.
Step 5: For the rest of the pixels, operate on them in a row by

Cl(i,j) = Al1(i,j) ® X(i,j) ® C1(i — 1,j) ® C1(i,j — 1)
{ C2(i,j) = A2(i,)) ® X(5,j) ® C2(i — 1,j) ® C2(5,j — 1) (31)
C2(i,j) = A3(i,j) ® X(i,j) ® C3(i — 1,j) ® C3(i,j — 1)

three images which are diffused can be obtained.
Step 6: The image which is diffused is rotated 180 degrees.

Decryption scheme

The algorithm for decryption is the reverse operation of the encryption algorithm, the corresponding flowchart
is shown in Figure 9. The decryption result is that we can get three undamaged pictures. The detailed algo-
rithm comprises inverse diffusion, inverse Arnold transform and picture segmentation. Some detailed steps are
described as follows.
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Step 1: As described in step one to two of scrambling algorithm "Image fusion", there are five quantized
sequences.

Step 2: The encrypted image is separated into three gray images. Rotate three images 180 degrees, respectively.

Step 3: According to the following Eq. (32)

D1(1,1) = C1(1,1) ® X(1,1) ® U(1,1)
{ D2(1,1) = C2(1, ) @ X(1,1) @ U, 1) (32)
D3(1,1) = C3(1,1) ® X(1,1) ® U(1,1)

where C and D represent cipher image and inverse diffused image.
Step 4: The first row of the three figures is treated with inverse diffusion.

{Dl(l,j) = C1(1,j) ® X(1,j) @ C1(1,j — 1)

D2(1,j) = C2(1,)) @ X(1,j) ® C2(1,j — 1) (33)
D3(1,j) = C3(L,j) ® X(1,/) ® C3(L,j — 1)

Step 5: The first column of three pictures is handled by inverse diffusion.

D1(i,1) = C1(,1) ® X(i,1) ® C1(i — 1,1)
{ D2(i, 1) = C2(i,1) ® X(i, 1) ® C2(i — 1, 1) (34)
D2(i, 1) = C2(i,1) ® X (i, 1) ® C3(i — 1,1)

Step 6: For the rest of the pixels, operate on them in a row by

D1(,j) = C1(i,j) ® X(i,j) & C1(i — 1,j) & C1(i,j — 1)
{ D2(i,j) = C2(i, ) ® X(i, ) ® C2(i — 1,j) ® C2(i,j — 1) (35)
D2(i,j) = C3(i, ) ® X(i,j) & C3(i — 1,j) ® C3(i,j — 1)

Step 7: Three sequences a1, by and g are acquired the same as "Image fusion" section. Then, the inverse Arnold
transform is carried out by

12 = Q2(i); Q2(i) = Q2(q()); Q2(q()) = 12 (36)
t3 = Q3(1); Q3(i) = Q3(g(9)); Q3(q(1) = 3

three vectors of three images pixels are obtained and shaped into matrixes which include Q;, Q2, Qs.
Step 8: The inverse operation of step two in "Decryption scheme" section follows in

{ t1 = QL(i); QL(i) = Ql(g(i)); Q1l(g(i)) = ¢1

QB=Q3dZ
{QZ=Q2GBQ3GBY (37)
Ql=Ql® Q26X

at this moment, the decrypted images including Q;, Q2 and Qs are acquired.

Performance analysis

Simulations results. To verify the effectiveness of the presented encryption algorithm, the designed image
encryption scheme is tested. Deploying step size h = 0.01, ¢ = 20, e = 150/7, g = 15, n = 0.15, p = 3, s = 0.05,
my = my = 0.1, g =0.97, starting value is [x y zw u] = [0.1 0 0 0 0]. Original image Candy, House and Texture in
size 256-256 are encrypted and decrypted simultaneously. The simulation results of proposed image encryption
and decryption algorithm are shown in Fig. 10. Where original images (OI) are Fig. 10a—c, cipher image (CI) is
displayed in Fig. 10d, the corresponding decryption images (DI) are Fig. 10e-g. As we can see from Fig. 10, the
cipher image is visually completely different from plaintext images. The cipher image is almost noisy and is in
color. Therefore, the proposed algorithm can encrypt and decrypt images efficiently.

Key space. The key space of an encryption algorithm should be large enough to resist brute force attacks.
This algorithm has fourteen control parameters. The system parameters ¢ and e change 10714, g and p change
10715, n and n change 1071, my, m; and q change 107, the system initial values change 10717. So, the key space
of the proposed scheme is more than 27°0, it is much bigger than 2!%, which is regarded as the minimum value
of key space. Data from other literature are given in Table 2 for reference®*". So, the proposed can stand up to
brute force attack.

Key sensitivity. The image cryptosystem has strong sensitivity if the two cipher images have conspicuous
difference. On the contrary, the image cryptosystem is insensitive. A well cryptosystem should have high key
sensitivity.

To analyze key sensitivity, the key sensitivity test is done. In the simulation, plain images are encrypted by the
slightly altered keys and decrypted by the correct keys. The decrypted images are shown in Fig. 11. Because of
the difference in parameter values, sensitivity scales are also different. Via testing one by one, the sensitivity of
every parameter can be obtained. From Fig. 11 and the sensitivity of every parameter, the proposed algorithm
has highly key sensitivity.

Histogram. Histogram is a statistic of gray level distribution in gray image. This index can reflect the rela-
tionship between the gray level and the frequency. Before encryption, the histogram of the original image is
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(a) (b) (c)

® (C))

Figure 10. Encrypted and decrypted results, (a) OI, Candy, (b) OL House, (c) OI, Texture, (d) CI, (e) DI,
Candy;, (f) DI, House, (g) DI, Texture.

2750 2213 2580 2497 2374 2399

Table 2. Key space of different algorithms.

variational. In contrast, the histogram of cipher image is uniform distribution. From Fig. 12, the difference of
histogram between original images and cipher images is obvious. The cardinality test can be used to quantita-
tively analyze the ability of the encryption scheme to resist statistical attacks, and for the cardinality test results
are shown in Table 3. The proposed encryption algorithms pass the cardinality test when the significance levels
are 0.01, 0.05, and 0.1, respectively. This also shows that the cipher image obtained by the encryption scheme are
approximately uniformly distributed**>®.

Correlation of adjacent pixels. Usually, plain images have a strong correlation between adjacent pixels.
A good encryption algorithm should generate cipher images with low correlation. In this way, the encryption
scheme can hide the original image information. The correlation of adjacent pixels is defined by:

_ E(x —Ex)(y — E(»)))

ST Dwby) G9
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Figure 11. Decrypted results about key sensitivity test, (a) Candy, ¢ = 20+17'4, (b) House, ¢ = 20+107!4, (c)
Texture, ¢ = 20+10~ ', (d) Candy, g = 15+107', (e)House, g = 15+1071°, (f) Texture, g = 15+10~ ', (g) Candy,
q= 0.97+107'¢, (h) House, q= 0.97+10719, (i) Texture, q= 0.97+1071%, (j) Candy, m; = 0.1+10~"7, (k) House,
my = 0.1+10"17, (1) Texture, m; = 0.1+10~7.

1 N
Ex)==)> =xi (39)
)
1 N
D() = > (i — E()? (40)
i=1
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Figure 12. Histogram test, (a) OI, Candy, (b) OL House, (c) OI, Texture, (d) CI, Candy, (e) CI, House, (f) CI,
Texture.

Candy (256 x 256) 49346.0625 243.5469 Pass Pass Pass
House (256 x 256) 72970.4609 228.0781 Pass Pass Pass
Texture (256 X 256) 83678.7734 249.1224 Pass Pass Pass

Table 3. The table of x >-value for different objects.

where E(x) and D(x) are the expectation and variance of the variable x, y, ry, y is the correlation coefficient
between adjacent pixels x and y.

For testing the correlation of adjacent pixels, we select 1000 pairs adjacent pixels randomly from original
images and their corresponding cipher images to analyze. The correlation and correlation coefficients calculated
by using the Eq. (38) are shown in Figs. 13 and 14 and Table 4. Results from other literature are also listed in
Table 46!, From Figs. 13 and 14, the adjacent values of plain image pixels all lie near a straight line with slope
1, there is a high correlation between two adjacent pixels. The pixel values of cipher images are carpeted with the
whole region, that is to say a low correlation between adjacent pixels. The results in Table 4 also indicate that the
correlation coefficients between the adjacent pixels of the original images in horizontal, vertical and diagonal
(H, V and D) directions are large. The correlation coeflicients of the encrypted image in corresponding orienta-
tions are decreased significantly. The encryption algorithm proposed can effectively against statistical attacks.

Information entropy. Information entropy can be used to describe the uncertainty of picture information
and to measure its randomness. For an image, the more homogeneous the gray values distribute, the bigger the
information entropy is. The picture information has a strong randomness when the information entropy is close
to 8. Information entropy is computed by:

255
H(m) = =) P(x)log2P(xi) (41)
i=1
where P(x;) is the probability of gray value x;.
Information entropies of original images and cipher images are listed in Table 5. The information entropies
of cipher images are more than 7.997 and close to 8. From Table 5, the information entropy of our scheme and
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Figure 13. Correlation of adjacent pixels, (a—c) OI, Candy, (d-f) OI, House.

others in Refs. 462 are given, a conclusion that the proposed algorithm can generate cipher images with strong

randomness can be drawn.

Differential attack. The performance of anti-differential attack depends on the sensitivity to plaintext and
is usually measured by the number of pixels change rate (NPCR) and the unified average changing intensity
(UACI). NPCR and UACI are calculated by:

M N
1 . .. ..
NPCR(P, Py) = 0> > | Sign(Pi(i)) = P2 ) | x100% (42)
i=1 j=1
M N
1 | P1(i,j) — P2(i,j) |
UACI(P1, P2) = -5 3 % x 100% (43)

i=1 j=1

where P; on behalf of cipher image and P, is the cipher image which plain image pixel value has changed.

Due to the arbitrariness of position, the theoretical values of NPCR and UACI are 99.6094% and 33.4635%
respectively. The NPCR and UACI values in the simulation test should be close to expectation. Via simulation
test, the results of the proposed algorithm are presented as Table 6. From the Table 6, the results are closed to
theoretical expectations and it will get an almost completely different image if the gray value of the image is
changed slightly. Moreover, we list the average values of NPCR and UACI in other literature which is shown in
Table 710172763 Results indicate that our algorithm can resist differential attack effectively.

Robustness. When transmitted over a channel, the cipher image will be influenced by a variety of interfer-
ence and attacks. A good encryption algorithm should make images have robustness for external interference.
Noise attack and cropping attack testing experiments were carried out to test the robustness of the encryption
algorithm.

Noise attack. In the process of data transmission, cipher image will be contaminated by noise. For testing the
resistance performance of encryption algorithm to noise, Salt and Pepper noise (SPN), Gaussian noise (GN)
are added to the cipher image and the decrypted results are shown in Fig. 15. It is observed that the decrypted
images still have noise, but the main information can be recovered. So, a certain level of noise attack can be toler-
ated by the encryption algorithm.

Cropping attack. Cipher image may be destroyed while it is in the process of transmission and results in data
loss. The cropping attack test is carried out to illustrate the performance of the proposed encryption algorithm
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Figure 14. Correlation of adjacent pixels, (a—c) OI, Texture, (d-f) CI, Candy, (g-i) CI, House, (j-1) CI, Texture.

to resist cropping attack. The simulation results are shown in Fig. 16, while encrypted image lose 6.25% data,
decrypted images which include Candy, House and Texture are Figure 16a. While encrypted image 12.5% data
are cropped, decrypted images are shown in Fig. 16b. While encrypted image 25% data are removed, the results
of decryption are shown in Fig. 16¢c. We can see that though the encrypted image loses 6.25%, 12.5% or 25%
data, the main information in the decrypted images can still be identified. Simulation results demonstrate that
the proposed algorithm has a certain ability to resist cropping attack.

Time analysis. Time complexity is an important aspect to measure the efficiency of the encryption
algorithm,for three images ‘Candy, ‘House’ and ‘Texture, the running time for encryption and decryption is
shown in Table 8 and compared with other encryption schemes as shown in Table 9. From the Table 9, it can be
seen that the encryption scheme has a better performance in terms of running rate*”4-7,
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Encryption algorithm | Image | Direction | Plainimage | Cipher image
H 0.9718 0.0005
Candy |V 0.9743 0.0009
D 0.9506 0.0018
H 0.9254 0.0009
Our scheme House |V 0.9083 0.0036
D 0.9314 0.0042
H 0.9706 0.0045
Texture |V 0.9503 0.0028
D 0.9465 0.0010
H 0.9724 0.0118
Ref.® Image |V 0.9455 -0.0173
D 0.9214 0.0080
H 0.9724 —-0.0048
Ref.® Image |V 0.9455 -0.0112
D 0.9214 -0.0125
H 0.9724 0.0070
Ref.®! Image \% 0.9455 -0.0102
D 0.9214 0.0030
Table 4. Correlation coefficient pixels.
Encryption algorithm | Image Image size | Original image | Cipher image
Candy 256256 7.3456 7.9973
Our scheme House 256256 7.1235 7.9975
Texture 256256 7.0384 7.9976
Ref.® Airplane | 256256 - 7.9971
Ref.*? Baboon | 256256 7.1273 7.9974
Ref.®? Average | 256256 7.4127 7.9973
Ref.» Average | 256256 7.3446 7.9970
Ref*! Average | 256256 7.6560 7.9969

Table 5. Information entropy of original images and cipher images.

Image Candy | House | Texture | Average
NPCR (%) 99.5986 | 99.6232 | 99.5853 | 99.6024
UACI (%) 33.5052 | 33.4633 | 33.5240 | 33.4975

Table 6. The results of differential attack test.

Our algorithm | Ref.!® | Ref."” Ref. Ref.”’
NPCR (%) (average) 99.6024 99.610 |99.6117 |99.6082 | 99.5582
UACI (%) (average) 33.4975 33.462 | 33.6694 |33.3391 | 33.3844

Table 7. NPCR and UACI values of different algorithms.
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(b)

(c)

Figure 15. Decrypted images with various noise, (a) SPN, 0.05, (b) SPN, 0.07, (c) GN, 0.0001.

Conclusion

In this paper, a multiple image encryption scheme based on fractional-order hyperchaotic system is presented.
The phase diagram, bifurcation diagram, Lyapunov exponent spectrum and equilibrium point are analyzed in
detail. The analysis results show that the fractional-order hyperchaotic system has complex dynamical character-
istics and it is suitable for image security encryption. The fractional-order hyperchaotic system is implemented
on the DSP platform and the results are the same as simulation results. It provides the possibility of realizing
secure communication with fractional-order hyperchaotic systems. By using the proposed algorithm, multiple
images are encrypted twice, it not only improves the encryption efficiency, but also improves the security of
image transmission. The key space, key sensitivity, histogram, correlation, information entropy and robustness
are analyzed, the results indicate that it can withstand brute attack, statistical attack, a certain degree of noise
pollution and cropping attack effectively. It shows that the encryption algorithm has a great encryption effect.
Hence, the proposed image encryption scheme has research significance and application value.
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Figure 16. Cropping attack test, (a) 6.25% data loss, encrypted image and decrypted images, (b) 12.5% data
loss, encrypted image and decrypted images, (c) 25% data loss, encrypted image and decrypted images.

Encryption 0.0382 | 0.0404 | 0.0459 | 0.0441 |0.0467 |0.0426 | 0.0430 4.4967
Decryption 0.0326 | 0.0272 | 0.0360 | 0.0366 |0.0602 |0.0464 | 0.0399 4.8461

Table 8. Running time of the proposed algorithm.

Encryption | 0.0430 | 0.4400 | 1.1737 |0.3356
Decryption | 0.0399 | - - 1.5216

Table 9. Running time of the different algorithm.

Data availability
The test images used in this paper are from the SIPI image database and are used for scientific research only, not
for other purposes, and without copyright disputes.
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