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A new image encryption scheme 
based on fractional‑order 
hyperchaotic system and multiple 
image fusion
Xinyu Gao1, Jiawu Yu1*, Santo Banerjee2*, Huizhen Yan1 & Jun Mou1*

A multi-image encryption scheme based on the fractional-order hyperchaotic system is designed in 
this paper. The chaotic characteristics of this system are analyzed by the phase diagram, Lyapunov 
exponent and bifurcation diagram. According to the analyses results, an interesting image encryption 
algorithm is proposed. Multiple grayscale images are fused into a color image using different channels. 
Then, the color image is scrambled and diffused in order to obtain a more secure cipher image. The 
pixel confusion operation and diffusion operation are assisted by fractional hyperchaotic system. 
Experimental simulation and test results indicate that the devised multi-image encryption scheme 
can effectively encrypt multiple images, which increase the efficiency of image encryption and 
transmission, and have good security performance.

In the era of big data, picture information is widely spread on the network, and the security of picture informa-
tion is also widely concerned1. Conventional encryption schemes such as AES, DES encrypt textual data and 
do not apply to the encryption of images2–4. New image encryption algorithms, especially chaos-based encryp-
tion algorithms, are under increasingly investigation. Lorentz discovered chaotic attractors in 1963, and in 
1997, Fridrich first applied chaotic systems to digital image encryption5–8. Chaotic systems are widely used in 
image encryption and have become a hot research topic in the field of secure communication because of their 
sensitivity to initial values and irregular internal random motion in deterministic systems1,9–16. Compared with 
ordinary chaotic systems, hyperchaotic systems have more complex dynamics and greater sensitivity and are 
more suitable for image encryption17–22. The fractional-order chaotic system is also more secure because the key 
space is increased by adding system variables2,23–28. Therefore, in this encryption scheme, the fractional-order 
hyperchaotic system is used for image encryption.

The prerequisite for employing fractional-order chaotic systems is to be able to solve them out. Commonly 
used methods for solving fractional order chaotic systems are time domain-frequency domain solution algo-
rithms, prediction-correction algorithms, and Adomian decomposition method(ADM)29,30. The ADM is widely 
used due to the advantages of fast convergence and high solution accuracy. However, in the case of conform-
able fractional calculus, the conformable ADM (CADM) is needed to obtain the digital solution of the chaotic 
system31,32.

Another noteworthy point is that single-image encryption is fast but inefficient21. Multi-image encryption 
can encrypt two or more images at a time with the same computational complexity, which has increased the 
effectiveness of image encryption33–37. Many multi-image encryption schemes are already proposed by scholars. 
Combined with nonlinear fractional Merlin transform and discrete cosine transform, Pan et al. proposed an 
optical multi-image encryption scheme38. On this basis, Zhou et al. proposed a dual image encryption algorithm 
based on co-sparse representation and random pixel exchange39. Zhang et al. proposed a multi-image encryp-
tion scheme to encrypt the arbitrary number of images37 and by using a DNA encoding encryption algorithm to 
accomplish encrypt multiple images simultaneously35. There also some scholars proposed the encryption schemes 
that can encrypt arbitrary size multiple images or a batch of images40–43. Huang et al. proposed a double-image 
encryption algorithm based on compression- sensing, which reduces data space while improving encryption 
efficiency44. These encryption schemes all use chaotic systems, which greatly improve the randomness of the 
encrypted image data and make the encryption schemes withstand a certain level of hacking40,45. However, some 
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of the encryption schemes still have the problem of weak security or lack of efficiency. For this reason, a new 
encryption scheme based on fractional-order hyperchaotic systems and multi-image fusion is proposed46–51. 
The application of fractional-order hyperchaotic system makes the pseudo-random sequence more complex and 
thus allows for a more secure encryption algorithm52. The fusion of multiple images allows image encryption 
efficiency to be improved.

The remaining part of the paper is arranged as the following. "Characteristic analysis of a fractional-order 
hyperchaotic system" section, the circuit and the dynamic analysis of chaotic system are given. The encryption 
algorithm which includes scrambling and diffusion is shown in "The complete encryption scheme" section. 
"Decryption scheme" section introduces the complete encryption and decryption scheme. "Performance analysis" 
section illustrates the simulation results and some security analyses. In the last section "Conclusion", this paper 
ends with concluding remarks.

Characteristic analysis of a fractional‑order hyperchaotic system
Fractional‑order memristive hyperchaotic circuit.  A new two-memristor circuit based on band pass 
filter (BPF) and Chua’s circuit is obtained as shown in Fig. 1a. The two equivalent circuits of two memristors W1 
and W2 are shown in Fig. 1b, c.

For the Fig. 1b, V1 and i1 represent the input voltage and the input current, V4 is the node voltage of the 
integrator U2 output. Therefore, the memristor W1 can be expressed as

where, m1 represent the total gain of multipliers M1 and M2 . The fluxφ1(t) of the memristor W1 is

(1)

{

i1 = W1(V4)V1 = − 1
Rb
(1−m1V4

2)V1

dV4

dt = f (V1) = − 1
RaC4

Figure 1.   Memristive circuit, (a) BPF memristive Chua’s circuit, (b) equivalent circuit for the memristor W1 , 
(c) equivalent circuit for the memristor W2.
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For the Fig. 1c, V2 and i2 represent the input voltage and the input current, V5 means that the node voltage 
of the integrator U5 output. Therefore, the memristor W2 is expressed as

where, m2 represent the total gain of multipliers M3 andM4 . The fluxφ2(t) of the memristor W2 is

Chaotic system.  According to the Kirchhoff ’s circuit laws, current-voltage relation of capacitors and mem-
ristor model, we get the they mathematical model is

where, s = R3/R2.
For the Eq. (5), introducing the new variables and scaling the circuit parameters as

According to Eq. (6), the Eq. (5) becomes to

Based on Eq. (7), the fractional-order memristive hyperchaotic circuit system is denoted by

where, q is order of the equation.
According to the CADM43 algorithm, the linear and nonlinear terms of the fractional-order system are 

obtained as follows

The before five Adomian polynomials for the nonlinear parts -cm1 w 2 , -sgm2 , -u2 and -(s+1)gm2 u2 are

(2)ϕ1(t) =

∫ t

−∞

V1(τ )d(τ ) = −RaC4V4(t)

(3)

{

i2 = W2(V5)V2 = − 1
Rd
(1−m2V5

2)V2

dV5

dt = f (V2) = − 1
RcC5

(4)ϕ2(t) =

∫ t

−∞

V2(τ )d(τ ) = −RcC5V5(t)

(5)
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1
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(s+1)R1C2
V3

dV3
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If the initial conditions are set as x0, y0, z0, w0, u0, then the first term is

Let

We can get the coefficients of other term as follows

(10)
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The CADM solution of the fractional-order memristive hyperchaotic circuit system is

where j = 1, 2, 3, 4, 5.
Deploying step size h = 0.01, c = 20, e = 150/7, g = 15, n = 0.15, p = 3, s = 0.05, m1 = m2 = 0.1, q = 0.97, the 

starting value are [x y z w u] = [0.1 0 0 0 0] for the Eq. (8), the phase diagrams with different planes are shown 
in Figure 2. The attractor trajectories of the fractional-order hyperchaotic system are distributed over a wide 
area. The bifurcation diagrams (BDs) andu Lyapunov exponent spectrums (LES) are presented in Figure 3 so 
that we can study the sensitivity of the system with the varying parameter. We severally fix q ∈ (0.5, 1), n ∈ (0.13, 
0.2), p ∈ (2, 25) and other parameters are set as above. The fifth Lyapunov exponent is not shown in Fig. 3d–f, 
because it is much less than 0. From Fig. 3d, when q ∈ (0.5, 0.61), there is no Lyapunov exponent greater than 0. 
With the increase of q, the Lyapunov exponent greater than 0 appears, and the system appears chaotic state. In 
between there are alternating periodic states and chaotic states appearing. When n ∈ (0.13, 0.2) and p ∈ (2, 25), 
the changes of Lyapunov exponent spectrum and bifurcation diagram are also consistent. It can be known that 
the dynamical characteristics of the fractional-order chaotic system is variegated so that the proposed chaotic 
system is suitable for cryptosystem.

Equilibrium stability.  Qualitative analysis is an effective method to analyze chaos, and the calculation and 
analysis of the equilibrium point of chaotic system is an important part of the qualitative analysis of chaos 
mechanism. Continuous fractional-order system is used, so it is essential to find the equilibrium point of the cor-
responding integer order system to analyze its stability, and then deduce from the integer order to the fractional 
order. The solution of the differential equation gives the equilibrium point O(x0(e) , y

0
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Figure 2.   Phase diagrams of fractional-order hyperchaotic system, (a) x–y plan, (b) x–w plan, (c) x–u plan.
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system" section, and the Jacobian matrix J and its corresponding characteristic equation and eigenvalue can be 
obtained as follows:

therefore, this equilibrium point is the saddle coke equilibrium point of index 1. Homoclinic and heteroclinic 
orbits can be formed between saddle points or saddle focal points, which is the key to chaos.

According to the fractional order stability theorem, the system is stable when the system order q satisfies 
Eq. (23), and it is unstable when the system order q satisfies Eq. (24). Because of Eq. (25), when q ∈ (0.8764, 1), 
the system is not stable.
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2

π
min

i=1,2,...,5
| arg(�i) |≤ q ≤ 1

(25)| arg(�3, 4) |= 1.3625

Figure 3.   Bifurcation diagrams and Lyapunov exponent spectrums, (a) BD, q ∈ (0.5, 1), (b) BD, n ∈ (0.13, 0.2), 
(c) BD, p ∈ (2, 25), (d) LES, q ∈ (0.5, 1), (e) LES, n ∈ (0.13, 0.2), (f) LES, p ∈ (2, 25).

Figure 4.   Hardware connection diagram.
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Figure 5.   Program flow diagram.

Figure 6.   DSP experimental platform construction diagram.

Figure 7.   The phase diagrams captured by oscilloscope, (a) x–y plan, (b) x–w plan, (c) x–u plan.
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Implementation of DSP technology.  The hardware realization of chaos system can show the possibility 
of applying chaos from theory to practice. Therefore, DSP experimental platform is built. Through SPI con-
nected to the D/A converter, the final output sequence displayed by the oscilloscope. Hardware connection 
diagram, program flow diagram and experimental platform construction diagram are shown in the Figs. 4, 5 and 
6. Parameter configuration is shown in Table 1. The chaotic phase diagram collected in the oscilloscope is shown 
in Fig. 7. The output of the oscilloscope is visually consistent with the Fig. 2. This shows that the fractional-order 
system used can be successfully built on the DSP experimental platform.

The complete encryption scheme
The images combine encryption algorithm based on the principle of color image channels. This is the main 
discussion point of this section. The process of the proposed encryption scheme is shown in Fig. 8. Firstly, three 
pictures need to be pre-processed. And then, the pictures are merged and encrypted. Finally, the cipher image is 
acquired by the image is rotated 180 degrees. The detailed process is described in the following.

Image fusion.  In the step of image fusion, the encrypted gray image can be processed into a color image. The 
processed image is already visually meaningless.

Step 1: Control parameters and initial values of fractional-order hyperchaotic system are immobilized. The 
iteration time can be ascertained according to the need.

Step 2: The chaotic sequences X, Y, Z,W, U can be got from the fractional-order hyperchaotic system based on 
the Eq (8). The five chaotic sequences are pseudo-random. Simultaneous quantitative operations are performed.

Step 3: Read in three pictures and deal them with bitwise exclusive-OR operation. The bitwise exclusive-OR 
method is:

Step 4: Merge three images into one colorful image according to the principles of R, G and B.
Step 5: Finally, the resulting output image I3 is used as the input image for the scrambling operation.

Scrambling algorithm.  Arnold transform is a frequently-used method to scramble the location of the 
pixels. The process of Arnold transformation is depicted as the following.

Step 1: It is the same as step one and step two of the scrambling algorithm in "Image fusion" section.
Step 2: Two sequences a1 and b1 are acquired from quantized random sequences. From this, index sequence 

q is generated by addition and modulus through the use of a1 and b1.

(26)

{

I1 = I1⊕ I2⊕ X
I2 = I2⊕ I3⊕ Y
I3 = I3⊕ Z

Table 1.   Parameter configuration.

System parameter c, e, g, n, p, s, m1 , m 2 20, 150/7, 15, 0.15, 3, 0.05, 0.1, 0.1

System initial value x, y, z, w, u 0.1, 0, 0, 0, 0

Order q 0.97

Iteration step size h 0.01

Figure 8.   Encryption scheme.
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M and H are length and width of the original images and (b1+a1.(1:MH))%(MH)) means that chaotic sequence a 1 
is multiplied by the corresponding increasing sequence 1 to MH,then add it to b 1 , and finally take the remainder 
for MH.

Step 3: Every pixel of each of the three images went through. After that, using index sequence can get a rough-
and-tumble image by scrambling severally.

Step 4: Three vectors of three images pixels can be got and shaped into matrixes.

Diffusion algorithm.  The operation that the pixels position of an image is unchanged and the pixels values 
are changed is called diffusion. Idiographic diffusion algorithm processes are as follows.

Step 1: It is the same as step one and step two of the scrambling algorithm in "Image fusion" section.
Step 2: The scrambled image is reused as the source image. The pixel which is located (1, 1) is disposed of.

where A1⊕X is the operation of bitwise exclusive-OR between A1 and X. A1 on behalf of the first scrambled 
image, C1 represents the image which has been diffused. In addition, A2, A3, C2, C3 are corresponding with the 
second image and third image severally.

Step 3: The first row of per image is diffused by

where j is the number of columns from 2 to end.
Step 4: The first column of per image is diffused by

where i is the number of rows from 2 to end.
Step 5: For the rest of the pixels, operate on them in a row by

three images which are diffused can be obtained.
Step 6: The image which is diffused is rotated 180 degrees.

Decryption scheme
The algorithm for decryption is the reverse operation of the encryption algorithm, the corresponding flowchart 
is shown in Figure 9. The decryption result is that we can get three undamaged pictures. The detailed algo-
rithm comprises inverse diffusion, inverse Arnold transform and picture segmentation. Some detailed steps are 
described as follows.

(27)

{

a1 = X(30000+ 1 : 30000+M ×H)

b1 = Y(30000+ 1 : 30000+M ×H)

q = (b1 + a1.× (1 : M ×H))%(M ×H)+ 1

(28)

{

C1(1, 1) = A1(1, 1)⊕ X(1, 1)⊕ U(1, 1)

C2(1, 1) = A2(1, 1)⊕ X(1, 1)⊕ U(1, 1)

C3(1, 1) = A3(1, 1)⊕ X(1, 1)⊕ U(1, 1)

(29)

{

C1(1, j) = A1(1, j)⊕ X(1, j)⊕ C1(1, j − 1)

C2(1, j) = A2(1, j)⊕ X(1, j)⊕ C2(1, j − 1)

C3(1, j) = A3(1, j)⊕ X(1, j)⊕ C3(1, j − 1)

(30)

{

C1(i, 1) = A1(i, 1)⊕ X(i, 1)⊕ C1(i − 1, 1)

C2(i, 1) = A2(i, 1)⊕ X(i, 1)⊕ C2(i − 1, 1)

C2(i, 1) = A3(i, 1)⊕ X(i, 1)⊕ C3(i − 1, 1)

(31)

{

C1(i, j) = A1(i, j)⊕ X(i, j)⊕ C1(i − 1, j)⊕ C1(i, j − 1)

C2(i, j) = A2(i, j)⊕ X(i, j)⊕ C2(i − 1, j)⊕ C2(i, j − 1)

C2(i, j) = A3(i, j)⊕ X(i, j)⊕ C3(i − 1, j)⊕ C3(i, j − 1)

Figure 9.   Decryption scheme.
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Step 1: As described in step one to two of scrambling algorithm "Image fusion", there are five quantized 
sequences.

Step 2: The encrypted image is separated into three gray images. Rotate three images 180 degrees, respectively.
Step 3: According to the following Eq. (32)

where C and D represent cipher image and inverse diffused image.
Step 4: The first row of the three figures is treated with inverse diffusion.

Step 5: The first column of three pictures is handled by inverse diffusion.

Step 6: For the rest of the pixels, operate on them in a row by

Step 7: Three sequences a1 , b1 and q are acquired the same as "Image fusion" section. Then, the inverse Arnold 
transform is carried out by

three vectors of three images pixels are obtained and shaped into matrixes which include Q1 , Q2 , Q3.
Step 8: The inverse operation of step two in "Decryption scheme" section follows in

at this moment, the decrypted images including Q1 , Q2 and Q3 are acquired.

Performance analysis
Simulations results.  To verify the effectiveness of the presented encryption algorithm, the designed image 
encryption scheme is tested. Deploying step size h = 0.01, c = 20, e = 150/7, g = 15, n = 0.15, p = 3, s = 0.05, 
m1 = m2 = 0.1, q = 0.97, starting value is [x y z w u] = [0.1 0 0 0 0]. Original image Candy, House and Texture in 
size 256–256 are encrypted and decrypted simultaneously. The simulation results of proposed image encryption 
and decryption algorithm are shown in Fig. 10. Where original images (OI) are Fig. 10a–c, cipher image (CI) is 
displayed in Fig. 10d, the corresponding decryption images (DI) are Fig. 10e–g. As we can see from Fig. 10, the 
cipher image is visually completely different from plaintext images. The cipher image is almost noisy and is in 
color. Therefore, the proposed algorithm can encrypt and decrypt images efficiently.

Key space.  The key space of an encryption algorithm should be large enough to resist brute force attacks. 
This algorithm has fourteen control parameters. The system parameters c and e change 10−14 , g and p change 
10−15 , n and n change 10−16 , m1 , m2 and q change 10−17 , the system initial values change 10−17 . So, the key space 
of the proposed scheme is more than 2 750 , it is much bigger than 2 100 , which is regarded as the minimum value 
of key space. Data from other literature are given in Table 2 for reference53–57. So, the proposed can stand up to 
brute force attack.

Key sensitivity.  The image cryptosystem has strong sensitivity if the two cipher images have conspicuous 
difference. On the contrary, the image cryptosystem is insensitive. A well cryptosystem should have high key 
sensitivity.

To analyze key sensitivity, the key sensitivity test is done. In the simulation, plain images are encrypted by the 
slightly altered keys and decrypted by the correct keys. The decrypted images are shown in Fig. 11. Because of 
the difference in parameter values, sensitivity scales are also different. Via testing one by one, the sensitivity of 
every parameter can be obtained. From Fig. 11 and the sensitivity of every parameter, the proposed algorithm 
has highly key sensitivity.

Histogram.  Histogram is a statistic of gray level distribution in gray image. This index can reflect the rela-
tionship between the gray level and the frequency. Before encryption, the histogram of the original image is 

(32)

{

D1(1, 1) = C1(1, 1)⊕ X(1, 1)⊕ U(1, 1)

D2(1, 1) = C2(1, 1)⊕ X(1, 1)⊕ U(1, 1)

D3(1, 1) = C3(1, 1)⊕ X(1, 1)⊕ U(1, 1)

(33)

{

D1(1, j) = C1(1, j)⊕ X(1, j)⊕ C1(1, j − 1)

D2(1, j) = C2(1, j)⊕ X(1, j)⊕ C2(1, j − 1)

D3(1, j) = C3(1, j)⊕ X(1, j)⊕ C3(1, j − 1)

(34)

{

D1(i, 1) = C1(i, 1)⊕ X(i, 1)⊕ C1(i − 1, 1)

D2(i, 1) = C2(i, 1)⊕ X(i, 1)⊕ C2(i − 1, 1)

D2(i, 1) = C2(i, 1)⊕ X(i, 1)⊕ C3(i − 1, 1)

(35)

{

D1(i, j) = C1(i, j)⊕ X(i, j)⊕ C1(i − 1, j)⊕ C1(i, j − 1)

D2(i, j) = C2(i, j)⊕ X(i, j)⊕ C2(i − 1, j)⊕ C2(i, j − 1)

D2(i, j) = C3(i, j)⊕ X(i, j)⊕ C3(i − 1, j)⊕ C3(i, j − 1)

(36)

{

t1 = Q1(i);Q1(i) = Q1(q(i));Q1(q(i)) = t1
t2 = Q2(i);Q2(i) = Q2(q(i));Q2(q(i)) = t2
t3 = Q3(i);Q3(i) = Q3(q(i));Q3(q(i)) = t3

(37)

{

Q3 = Q3⊕ Z
Q2 = Q2⊕ Q3⊕ Y
Q1 = Q1⊕ Q2⊕ X
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variational. In contrast, the histogram of cipher image is uniform distribution. From Fig. 12, the difference of 
histogram between original images and cipher images is obvious. The cardinality test can be used to quantita-
tively analyze the ability of the encryption scheme to resist statistical attacks, and for the cardinality test results 
are shown in Table 3. The proposed encryption algorithms pass the cardinality test when the significance levels 
are 0.01, 0.05, and 0.1, respectively. This also shows that the cipher image obtained by the encryption scheme are 
approximately uniformly distributed44,58.

Correlation of adjacent pixels.  Usually, plain images have a strong correlation between adjacent pixels. 
A good encryption algorithm should generate cipher images with low correlation. In this way, the encryption 
scheme can hide the original image information. The correlation of adjacent pixels is defined by:

(38)rx,y =
E((x − E(x))(y − E(y)))

√

D(x)D(y)

Figure 10.   Encrypted and decrypted results, (a) OI, Candy, (b) OI, House, (c) OI, Texture, (d) CI, (e) DI, 
Candy, (f) DI, House, (g) DI, Texture.

Table 2.   Key space of different algorithms.

Our algorithm Ref.53 Ref.54 Ref.55 Ref.56 Ref.57

2750 2213 2580 2497 2374 2399
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(39)E(x) =
1

N

N
∑

i=1

xi

(40)D(x) =
1

N

N
∑

i=1

(xi − E(x))2

Figure 11.   Decrypted results about key sensitivity test, (a) Candy, c = 20+1−14 , (b) House, c = 20+10−14 , (c) 
Texture, c = 20+10−14 , (d) Candy, g = 15+10−15 , (e)House, g = 15+10−15 , (f) Texture, g = 15+10−15 , (g) Candy, 
q = 0.97+10−16 , (h) House, q = 0.97+10−16 , (i) Texture, q = 0.97+10−16 , (j) Candy, m1 = 0.1+10−17 , (k) House, 
m1 = 0.1+10−17 , (l) Texture, m1 = 0.1+10−17.
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where E(x) and D(x) are the expectation and variance of the variable x, y, rx , y is the correlation coefficient 
between adjacent pixels x and y.

For testing the correlation of adjacent pixels, we select 1000 pairs adjacent pixels randomly from original 
images and their corresponding cipher images to analyze. The correlation and correlation coefficients calculated 
by using the Eq. (38) are shown in Figs. 13 and 14 and Table 4. Results from other literature are also listed in 
Table 459–61. From Figs. 13 and 14, the adjacent values of plain image pixels all lie near a straight line with slope 
1, there is a high correlation between two adjacent pixels. The pixel values of cipher images are carpeted with the 
whole region, that is to say a low correlation between adjacent pixels. The results in Table 4 also indicate that the 
correlation coefficients between the adjacent pixels of the original images in horizontal, vertical and diagonal 
(H, V and D) directions are large. The correlation coefficients of the encrypted image in corresponding orienta-
tions are decreased significantly. The encryption algorithm proposed can effectively against statistical attacks.

 Information entropy.  Information entropy can be used to describe the uncertainty of picture information 
and to measure its randomness. For an image, the more homogeneous the gray values distribute, the bigger the 
information entropy is. The picture information has a strong randomness when the information entropy is close 
to 8. Information entropy is computed by:

where P(x i  ) is the probability of gray value x i .
Information entropies of original images and cipher images are listed in Table 5. The information entropies 

of cipher images are more than 7.997 and close to 8. From Table 5, the information entropy of our scheme and 

(41)H(m) = −

255
∑

i=1

P(xi)log2P(xi)

Figure 12.   Histogram test, (a) OI, Candy, (b) OI, House, (c) OI, Texture, (d) CI, Candy, (e) CI, House, (f) CI, 
Texture.

Table 3.   The table of χ2-value for different objects.

The model name χ
2-value (plaintext) χ

2-value (Cipher)

Critical value

χ
2

0.1
 (255) χ

2

0.05
 (255) χ

2

0.01
 (255)

Candy (256 × 256) 49346.0625 243.5469 Pass Pass Pass

House (256 × 256) 72970.4609 228.0781 Pass Pass Pass

Texture (256 × 256) 83678.7734 249.1224 Pass Pass Pass
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others in Refs.33,41,60,62 are given, a conclusion that the proposed algorithm can generate cipher images with strong 
randomness can be drawn.

Differential attack.  The performance of anti-differential attack depends on the sensitivity to plaintext and 
is usually measured by the number of pixels change rate (NPCR) and the unified average changing intensity 
(UACI). NPCR and UACI are calculated by:

where P1 on behalf of cipher image and P2 is the cipher image which plain image pixel value has changed.
Due to the arbitrariness of position, the theoretical values of NPCR and UACI are 99.6094% and 33.4635% 

respectively. The NPCR and UACI values in the simulation test should be close to expectation. Via simulation 
test, the results of the proposed algorithm are presented as Table 6. From the Table 6, the results are closed to 
theoretical expectations and it will get an almost completely different image if the gray value of the image is 
changed slightly. Moreover, we list the average values of NPCR and UACI in other literature which is shown in 
Table 710,17,27,63. Results indicate that our algorithm can resist differential attack effectively.

Robustness.  When transmitted over a channel, the cipher image will be influenced by a variety of interfer-
ence and attacks. A good encryption algorithm should make images have robustness for external interference. 
Noise attack and cropping attack testing experiments were carried out to test the robustness of the encryption 
algorithm.

Noise attack.  In the process of data transmission, cipher image will be contaminated by noise. For testing the 
resistance performance of encryption algorithm to noise, Salt and Pepper noise (SPN), Gaussian noise (GN) 
are added to the cipher image and the decrypted results are shown in Fig. 15. It is observed that the decrypted 
images still have noise, but the main information can be recovered. So, a certain level of noise attack can be toler-
ated by the encryption algorithm.

Cropping attack.  Cipher image may be destroyed while it is in the process of transmission and results in data 
loss. The cropping attack test is carried out to illustrate the performance of the proposed encryption algorithm 

(42)NPCR(P1, P2) =
1

MN

M
∑

i=1

N
∑

j=1

| Sign(P1(i, j)− P2(i, j)) | ×100%

(43)UACI(P1, P2) =
1

MN

M
∑

i=1

N
∑

j=1

| P1(i, j)− P2(i, j) |

255− 0
× 100%

Figure 13.   Correlation of adjacent pixels, (a–c) OI, Candy, (d–f) OI, House.
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to resist cropping attack. The simulation results are shown in Fig. 16, while encrypted image lose 6.25% data, 
decrypted images which include Candy, House and Texture are Figure 16a. While encrypted image 12.5% data 
are cropped, decrypted images are shown in Fig. 16b. While encrypted image 25% data are removed, the results 
of decryption are shown in Fig. 16c. We can see that though the encrypted image loses 6.25%, 12.5% or 25% 
data, the main information in the decrypted images can still be identified. Simulation results demonstrate that 
the proposed algorithm has a certain ability to resist cropping attack.

Time analysis.  Time complexity is an important aspect to measure the efficiency of the encryption 
algorithm,for three images ‘Candy’, ‘House’ and ‘Texture’, the running time for encryption and decryption is 
shown in Table 8 and compared with other encryption schemes as shown in Table 9. From the Table 9, it can be 
seen that the encryption scheme has a better performance in terms of running rate47,64–67.

Figure 14.   Correlation of adjacent pixels, (a–c) OI, Texture, (d–f) CI, Candy, (g–i) CI, House, (j–l) CI, Texture.
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Table 4.   Correlation coefficient pixels.

Encryption algorithm Image Direction Plain image Cipher image

Our scheme

Candy

H 0.9718 0.0005

V 0.9743 0.0009

D 0.9506 0.0018

House

H 0.9254 0.0009

V 0.9083 0.0036

D 0.9314 0.0042

Texture

H 0.9706 0.0045

V 0.9503 0.0028

D 0.9465 0.0010

Ref.60 Image

H 0.9724 0.0118

V 0.9455 −0.0173

D 0.9214 0.0080

Ref.59 Image

H 0.9724 −0.0048

V 0.9455 −0.0112

D 0.9214 −0.0125

Ref.61 Image

H 0.9724 0.0070

V 0.9455 −0.0102

D 0.9214 0.0030

Table 5.   Information entropy of original images and cipher images.

Encryption algorithm Image Image size Original image Cipher image

Our scheme

Candy 256256 7.3456 7.9973

House 256256 7.1235 7.9975

Texture 256256 7.0384 7.9976

Ref.60 Airplane 256256 – 7.9971

Ref.62 Baboon 256256 7.1273 7.9974

Ref.62 Average 256256 7.4127 7.9973

Ref.33 Average 256256 7.3446 7.9970

Ref.41 Average 256256 7.6560 7.9969

Table 6.   The results of differential attack test.

Image Candy House Texture Average

NPCR (%) 99.5986 99.6232 99.5853 99.6024

UACI (%) 33.5052 33.4633 33.5240 33.4975

Table 7.   NPCR and UACI values of different algorithms.

Our algorithm Ref.10 Ref.17 Ref.63 Ref.27

NPCR (%) (average) 99.6024 99.610 99.6117 99.6082 99.5582

UACI (%) (average) 33.4975 33.462 33.6694 33.3391 33.3844
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Conclusion
In this paper, a multiple image encryption scheme based on fractional-order hyperchaotic system is presented. 
The phase diagram, bifurcation diagram, Lyapunov exponent spectrum and equilibrium point are analyzed in 
detail. The analysis results show that the fractional-order hyperchaotic system has complex dynamical character-
istics and it is suitable for image security encryption. The fractional-order hyperchaotic system is implemented 
on the DSP platform and the results are the same as simulation results. It provides the possibility of realizing 
secure communication with fractional-order hyperchaotic systems. By using the proposed algorithm, multiple 
images are encrypted twice, it not only improves the encryption efficiency, but also improves the security of 
image transmission. The key space, key sensitivity, histogram, correlation, information entropy and robustness 
are analyzed, the results indicate that it can withstand brute attack, statistical attack, a certain degree of noise 
pollution and cropping attack effectively. It shows that the encryption algorithm has a great encryption effect. 
Hence, the proposed image encryption scheme has research significance and application value.

Figure 15.   Decrypted images with various noise, (a) SPN, 0.05, (b) SPN, 0.07, (c) GN, 0.0001.
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Data availability
The test images used in this paper are from the SIPI image database and are used for scientific research only, not 
for other purposes, and without copyright disputes.
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