

OPEN

Publisher Correction: Multistability in a star network of Kuramoto-type oscillators with synaptic plasticity

Irmantas Ratas, Kestutis Pyragas & Peter A. Tass

Correction to: *Scientific Reports* <https://doi.org/10.1038/s41598-021-89198-0>, published online 10 May 2021

The original version of this Article contained errors.

In Figure 7, the x-axis labels, “configuration number, n” did not display correctly and was incorrectly given as “configuration num er, n”.

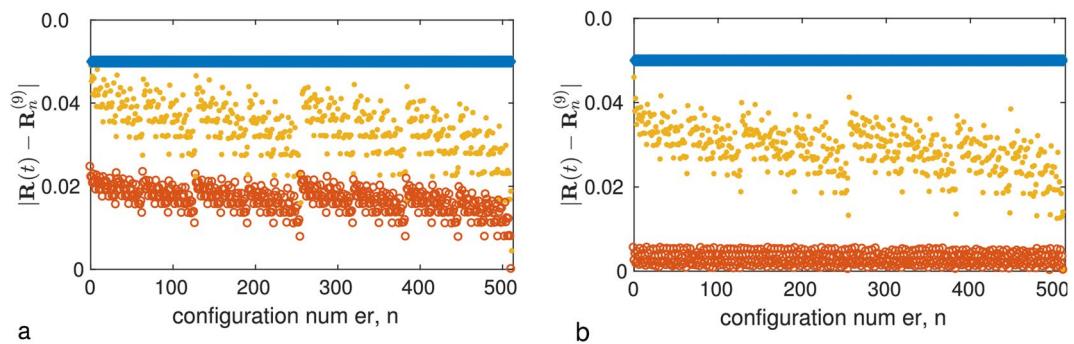
The original Figure 7 and accompanying legend appear below.

Additionally, there were errors in the Reference list.

Reference 42 was incorrectly given as:

42. Khaledi Nasab, A., Kromer, J. & Tass, P. Long-lasting desynchronization of plastic neural networks by random reset stimulation. *Front. Physiol.* (in press) (2020).

Reference 49 was incorrectly given as:


49. Pfeifer, K. J. *et al.* Coordinated reset vibrotactile stimulation induces sustained cumulative benefits in Parkinson’s disease. *Front. Physiol.* (Under review) (2021).

The correct References are listed below:

42. Khaledi Nasab, A., Kromer, J. & Tass, P. Long-lasting desynchronization of plastic neural networks by random reset stimulation. *Front. Physiol.* 11, 622620. <https://doi.org/10.3389/fphys.2020.622620> (2021).

49. Pfeifer, K. J. *et al.* Coordinated reset vibrotactile stimulation induces sustained cumulative benefits in Parkinson’s disease. *Front. Physiol.* 12, 624317. <https://doi.org/10.3389/fphys.2021.624317> (2021).

The original Article has been corrected.

Figure 7. Numerical simulation of Eqs. (3) and (6) for a nine-leaf star network with 512 different initial conditions $\mathbf{R}(0)$, each of which is close to the state $\mathbf{R}_n^{(9)}$ of a particular predicted asymptotic configuration with number $n = 0, \dots, 511$. Panels (a) and (b) correspond to the sigmoid boundary function with $\mu = 0.01$ and the Heaviside step boundary function, respectively. The frequencies $(\omega_1, \dots, \omega_8, \omega_0, \omega_9)$, written in ascending order, are equidistantly distributed in the interval $[0.6, 1]$. The states $\mathbf{R}(0)$ are chosen so that the initial distances $|\mathbf{R}(0) - \mathbf{R}_n^{(9)}|$ shown in blue squares are the same for all configurations. The yellow dots show the values of the corresponding distances $|\mathbf{R}(t) - \mathbf{R}_n^{(9)}|$ at time $t = 300$, and the red circles at time $t = 76,000$. Parameter values: $\varepsilon = 0.001$, $\tau_+ = 0.15$, $\tau_- = 0.3$, and $\alpha = 1$.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

© The Author(s) 2021