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A wave finite element approach 
for modelling wave transmission 
through laminated plate junctions
Nurkanat Aimakov1*, Gregor Tanner1 & Dimitrios Chronopoulos2

We present a numerical method for computing reflection and transmission coefficients at joints 
connecting composite laminated plates. The method is based on modelling joints with finite elements 
with boundary conditions given by the solutions of the wave finite element method for the plates 
in the infinite half-spaces connected to the joint. There are no restrictions on the number of plates, 
inter-plate angles, and material parameters of individual layers forming the composite. An L-shaped 
laminated plate junction is discussed in more detail. Comparisons of numerically predicted scattering 
coefficients with semi-analytical solutions for the selected structures are presented. The results 
obtained are essential for statistical energy analysis and dynamical energy analysis based calculations 
of the wave energy distribution in full built-up structure.

Composites are widely used within the transport sector, in particular in the aerospace, automotive and naval 
manufacturing industries1,2. In comparison to isotropic materials such as aluminium and stainless steel, com-
posites provide similar stiffness and strength characteristics whilst being significantly lighter3. Furthermore, 
the mechanical properties of fibre-reinforced composites can be tailored to suit particular needs1,4. Over the 
past decades, these advantages of composites have led to a growing number of use-cases for composites in the 
construction of primary structural components in the aerospace and automotive industries.

However, despite their superior structural characteristics, composites exhibit reduced vibro-acoustic per-
formance levels due to the large variety of propagating wave modes. Thus, modelling noise and vibration in 
composite structures plays an important role both at the design phase of a vehicle and at the post-built stage, 
when non-destructive testing techniques help monitor the structure’s performance. Therefore, there is a need for 
numerical methods to evaluate the vibrational response of composite structures fast and accurately.

Vibrations of a complex structure are in general modelled using deterministic schemes such as finite element 
(FE)5, finite difference (FD)6 or boundary element (BE) methods7. These methods are particularly useful in 
providing the full phase and amplitude information of the wave field in the low-frequency regime. However, at 
higher frequencies, these methods become inefficient and computationally expensive as the model-size increases 
drastically with the frequency. Moreover, mode shapes and eigenfrequencies which are essential in the modal 
approach become highly sensitive to geometrical and/or material uncertainties of meshes, thus producing inac-
curate results8–10.

At higher frequencies, numerical approaches such as SEA11,12, the radiative transfer method13–15 or DEA16–18 
are favoured. For all these methods, wave propagation characteristics such as dispersion relations and scattering 
coefficients at discontinuities in the structure are required and routinely used. For complex materials such as 
composites, the dispersion curves and associated mode types can be obtained numerically using the wave finite 
element (WFE) method. Reflection and transmission behaviour at joints can be solved using FE tools as has been 
done for isotropic materials, see next paragraphs, and will be presented for composites in “Wave finite element 
method for composite plates”. Alternatively, these scattering coefficients can be estimated using semi-analytical 
methods based on force-balance equations at the interface, see19 for isotropic materials and20 for composite plates.

The WFE method is a technique to study wave motion in homogeneous or periodic structures. The vibro-
acoustic behaviour of the whole structure can then be described through the analysis of a single FE-cell or using 
one periodic segment of the structure, respectively21. Since only one period of the structure is used, the size of 
the WFE model does not depend on the dimensions of the waveguide, and the computational cost of the method 
is low. In addition, conventional FE matrices are used to discretise the periodic cell; thus, the full potential of 
existing conventional FE tools can be exploited. The WFE method was originally proposed by Mead22 describing 
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the harmonic wave propagation in one-dimensional periodic systems. An important contribution to the analysis 
of wave propagation in various periodic structures using FE models has been made by Abdel-Rahman23. The 
free wave propagation in one-dimensional isotropic and anisotropic (composite) waveguides was analysed by 
Mace et al.24 and Duhamel et al.25. Dispersion relations of waves were computed using the one-dimensional 
WFE method for structures such as stiffened cylinders26, car tyres27, thin-walled structures28, inhomogene-
ous cylindrical29 and fluid-filled pipes30, sandwich beams and panels31,32 and laminated cylinders33. A detailed 
analysis of the numerical implementation and numerous applications of the one-dimensional WFE method can 
be found in the work by Waki34,35. It is worth mentioning the work of Mencik and Ichchou36 suggesting a special 
substructuring technique to address numerical issues in the case of multi-layered structures.

The basics of the WFE method for two-dimensional periodic systems were presented in the work by Mead22. 
Later, Mead and Parthan37 showed how the problem of defining the dispersion relations in the general direction 
over the plate’s plane dimensions could be reduced to an array of one-dimensional WFE problems with varying 
lengths of the periodic segments. A rigorous mathematical framework for the WFE method for two-dimensional 
periodic isotropic and composite systems has been developed by Manconi and Mace38,39. Several representations 
of the eigenvalue problem leading to the computation of dispersion relations were postulated. Alimonti et al.40 
extended this work by presenting a contour integral method to compute the non-linear eigenvalue problem 
arising from the governing equations of motion upon fixing the frequency and the direction of propagation. 
Dispersion relations were computed for two-dimensional arbitrarily thick layered panels in41,42 and periodic 
textile composites in43.

Mencik and Ichchou introduced the hybrid FE/WFE method for calculating reflection and transmission coef-
ficients for one-dimensional waveguides coupled longitudinally44. In recent years, this method has been extended 
to other types of junctions45–47 and to two-dimensional waveguides48,49. However, the structures considered in 
the references listed above were all isotropic.

Beyond the case of wave propagation in isotropic materials, Chronopoulos50 computed scattering coefficients 
at a junction representing damage between two composite beams. Later, Apolowo and Chronopoulos51 computed 
the scattering coefficients of two multi-layer composite plates coupled longitudinally to localise the structural 
damage in the context of structural health monitoring. An attempt to extend the work of Renno et al.45 to com-
posite plates has been made by Mitrou and Renno in52. The results were not reliable, however, as the energy 
scattering coefficients did not sum to unity as expected in lossless systems45,49.

Beyond the WFE method, Karunasena and Shah53 studied reflection of guided waves in the region of a bond-
ing material connecting two composite plates using the hybrid FE and semi-analytical FE method. Bosmans 
et al.54 studied the scattering properties of orthotropic plate junctions with principal material axes aligned with 
the plate coordinates, that is, so-called specially orthotropic plates. Results were presented only for the particular 
case of bending wave transmission loss in right-angled plates, so-called L-junctions. Aimakov et al.20 developed a 
semi-analytical approach for calculating scattering matrices of junctions of orthotropic plates with no restrictions 
on the angles of orientation and of the principal material axes. Lee et al.55 presented the scattering coefficients 
of coupled composite plates with joint compliance and damping using the First-Order laminated plate theory56. 
However, as in the work of Bosmans et al., the principal material axes of laminates considered in this work are 
aligned with the plate coordinates, effectively reducing the complexity of the underlying governing equations. 
Furthermore, in55, a shear correction factor is introduced to correct transverse shear stiffness in the laminate, 
which must be defined for each laminate separately.

In this paper, we extend the hybrid FE/WFE method to composite laminated plates. The principal novelty of 
this work is a detailed derivation of reflection and transmission matrices for waves travelling in the structural 
junctions connecting composite laminated plates at arbitrary angles and with an arbitrary material orientation 
of the principal axis of the laminae. We give, in particular, the scattering coefficients containing the full angle-
of-incidence and frequency dependence. For ray-based methods such as the radiative transfer method and DEA, 
detailed information on the reflection/transmission behaviour of all propagating modes at complex junctions 
is needed. This includes information about the angle-of-incidence dependence of scattering and mode conver-
sion coefficients.

The manuscript is organised as follows: in “Wave finite element method for composite plates”, the WFE 
method for modelling composite plates is reviewed. An eigenvalue problem whose solutions yield wave numbers 
and mode shapes is set up. The classification of the wave numbers and the wave basis setting are described. Having 
established a wave basis representation of displacement and force vectors in individual plates, we combine these 
solutions with the equations of motion of the joint fulfilling continuity of displacements and force equilibrium at 
the joint boundaries. This then yields the desired scattering coefficients as described in “Hybrid FE/WFE method 
and scattering coefficients”. In “Numerical case examples”, we present numerical case studies for two coupled 
composite plates. In particular, the energy scattering coefficients for L-type junctions of regular cross-ply and 
angle-ply composite plates are computed. These results are compared with semi-analytical estimates of energy 
scattering coefficients based on the work of Aimakov et al.20. Finally, concluding remarks are put in “Conclusion”.

Wave finite element method for composite plates
Governing equations of motion.  Consider a unit cell of a periodic or homogeneous composite plate with 
arbitrary lay-up through the thickness direction and plane dimensions dx and dy . (Note that for a homogeneous 
structure, the length scales of the unit cell are somewhat arbitrary and typically represented by a single finite ele-
ment in the plate directions.) It can be modelled using three-dimensional solid elements (such as SOLID185 in 
the FE software ANSYS) stacked up one on top of the other, representing different composite layers. Figure 1 rep-
resents a unit cell of a five-layer plate meshed with SOLID185 elements and a nodal displacements vector label-
ling convention. The nodal displacements vector q is organised as q =

{

qLB qRB qB qL qR qI qLT qRT qT
}T . 
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The nodal forces vector f  is arranged in the same manner. The number of degrees of freedom must be the same 
for each pair of edges on opposite faces. The number of mesh cells in the x, y and z direction are labelled by nx
, ny and nz . The number of degrees of freedom per edge is labelled as m; for plates modelled with SOLID185 ele-
ments m = 3(nz + 1) . Consequently, the sizes of nodal displacement sub-vectors can be represented as

Assuming that the structure undergoes harmonic vibration with angular frequency ω and no external forces are 
applied, we can write the governing equation of motion of the unit cell as

where M and K are the mass and stiffness matrices, respectively. The parameter η denotes a uniform structural 
damping coefficient. The dimension of Eq. (2) is m(nx + 1)(ny + 1).

We consider a plane wave travelling across the plate to be of the form exp(−ikxx − ikyy + iωt) , where 
kx and ky are the x and y components of the wave vector k . Periodic structure theory57,58 requires that

where �x = e−ikxdx is the propagation factor in the x direction. Now, we denote as qjX, X = L,R, I displacement 
sub-vectors of nodes placed at xj = dxj/nx , j = 1, 2, . . . , nx − 1 . Consequently, as in Eq. (3), one can relate 
internal and edge degrees of freedom to bottom ones as

Following Eqs. (3) and (4), we can express the nodal displacements vector q in terms of displacement sub-vectors 
of nodes qred =

{

qLB qRB qB
}T

≡
{

q̃L q̃R q̃O
}T as

(1)
|qL(R)B(T)| = m, |qL(R)| = m(nx − 1),

|qB(T)| = m(ny − 1), |qI | = m(nx − 1)(ny − 1).

(2)
[

K(1+ iη)− ω2M
]

q = f ,

(3)
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Figure 1.   The set up of N plates joined together and a periodic segment of a plate with two different alternating 
plies modelled with three-dimensional finite elements. A±

1,N are the amplitudes of incoming and outgoing waves 
travelling from infinity towards the junction and from the junction to infinity, respectively. The degrees of 
freedom are grouped into internal qI , edge qL, qR, qB, qT and corner qLB, qRB, qLT, qRT degrees of freedom.
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where I1 and I2 are identity matrices with dimensions m and m(ny − 1) . The dimension of the matrix T is 
(

m(nx + 1)(ny + 1), m(ny + 1)
)

 , and hence, Eq. (5) can be used to reduce the dimension of Eq. (2) as follows

and

where f jX, X = L,R, I denote force sub-vectors of nodes placed at xj = dxj/nx , j = 1, 2, . . . , nx − 1 . D is the 
reduced dynamic stiffness matrix with dimensions 

(

m(ny + 1),m(ny + 1)
)

 . Internal nodal forces f jI = 0 in the 
absence of external forces, and force equilibrium between opposite sides yields �xfB + fT = 0 . Therefore, the 
reduced nodal forces vector f̃O = 0 , thus allowing to reduce further the dimension of Eq. (6) via dynamic con-
densation of internal degrees of freedom q̃O35:

where

Finally, by applying the periodic structure theory and force equilibrium in the y direction, which can be written as

one can get from Eq. (8) the following eigenvalue problem for the propagation factor �y

The dimension of the matrices D̃ and Z is 2m. Therefore, the solution of the eigenvalue problem (11) consists of 
2m propagation factors �y,i and the correspondent eigenvectors 

{

φq,i φf ,i
}T provided that the circular frequency 

ω and the wave number component kx are fixed. The wave number components ky,i can be computed as

Consequently, by varying the wave number component kx , one can extract wave vector curves (kx , ky) for a 
fixed value of ω . It is worth noting that the so obtained wave number components ky,i can be real, imaginary or 
complex, making the correspondent plane waves propagating, evanescent or attenuating.
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Computation of wave numbers and eigenvectors.  As mentioned in35, the solution of the eigenvalue 
problem (11) might be prone to ill-conditioning of the eigenvalue matrix Z and eigenvectors [q̃jL, f̃

j
L]

T . An equiv-
alent form of the eigenvalue problem can be formulated by eliminating f̃L and f̃R in Eq. (8) as suggested in59:

with I being the m-by-m identity matrix. The matrices N and L consist of block parts of the reduced dynamic 
stiffness matrix D̃ with no matrix inversion as in Eq. (11), thus reducing numerical ill-conditioning of the 
method to some extent. However, there might be a difference of several orders of magnitude between I and 
−D̃RL(RR) and D̃LL(LR) ; therefore, the condition numbers of the matrices N and L can still be large, causing 
numerical errors in the evaluation of eigenvalues and eigenvectors.

We use the following form of the eigenvalue problem (13), proposed by Fan et al.47,60

where σ =
�D̃RR�2

m2
 , ‖‖2 representing the largest singular value of a matrix. This formulation is an improved 

version of the eigenvalue problem (13), and the factor σ is introduced here to reduce the condition number of 
the matrices N and L . All the formulations presented are equivalent, and the eigenvalue solutions are the same. 
In fact, writing the characteristic equation of the eigenvalue problem (14) yields

Note that eigenvectors in Eq. (14) consist of left and right nodal displacements sub-vectors therefore to get an 
eigenvector in the form as in Eq. (11) one can apply the following transformation

Incoming and outgoing waves and the wave basis.  The eigensolutions of Eq. (14) can be separated 
into m pairs of roots, �±y,i ; these correspond to negative waves (with superscripts “−”) and positive waves (with 
superscripts “ +”). In the context of scattering properties at junctions, the negative and positive waves will also 
refer to incoming and outgoing waves moving towards or away from the junction, respectively, see the left-hand-
side of Fig. 1. Furthermore, the waves can be categorised as propagating, evanescent or attenuating.

In the absence of damping, the standard wave classification24,49,61 consists of checking whether |�y,i| = 1 or 
not to identify propagating or evanescent waves, respectively. If the damping parameter is not zero, we establish 
an algorithm for the ith wave as shown in Table 2, where Re(iωφ∗

q,i φf ,i) is the energy flux of the ith wave in the 
positive y direction. The real parameter c in Table 2 is chosen empirically to separate the least attenuating waves 
from evanescent or strongly attenuating waves.

In the case of isotropic materials and some special types of composite plates, e.g. cross-ply laminates, which 
consist of layers with ply direction angles 0◦ or 90◦ , the transfer matrix Z in Eq. (11) is symplectic. That means 
that the eigenvalues of Eqs. (11) and (14) appear in pairs (�y,i , 1/�y,i) , and k+y,i = −k−y,i . However, for general 
composites, the transfer matrix Z is not symplectic, and k+y,i �= −k−y,i . Figure 2 shows an example of a bending 
wave vector curve, where one can see the inequality between incoming and outgoing wave number components 
ky represented by red squares and blue dots, respectively. Furthermore, we note the difference between phase 
and group angles in composite plates shown with θ±1,2 and α±

1,2 , respectively. These features were discussed for a 
similar wave vector curve in20,62.

Recall that in the absence of damping, we expect that waves are either propagating or evanescent. While the 
wave number components k±y,i for propagating waves are indeed purely real, those of non-propagating waves 
can still have both a real and imaginary part for composites, thus seemingly producing an energy flux in the y 
direction20. However, it turns out that these waves are actually purely evanescent and decay or increase exponen-
tially towards the line y = 0 , say, however, with the decaying/increasing direction axis not necessarily aligned 
with the y axis, see63,64.

Figure 3 presents the contour plot of the real part of the out-of-plane displacement field created by the outgo-
ing bending propagating (a) and evanescent (b) waves in a 45◦/− 45◦/45◦/− 45◦/45◦ composite plate. In the 
case of the evanescent wave, the displacement at y = 0 along the x axis is oscillating, as expected. In contrast, at 
y > 0 , it decays away along the inclined null-lines, i.e., lines at which displacement is zero (black straight lines 
in Fig. 3b). This leads to the oscillating displacement shape projection along the y axis, which is why the energy 
flux along the y axis appears to be non-zero.

The angle of decay/increase of the evanescent waves depends on the angle of orientation of the principal mate-
rial axes of plies of the plate, i.e. on the ply direction angle. It can be computed as arctan(Re(k±y,i)/kx) . Figure 4 
presents the decay direction angles of longitudinal, shear and bending evanescent waves with respect to the y 
axis as a function of the ply direction angle of an orthotropic plate with material parameters from Table 1. It can 
be noted that the decay of evanescent waves can be inclined with respect to the y axis with angles up to 60◦ ; for 
example, the line corresponding to the evanescent shear wave in Fig. 4. We can see that the decay angles are zero 
for ply direction of angles 0◦ and ±90◦ , that is, the evanescent waves decay/increase along the y axis. In such cases, 
the plate is specially orthotropic if it consists of only one layer20 or balanced if it consists of multiple layers1,56.
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Identifying correctly whether a wave is incoming/outgoing and propagating/attenuating is not enough to 
further proceed with calculating scattering coefficients. In fact, for a range of frequencies and wave number 
components kx , we obtain a set of unclassified branches of propagating, evanescent and attenuating waves. To 
identify the eigensolutions of Eq. (14) corresponding to the same wave type, we apply the so-called MAC 
criterion65. For an eigenvector solution �i =

{

φ±
q,i φ

±
f ,i

}T
 defined at frequency ω for a fixed wave number com-

ponent kx , we find an eigenvector solution �j =
{

φ±
q,j φ

±
f ,j

}T
 at the frequency ω + dω with sufficiently small d ω 

such that

is maximised. The same criterion can be utilised to classify wave types for a range of wave number components 
kx and a fixed frequency with corresponding step size d kx being sufficiently small.

(17)M±(ω) =
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Table 1.   Engineering constants of Epoxy Carbon UD (230 GPa) material used for individual laminas of a 
composite plate.

E1 (N/m
2) E2 (N/m

2) E3 (N/m
2) G12 (N/m

2) G23 (N/m
2) G13 (N/m

2)

121× 109 8.6× 109 8.6× 109 4.7× 109 3.1× 109 4.7× 109

ν12 ν23 ν13 ρ (kg/m3)

0.27 0.4 0.27 1490
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Figure 2.   Bending wave vector curve in a 45◦/− 45◦/45◦/− 45◦/45◦ composite plate at a frequency 3000 Hz. 
Blue dots represent wave numbers related to outgoing waves while red squares correspond to incoming 
waves. Angles α1(2) and θ1(2) represent group and wave vector or phase angles, respectively. The wave number 
component kmax

x  is equal to 53m−1 . Material parameters of orthotropic layers are from Table 1.

Table 2.   Properties of eigenvalues and associated waves. The expression Re(iωφ∗
q,i φf ,i) denotes the power flow 

of the ith wave.

Incoming Outgoing

Propagating ⇔ Re(ky,i) > c Im(ky,i) Re(iωφ∗
q,i φf ,i) < 0 Re(iωφ∗

q,i φf ,i) > 0

Attenuating ⇔ Re(ky,i) ≤ c Im(ky,i) Im(ky,i) > 0 Im(ky,i) < 0
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Once the appropriate pairs of wave number components k±y,i and wave mode shapes 
{

φ±
q,i φ

±
f ,i

}T
 are deter-

mined, we can express nodal displacements and forces in the basis of wave mode shapes as follows

where a+i  and a−i  are the amplitudes of the ith outgoing and incoming waves.

Hybrid FE/WFE method and scattering coefficients
In this section, we derive the energy scattering coefficients using continuity and equilibrium conditions at the 
boundaries of the joint.

Governing equations of the joint.  We consider N composite plates that are connected together via a 
joint element, see Fig. 5a. The local y axes of all plates are directed away from the joint, whereas the x axes are 
aligned with the xJ axis of the joint. The joint is assumed to be periodic in the xJ axis, and the width of the peri-
odic segment is assumed to be equal to dy . According to Fig. 5b, the nodal displacements vector of the joint is 
organised in the following way

The nodal displacement vector qO consists of degrees of freedom of the internal nodes. It is required that the 
node arrangement on the face containing qLB,k , qL,k and qLT ,k , k = 1, . . . ,N is coherent with one on the left face 
of the kth plate. Therefore, we enforce that |qLB,k| = |qL,k| = |qLT ,k| = |q̃L,k| = mk and nJ ,k = nx,k , where nJ ,k is 
the number of mesh cells in the joint element along the x direction of the face containing qLB,k , qL,k and qLT ,k . 
The nodal forces vector fJ is arranged in the same way.

(18)
{

q̃L
f̃L

}

=

m
∑

i=1

(

a+i

{

φ+
q,i

φ+
f ,i

}

+ a−i

{

φ−
q,i

φ−
f ,i

})

=

{

�+
q a

+ +�−
q a

−

�+
f a

+ +�−
f a

−

}

,

(19)qJ =
{

qE qO
}T

,
qE =

{

qLB,1 qL,1 qLT ,1 . . . qLB,N qL,N qLT ,N
}

qO =
{

qB qI qT
} .

(a) Propagating wave
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Figure 3.   Contour plot of the real part of the out-of-plane displacement produced by the outgoing propagating 
(a) and evanescent (b) bending waves in a 45◦/− 45◦/45◦/− 45◦/45◦ composite plate plotted in the (x, y) 
plane. Brighter colours represent positive z values, whilst darker ones denote negative z values.
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Figure 4.   Decay direction angles of various evanescent waves as a function of a ply direction angle in an 
orthotropic plate with material parameters from Table 1.
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The governing equations of motion of the joint are of the same form as in Eq. (2), that is,

where KJ and MJ are the stiffness and mass matrices of the joint. When no external forces are applied on the 
internal nodes of the joint, Eq. (20) can be written as

where fO = 0 . Consequently, one can remove internal degrees of freedom q̃I using the dynamic condensation as

Now, following a similar approach as in “Governing equations of motion”, we apply periodic structure theory on 
the nodal displacement sub-vectors along the xJ axis and obtain the following equation

with

and

(20)DJqJ = fJ , DJ = KJ (1+ iη)− ω2MJ ,

(21)
[

DEE DEI

DIE DII

] {

qE
qO

}

=

{

fE
0

}

,

(22)DJ ,cond qE = fE , DJ ,cond = DEE −DEID
−1
II DIE .

(23)D̃JqJ ,red = fJ ,red , D̃J = T∗
JDJ ,condTJ

(24)fJ ,red =











f̃LB,1
...

f̃LB,N


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
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
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
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Figure 5.   A schematic representation of the joint connecting N plates (a) and its finite element model (b). The 
x axis of all plates are aligned with the xJ axis of the joint. The degrees of freedom are grouped into internal qI , 
edge qB, qT , qL,1, . . . , qL,N and corner qLB,1, . . . , qLB,N , qLT ,1, . . . , qLT ,N degrees of freedom.
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where Ik is the mk-by-mk identity matrix and jk = 1, . . . , nJ ,k − 1, k = 1, . . . ,N.

Reflection and transmission at interfaces of the joint.  Equation (23) considers only interface nodes, 
that is, nodes shared between the plates and the joint. The force equilibrium and displacement continuity condi-
tions must be satisfied at these nodes. Specifically, qLB,k and f̃LB,k , k = 1, . . . ,N denote nodal displacements and 
forces at nodes shared between the kth plate and the joint. Therefore, one can represent qLB,k and f̃LB,k in the wave 
mode shapes basis of the kth plate using Eq. (18) as follows

where Rk is the matrix that transforms the local coordinate system of the kth plate to the global coordinate 
system. Since the local xk axis is aligned with the global xJ axis, the transformation matrix Rk can be written as

where ψk denotes the angle of rotation between yk and yJ . Now, we can concatenate individual expressions (26) 
for qLB,k and f̃LB,k to express qJ ,red and fJ ,red in Eq. (23) as

with

Inserting Eq. (28) in Eq. (23) yields

The expression for S defines a scattering matrix relating the amplitudes A− and A+ of incoming and outgoing 
waves, respectively. The dimension of the square matrix S is 

∑N
k=1 mk , and the scattering coefficients have the 

form snmij (ω, kx) , relating an incoming wave i in the plate n and a reflected or transmitted wave j in the plate m 
at angular frequency ω and wave number component kx . For the associated energy fluxes, we obtain the energy 
scattering coefficients as

where

(25)

qJ ,red = TJqE , qJ ,red =
�

qLB,1 · · · qLB,N
�T

TJ =




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,

(26)
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(

�+
q,ka

+
k +�−
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−
k

)
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(

�+
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D̃JR�
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F
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D̃JR�
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F
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.

(31)tnmij (ω, kx) =







J+j,m
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|snmij |2 if wave jis propagating.

0 otherwise.

,
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In the absence of damping, total energy must be conserved, hence the sum of the energy scattering coefficients 
over the outgoing modes equals one, that is,

Numerical case examples
In this section, we present two numerical case studies to show the applicability of the method discussed above. In 
the first example, we consider an L junction of composite symmetric cross-ply laminated plates, i.e. laminates that 
consist of an odd number of orthotropic layers with principal material directions alternating between 0◦ and 90◦ 
for cross-ply laminates. In the second example, an L-type junction of composite angle-ply laminated plates is 
considered. In this case, laminates consist of an odd number of orthotropic layers with principal material direc-
tions alternating between α◦ and −α◦, α ∈ (0◦, 90◦).

In all cases, we compute the energy scattering coefficients with respect to the wave number component kx for 
a fixed frequency f. The results for cross- and angle-ply laminated plates are compared with those obtained using 
the semi-analytical approach based on the solution of wave equations in the line-junction approximation20. We 
assume that the system is undamped; however, to facilitate the wave tracking process described in “Incoming 
and outgoing waves and the wave basis”, a small damping coefficient η = 0.00001 is applied.

Cross‑ply laminated plates.  A five-layer symmetric cross-ply laminated plate of the total thickness of 
h = 0.005 m is considered. The material characteristics of all layers are the same and given in Table 1. The lami-
nation scheme is 0◦/90◦/0◦/90◦/0◦.

A periodic cell of length dx = 0.001 m and width dy = 0.001 m is modelled in ANSYS with 3 SOLID185 ele-
ments per ply, i.e. 15 finite solid elements in total. The usage of only one element in the cross-section is justified 
since the laminates considered are homogeneous in their plane dimensions. However, there must be at least 6–10 
FE elements per wavelength to obtain accurate results. In other words, the wave numbers k ≤ 2π

10max(dx ,dy)
 can 

be computed accurately. One can use more elements in the cross-section to alleviate round-off errors due to 
truncation of inertia terms in the dynamic stiffness matrix if needed35.

As presented in “Computation of wave numbers and eigenvectors”, solving (11) or (13) can yield propagating 
wave vector pairs 

(

kx , ky
)

 for a fixed frequency ω0 or dispersion curves ky = ky(ω, k
0
x) for a fixed wave number 

component k0x . Figure 6 presents bending, shear and longitudinal wave vector curves for a fixed frequency 
f 0 = 3000 Hz on the left side and the correspondent dispersion curves for a fixed wave number component 
k0x = 5m−1 on the right side. These numerical dispersion relations can be used to calculate the group velocity 
angles and, therefore, propagation angles of transmitted waves via modified Snell’s law.

Next, we consider two identical cross-ply composite plates connected through an L-joint. The correspond-
ing FE model is similar to the model shown in Fig. 5, but now only connecting N = 2 plates. The FE model of 
the joint consists of 55 SOLID185 elements; thus, the dimensions of the joint stiffness and mass matrices are 
164-by-164.

(32)
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
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�

�Re
�
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Figure 6.   Wave vector (left) and dispersion (right) curves for a cross-ply composite plate. Longitudinal ( kL ), 
shear ( kS ) and bending ( kB ) curves are depicted in purple, black and red colour, respectively. Squares and circles 
denote wave numbers of incoming and outgoing waves, respectively. The wave vector curves are plotted for a 
fixed frequency f 0 = 3000 Hz, whereas the dispersion curves are plotted for a fixed wave number component 
k0x = 5m−1.
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Figure 7 presents a comparison of the energy scattering coefficients obtained from the current approach and 
the semi-analytical approach based on the work of Aimakov et al.20 for various incident modes as a function of 
wave number component kx at frequency f = 3000 Hz. We note that the semi-analytical approach is based on 
further approximations, such as treating the junction as a one-dimensional line and is considered here only as 
a reference. Deviations between the WFE approach and the semi-analytical approach are mainly due to inac-
curacies in the semi-analytical treatment. All solid and dashed lines represent numerical results, whereas circles 
and squares show semi-analytical results. Excellent agreement between numerical and semi-analytical energy 
scattering coefficients can be noted for incoming longitudinal and shear waves in Fig. 7b,c , respectively. Hence, 
modelling coupled thin composite plates using the semi-analytical method is sufficient for accurately estimating 
in-plane wave energy scattering coefficients.

For the case of an incoming bending wave, discrepancies between the WFE and the semi-analytical results 
appear. For instance, in Fig. 7a, it can be seen that semi-analytical results underestimate energy reflection and 
hence, overestimate energy transmission of an L-junction of plates. In fact, the maximum difference observed 
between bending using the WFE and semi-analytical results is ∼ 20 to 22%. This can be referred to the fact that 
the semi-analytical model results are based on the assumption that the joint can be represented as a shared one-
dimensional line between plates20. This assumption breaks down at higher frequencies since the influence of 
the internal joint geometry becomes significant. Notably, the shear strain becomes more critical in the dynamic 
response of the joint and this effect is not considered in the semi-analytical model49,66.
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(a) Incoming bending wave B
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(b) Incoming shear wave S
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(c) Incoming longitudinal wave L

Figure 7.   Energy scattering coefficients of an L-junction of two SOLID185-based cross-ply laminated plates for 
various incident waves plotted with respect to the wave number component kx at a frequency f = 3000 Hz. t̂nmij  
denote semi-analytical scattering coefficients obtained using the method presented in20.
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The energy scattering coefficients of coupled shear-bending waves are equal, that is, t11(12)SB = t
11(12)
BS  . The 

same applies for shear-longitudinal wave coupling, that is, t11(12)SL = t
11(12)
LS  . The summation to unity of the energy 

reflection and transmission coefficients validates the numerical results obtained.

Angle‑ply composite plates.  A five-layer angle-ply laminated plate of the total thickness of h = 0.005 m 
is considered. The material characteristics of the individual layers are the same as in the previous example. 
The lamination scheme is 45◦/− 45◦/45◦/− 45◦/45◦ . A periodic cell of length dx = 0.001  m and width 
dy = 0.001 m is again modelled in ANSYS with 15 SOLID185 elements.

Figure 8 presents bending, shear and longitudinal wave vector curves of an angle-ply laminated plate for a 
fixed frequency f = 3000 Hz on the left side and the correspondent dispersion curves for a fixed wave number 
component kx = 5m−1 on the right side. Note that there are two shear wave dispersion curves present on both 
sides of Fig. 8. The second shear wave (plotted in green) exhibit a negative group velocity phenomenon—they 
will be denoted as S2 from now on. Details about these features in an orthotropic plate are discussed in20.

A comparison of energy scattering coefficients obtained from the current approach and from the semi-
analytical method is given in Fig. 9 for various incident modes as a function of wave number component kx 
at frequency f = 3000 Hz. Again, numerical and semi-analytical energy scattering coefficients agree well for 
incoming longitudinal and shear modes, see Fig. 9b,c .

Deviations in the shape of energy reflection and transmission coefficients can be seen for an incoming bend-
ing wave in the case of SOLID185-based numerical results, see Fig. 9a. This phenomenon can be explained by 
the fact that the semi-analytical approach produces effective one-layer plates joined along the shared edge, thus 
losing the complexity of the connection between individual layers of plates at the junction.

As in the case of cross-ply laminated plates, curves describing the coupling between shear and bending 
waves are symmetric for a range of wave number components |kx| < 7.6m−1—the correspondent scattering 
coefficients obey t11(12)SB = t

11(12)
BS  . Similarly, the scattering coefficients of longitudinal and bending coupled waves 

t
11(12)
LB  and t11(12)BL  are equal for |kx| < 3.7m−1 . Furthermore, energy scattering coefficients of longitudinal and 

shear coupled waves are symmetric around kx = 0m−1 , that is, t11(12)SL (kx) = t
11(12)
LS (−kx).

Conclusion
A hybrid FE/WFE model has been developed predicting the scattering properties for different junctions of two-
dimensional anisotropic composite plates. The influence of the angle of incidence on the distribution of the power 
flow of incident bending, shear and longitudinal type waves has been investigated. Numerical results presented 
were compared with semi-analytical evaluations of scattering coefficients. The method gives for the first time a 
detailed recipe for computing scattering coefficients for the generic case of an arbitrary number of composite 
plates connected at a junction without restrictions on the angles at which the plate meet or the orientation of 
the principal axes of individual plates. The results of this paper can be used for the computation of wave energy 
distributions in SEA by providing coupling loss factors67 and for angle-of-incidence dependent scattering coef-
ficients entering the radiative transfer and DEA method.
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Figure 8.   Wave vector (left) and dispersion (right) curves for an angle-ply composite plate. Longitudinal ( kL ), 
shear ( kS ) and bending ( kB ) curves are depicted in purple, black and red colour, respectively. Squares and circles 
denote wave numbers of incoming and outgoing waves, respectively. Furthermore, green squares and circles 
represent parts of the shear wave vector and dispersion curves that exhibit negative group velocity behaviour. 
The wave vector curves are plotted for a fixed frequency f = 3000 Hz, whereas the dispersion curves are plotted 
for a fixed wave number component kx = 5m−1.
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Figure 9.   Energy scattering coefficients of an L-junction of two SOLID185-based angle-ply laminated plates for 
various incident waves plotted with respect to the wave number component ky at a frequency f = 3000 Hz. t̂nmij  
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