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A wave finite element approach
for modelling wave transmission
through laminated plate junctions

Nurkanat Aimakov!*, Gregor Tanner! & Dimitrios Chronopoulos?

We present a numerical method for computing reflection and transmission coefficients at joints
connecting composite laminated plates. The method is based on modelling joints with finite elements
with boundary conditions given by the solutions of the wave finite element method for the plates

in the infinite half-spaces connected to the joint. There are no restrictions on the number of plates,
inter-plate angles, and material parameters of individual layers forming the composite. An L-shaped
laminated plate junction is discussed in more detail. Comparisons of numerically predicted scattering
coefficients with semi-analytical solutions for the selected structures are presented. The results
obtained are essential for statistical energy analysis and dynamical energy analysis based calculations
of the wave energy distribution in full built-up structure.

Composites are widely used within the transport sector, in particular in the aerospace, automotive and naval
manufacturing industries"?. In comparison to isotropic materials such as aluminium and stainless steel, com-
posites provide similar stiffness and strength characteristics whilst being significantly lighter®. Furthermore,
the mechanical properties of fibre-reinforced composites can be tailored to suit particular needs™*. Over the
past decades, these advantages of composites have led to a growing number of use-cases for composites in the
construction of primary structural components in the aerospace and automotive industries.

However, despite their superior structural characteristics, composites exhibit reduced vibro-acoustic per-
formance levels due to the large variety of propagating wave modes. Thus, modelling noise and vibration in
composite structures plays an important role both at the design phase of a vehicle and at the post-built stage,
when non-destructive testing techniques help monitor the structure’s performance. Therefore, there is a need for
numerical methods to evaluate the vibrational response of composite structures fast and accurately.

Vibrations of a complex structure are in general modelled using deterministic schemes such as finite element
(FE)*, finite difference (FD)® or boundary element (BE) methods”. These methods are particularly useful in
providing the full phase and amplitude information of the wave field in the low-frequency regime. However, at
higher frequencies, these methods become ineflicient and computationally expensive as the model-size increases
drastically with the frequency. Moreover, mode shapes and eigenfrequencies which are essential in the modal
approach become highly sensitive to geometrical and/or material uncertainties of meshes, thus producing inac-
curate results®-°.

At higher frequencies, numerical approaches such as SEA'"'?, the radiative transfer method!*~*> or DEA'6-!8
are favoured. For all these methods, wave propagation characteristics such as dispersion relations and scattering
coefficients at discontinuities in the structure are required and routinely used. For complex materials such as
composites, the dispersion curves and associated mode types can be obtained numerically using the wave finite
element (WFE) method. Reflection and transmission behaviour at joints can be solved using FE tools as has been
done for isotropic materials, see next paragraphs, and will be presented for composites in “Wave finite element
method for composite plates”. Alternatively, these scattering coefficients can be estimated using semi-analytical
methods based on force-balance equations at the interface, see!® for isotropic materials and®® for composite plates.

The WFE method is a technique to study wave motion in homogeneous or periodic structures. The vibro-
acoustic behaviour of the whole structure can then be described through the analysis of a single FE-cell or using
one periodic segment of the structure, respectively?!. Since only one period of the structure is used, the size of
the WFE model does not depend on the dimensions of the waveguide, and the computational cost of the method
is low. In addition, conventional FE matrices are used to discretise the periodic cell; thus, the full potential of
existing conventional FE tools can be exploited. The WFE method was originally proposed by Mead? describing
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the harmonic wave propagation in one-dimensional periodic systems. An important contribution to the analysis
of wave propagation in various periodic structures using FE models has been made by Abdel-Rahman?®. The
free wave propagation in one-dimensional isotropic and anisotropic (composite) waveguides was analysed by
Mace et al.?* and Duhamel et al.”®. Dispersion relations of waves were computed using the one-dimensional
WEE method for structures such as stiffened cylinders®, car tyres?, thin-walled structures®®, inhomogene-
ous cylindrical® and fluid-filled pipes®, sandwich beams and panels**? and laminated cylinders®. A detailed
analysis of the numerical implementation and numerous applications of the one-dimensional WFE method can
be found in the work by Waki***. It is worth mentioning the work of Mencik and Ichchou® suggesting a special
substructuring technique to address numerical issues in the case of multi-layered structures.

The basics of the WFE method for two-dimensional periodic systems were presented in the work by Mead?.
Later, Mead and Parthan® showed how the problem of defining the dispersion relations in the general direction
over the plate’s plane dimensions could be reduced to an array of one-dimensional WFE problems with varying
lengths of the periodic segments. A rigorous mathematical framework for the WFE method for two-dimensional
periodic isotropic and composite systems has been developed by Manconi and Mace®®*. Several representations
of the eigenvalue problem leading to the computation of dispersion relations were postulated. Alimonti et al.*’
extended this work by presenting a contour integral method to compute the non-linear eigenvalue problem
arising from the governing equations of motion upon fixing the frequency and the direction of propagation.
Dispersion relations were computed for two-dimensional arbitrarily thick layered panels in*"** and periodic
textile composites in*’.

Mencik and Ichchou introduced the hybrid FE/WFE method for calculating reflection and transmission coef-
ficients for one-dimensional waveguides coupled longitudinally*. In recent years, this method has been extended
to other types of junctions**=* and to two-dimensional waveguides***°. However, the structures considered in
the references listed above were all isotropic.

Beyond the case of wave propagation in isotropic materials, Chronopoulos® computed scattering coefficients
at a junction representing damage between two composite beams. Later, Apolowo and Chronopoulos® computed
the scattering coeflicients of two multi-layer composite plates coupled longitudinally to localise the structural
damage in the context of structural health monitoring. An attempt to extend the work of Renno et al.** to com-
posite plates has been made by Mitrou and Renno in*2. The results were not reliable, however, as the energy
scattering coefficients did not sum to unity as expected in lossless systems*>*,

Beyond the WFE method, Karunasena and Shah® studied reflection of guided waves in the region of a bond-
ing material connecting two composite plates using the hybrid FE and semi-analytical FE method. Bosmans
et al.> studied the scattering properties of orthotropic plate junctions with principal material axes aligned with
the plate coordinates, that is, so-called specially orthotropic plates. Results were presented only for the particular
case of bending wave transmission loss in right-angled plates, so-called L-junctions. Aimakov et al.”’ developed a
semi-analytical approach for calculating scattering matrices of junctions of orthotropic plates with no restrictions
on the angles of orientation and of the principal material axes. Lee et al.”> presented the scattering coefficients
of coupled composite plates with joint compliance and damping using the First-Order laminated plate theory®.
However, as in the work of Bosmans et al., the principal material axes of laminates considered in this work are
aligned with the plate coordinates, effectively reducing the complexity of the underlying governing equations.
Furthermore, in>®, a shear correction factor is introduced to correct transverse shear stiffness in the laminate,
which must be defined for each laminate separately.

In this paper, we extend the hybrid FE/WFE method to composite laminated plates. The principal novelty of
this work is a detailed derivation of reflection and transmission matrices for waves travelling in the structural
junctions connecting composite laminated plates at arbitrary angles and with an arbitrary material orientation
of the principal axis of the laminae. We give, in particular, the scattering coefficients containing the full angle-
of-incidence and frequency dependence. For ray-based methods such as the radiative transfer method and DEA,
detailed information on the reflection/transmission behaviour of all propagating modes at complex junctions
is needed. This includes information about the angle-of-incidence dependence of scattering and mode conver-
sion coefficients.

The manuscript is organised as follows: in “Wave finite element method for composite plates”, the WFE
method for modelling composite plates is reviewed. An eigenvalue problem whose solutions yield wave numbers
and mode shapes is set up. The classification of the wave numbers and the wave basis setting are described. Having
established a wave basis representation of displacement and force vectors in individual plates, we combine these
solutions with the equations of motion of the joint fulfilling continuity of displacements and force equilibrium at
the joint boundaries. This then yields the desired scattering coefficients as described in “Hybrid FE/WFE method
and scattering coeflicients”. In “Numerical case examples”, we present numerical case studies for two coupled
composite plates. In particular, the energy scattering coeflicients for L-type junctions of regular cross-ply and
angle-ply composite plates are computed. These results are compared with semi-analytical estimates of energy
scattering coeflicients based on the work of Aimakov et al.?’. Finally, concluding remarks are put in “Conclusion”.

Wave finite element method for composite plates

Governing equations of motion. Consider a unit cell of a periodic or homogeneous composite plate with
arbitrary lay-up through the thickness direction and plane dimensions d, and d,. (Note that for a homogeneous
structure, the length scales of the unit cell are somewhat arbitrary and typically represented by a single finite ele-
ment in the plate directions.) It can be modelled using three-dimensional solid elements (such as SOLID185 in
the FE software ANSYS) stacked up one on top of the other, representing different composite layers. Figure 1 rep-
resents a unit cell of a five-layer plate meshed with SOLID185 elements and a nodal displacements vector label-
ling convention. The nodal displacements vector q is organised as q = {qLB qrB 9B qL qR QI LT qRT qT} .
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Figure 1. The set up of N plates joined together and a perlodlc segment of a plate with two different alternating
plies modelled with three-dimensional finite elements. A1  are the amplitudes of incoming and outgoing waves
travelling from infinity towards the junction and from the junction to infinity, respectively. The degrees of
freedom are grouped into internal qy, edge qr, qr, q, Q7 and corner qr, qrp, Q7> qrT degrees of freedom.

The nodal forces vector f is arranged in the same manner. The number of degrees of freedom must be the same
for each pair of edges on opposite faces. The number of mesh cells in the x, y and z direction are labelled by n,
s Hy and 7. The number of degrees of freedom per edge is labelled as m; for plates modelled with SOLID185 ele-
ments m = 3(n; + 1). Consequently, the sizes of nodal displacement sub-vectors can be represented as

l[qL®Bm)| = m, |qrr)| = m(ny — 1),

\asry| = m(ny — 1), lqz] = m(ny — D(ny — 1). W

Assuming that the structure undergoes harmonic vibration with angular frequency w and no external forces are
applied, we can write the governing equation of motion of the unit cell as

[K(1 +in) — »*M]q = f, )

where M and K are the mass and stiffness matrices, respectively. The parameter 1 denotes a uniform structural
damping coefficient. The dimension of Eq. (2) is m(n, + 1)(n, + 1).
We consider a plane wave travelling across the plate to be of the form exp(—ikyx — ik,y + iwt), where

ky and k are the x and y components of the wave vector k. Periodic structure theory*”*® requires that

qrr qiB
qRT ¢ = Zx { 9RB ¢ » (3)
qr qB

where 4, = e7"*% is the propagation factor in the x direction. Now, we denote as q’X, X = L, R, I displacement
sub-vectors of nodes placed at x; = dyj/ny, j = 1,2,...,n, — 1. Consequently, as in Eq. (3), one can relate
internal and edge degrees of freedom to bottom ones as

q]L G qLB in qiB
qﬁg — o ikxdxj/nx qQrB § = }-]x “ qrp . 4)
q§ qB

Following Egs. (3) and (4), we Gan express the nodal displacements vector q in terms of displacement sub-vectors
of nodes q,eq = {qLB qrB qB} . qr qo} as

ikydy
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where I) and I are identity matrices with dimensions m and m(n, — 1). The dimension of the matrix T is
(m(nx + D(ny + 1), m(ny, + 1)), and hence, Eq. (5) can be used to reduce the dimension of Eq. (2) as follows

Dqreq = frea» D= T [K(l +in) — sz] T, (6)

and

ny—1 ) )
fig + Z i ] + 2 for

- j=1
f; ny—1

foa = o p =T f= S fp+ > 2™ G+ 05 ar @)

f j=1
0 Ny—1

fs+ > 2+
j=1

where ff(, X = L,R, I denote force sub-vectors of nodes placed at Xj = dxj/ny, j=1,2,...,n, — 1. Dis the
reduced dynamic stiffness matrix with dimensions (m(n}, + 1), m(ny + 1)) Internal nodal forces f = 0 in the
absence of external forces, and force equilibrium between opposite sides yields A.fp + fr = 0. Therefore, the
reduced nodal forces vector fo = 0, thus allowing to reduce further the dimension of Eq. (6) via dynamic con-
densation of internal degrees of freedom qo™:

B2
Dgrr Dgrr| 4R fr)’

Drz = Dz — DroDgDor
Dir = Dir — DroDgpDor

where

Dgi = Drs — DLOD(_)é)DOL .
Dgr = Drr — DRODBEDOR
Finally, by applying the periodic structure theory and force equilibrium in the y direction, which can be written as
Qr=/lydr, fr=—Ayfp, 1, =0, (10)
one can get from Eq. (8) the following eigenvalue problem for the propagation factor 4,
Z{QL} =1y {gL} with Z = { D Du Di (11)
fr fr Dgi + Drr D Dip — Dre D)

The dimension of the matrices D and Z is 2m. Therefore, the solution of the eigenvalue problem (11) consists of
2m propagation factors Ay,; and the correspondent eigenvectors { ¢4 ¢,i}  provided that the circular frequency
o and the wave number component k, are fixed. The wave number components k,,; can be computed as

Ay
k,»:ln( 2 ) i=1,...,2m. (12)
it —id,

Consequently, by varying the wave number component ky, one can extract wave vector curves (ky, k) for a
fixed value of w. It is worth noting that the so obtained wave number components k, ; can be real, imaginary or
complex, making the correspondent plane waves propagating, evanescent or attenuating.
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Computation of wave numbers and eigenvectors. As mentioned in®, the solution of the eigenvalue
problem (11) might be prone to ill-conditioning of the eigenvalue matrix Z and eigenvectors [q, , f, 17. An equ1v-
alent form of the eigenvalue problem can be formulated by eliminating f; and fz in Eq. (8) as suggested in®

qr qr 0 I I o }
N2 =1,L{2 N N = ~ ~ N L=|~ ~ N
{qR} 4 {‘IR} {_DRL - DRR} {DLL Dir (13)

with I being the m-by-m identity matrix. The matrices N and L consist of block parts of the reduced dynamic
stiffness matrix D with no matrix inversion as in Eq. (11), thus reducing numerical ill-conditioning of the
method to some extent. However, there might be a difference of several orders of magnitude between I and
—Drgr(rr) and Dy (rr); therefore, the condition numbers of the matrices N and L can still be large, causing
numerical errors in the evaluation of eigenvalues and eigenvectors.

We use the following form of the eigenvalue problem (13), proposed by Fan et al.*”%

qL qL ~ 0 ol ~ ol O :|
N AL , N=| =« ~ , L=~ =< |,
{qR} Y {‘IR} |:_DRL - DRR} {DLL Dir (14)

ID RR||2

where o = , Ill2 representing the largest singular value of a matrix. This formulation is an improved

version of the elgenvalue problem (13), and the factor o is introduced here to reduce the condition number of
the matrices N and L. All the formulations presented are equivalent, and the eigenvalue solutions are the same.
In fact, writing the characteristic equation of the eigenvalue problem (14) yields

0 = det(N — /,L) = 0™ det(N — 4,L). (15)

Note that eigenvectors in Eq. (14) consist of left and right nodal displacements sub-vectors therefore to get an
eigenvector in the form as in Eq. (11) one can apply the following transformation

qr I ar
{fL} {DLL DLR:| {flk}' (16)

Incoming and outgoing waves and the wave basis. The eigensolutions of Eq. (14) can be separated
into m pairs of roots, /I;fi; these correspond to negative waves (with superscripts “~”) and positive waves (with
superscripts “+”). In the context of scattering properties at junctions, the negative and positive waves will also
refer to incoming and outgoing waves moving towards or away from the junction, respectively, see the left-hand-
side of Fig. 1. Furthermore, the waves can be categorised as propagating, evanescent or attenuating.

In the absence of damping, the standard wave classification***! consists of checking whether |/,;| = 1 or
not to identify propagating or evanescent waves, respectively. If the damping parameter is not zero, we establish
an algorithm for the ith wave as shown in Table 2, where Re(la)d) ; 1.i) is the energy flux of the ith wave in the
positive y direction. The real parameter ¢ in Table 2 is chosen emplrlcally to separate the least attenuating waves
from evanescent or strongly attenuating waves.

In the case of isotropic materials and some special types of composite plates, e.g. cross-ply laminates, which
consist of layers with ply direction angles 0° or 90°, the transfer matrix Z in Eﬂ (11) is symplectic. That means
that the eigenvalues of Egs. (11) and (14) appear in pairs (}y i»1/2y), and ky —k; ;. However, for general
composites, the transfer matrix Z is not symplectic, and k i # —k, ;. Figure 2 shows an example of a bending
wave vector curve, where one can see the inequality between i 1ncom1ng and outgoing wave number components
ky represented by red squares and blue dots, respectlvely Furthermore, we note the difference between phase
and group angles in composite plates shown with 91 >and ozftz, respectively. These features were discussed for a
similar wave vector curve in?*%,

Recall that in the absence of dampmg, we expect that waves are either propagating or evanescent. While the
wave number components k. for propagating waves are indeed purely real, those of non-propagating waves
can still have both a real and i imaginary part for composites, thus seemingly producing an energy flux in the y
direction®. However, it turns out that these waves are actually purely evanescent and decay or increase exponen-
tially towards the line y = 0, say, however, with the decaying/increasing direction axis not necessarily aligned
with the y axis, see®>®,

Figure 3 presents the contour plot of the real part of the out-of-plane displacement field created by the outgo-
ing bending propagating (a) and evanescent (b) waves in a 45°/ — 45° /45°/ — 45° /45° composite plate. In the
case of the evanescent wave, the displacement at y = 0 along the x axis is oscillating, as expected. In contrast, at
y > 0, it decays away along the inclined null-lines, i.e., lines at which displacement is zero (black straight lines
in Fig. 3b). This leads to the oscillating displacement shape projection along the y axis, which is why the energy
flux along the y axis appears to be non-zero.

The angle of decay/increase of the evanescent waves depends on the angle of orientation of the pr1nc1pal mate-
rial axes of plies of the plate, i.e. on the ply direction angle. It can be computed as arctan(Re(k 1)/ kx). Figure 4
presents the decay direction angles of longitudinal, shear and bending evanescent waves with respect to the y
axis as a function of the ply direction angle of an orthotropic plate with material parameters from Table 1. It can
be noted that the decay of evanescent waves can be inclined with respect to the y axis with angles up to 60°; for
example, the line corresponding to the evanescent shear wave in Fig. 4. We can see that the decay angles are zero
for ply direction of angles 0° and £90°, that is, the evanescent waves decay/increase along the y axis. In such cases,
the plate is specially orthotropic if it consists of only one layer® or balanced if it consists of multiple layers'>®.
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E; (N/m?) E; (N/m?) E3 (N/m?) Gi2 (N/m?) Ga3 (N/m?) Gy3 (N/m?)
121 x 10° 8.6 x 10° 8.6 x 10° 4.7 x 10° 3.1 x 10° 4.7 x 10°
V2 V23 Vi3 p (kg/m®)

0.27 0.4 0.27 1490

Table 1. Engineering constants of Epoxy Carbon UD (230 GPa) material used for individual laminas of a
composite plate.
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Figure 2. Bending wave vector curve in a 45°/ — 45° /45°/ — 45° /45° composite plate at a frequency 3000 Hz.
Blue dots represent wave numbers related to outgoing waves while red squares correspond to incoming

waves. Angles or1(2) and ) (2) represent group and wave vector or phase angles, respectively. The wave number
component k™* is equal to 53 m ™. Material parameters of orthotropic layers are from Table 1.

Incoming Outgoing
Re(ia)zﬁ;"i ¢ri) <0 Re(ia)zﬁ;"i ¢ri) >0
Im(ky,i) > 0 Im(kyi) <0

Propagating < Re(k),;) > cIm(k,,;)

Attenuating < Re(ky,;) < cIm(ky,;)

Table 2. Properties of eigenvalues and associated waves. The expression Re(iwd):;i ¢r.i) denotes the power flow
of the ith wave.

Identifying correctly whether a wave is incoming/outgoing and propagating/attenuating is not enough to
further proceed with calculating scattering coefficients. In fact, for a range of frequencies and wave number
components k, we obtain a set of unclassified branches of propagating, evanescent and attenuating waves. To
identify the eigensolutions of Eq. (14) corresponding to the same wave type, we apply the so-called MAC

T
criterion®. For an eigenvector solution ®; = {¢2,: ; ¢fi, i} defined at frequency w for a fixed wave number com-
T
ponent k,, we find an eigenvector solution ®; = {(ﬁ,;; ¢fi]} at the frequency @ + dw with sufficiently small dw
such that

M (o) = (‘D;T(a))q)]*(a)-i— da))) <¢]T(CU)(D?<(Q)+ da)))

T T (17)
(@7 () (@ + do)) <q>j (@)@} (@ + da)))

is maximised. The same criterion can be utilised to classify wave types for a range of wave number components
k. and a fixed frequency with corresponding step size dk being sufficiently small.
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Figure 3. Contour plot of the real part of the out-of-plane displacement produced by the outgoing propagating
(a) and evanescent (b) bending waves in a 45°/ — 45° /45° / — 45° /45° composite plate plotted in the (x, y)
plane. Brighter colours represent positive z values, whilst darker ones denote negative z values.
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Figure 4. Decay direction angles of various evanescent waves as a function of a ply direction angle in an
orthotropic plate with material parameters from Table 1.

T
Once the appropriate pairs of wave number components k;f,- and wave mode shapes ¢>ff ; d);% ,-} are deter-
mined, we can express nodal displacements and forces in the basis of wave mode shapes as follows

~ m —+ — + .+ - -
q | _ + ¢q,i - ¢q),' _ dra +d>qa
3 -2 ( {%} o {¢f3 = opat+ opa [’ 18
where a;” and a; are the amplitudes of the ith outgoing and incoming waves.

Hybrid FE/WFE method and scattering coefficients
In this section, we derive the energy scattering coefficients using continuity and equilibrium conditions at the
boundaries of the joint.

Governing equations of the joint. We consider N composite plates that are connected together via a
joint element, see Fig. 5a. The local y axes of all plates are directed away from the joint, whereas the x axes are
aligned with the x; axis of the joint. The joint is assumed to be periodic in the xj axis, and the width of the peri-
odic segment is assumed to be equal to d;. According to Fig. 5b, the nodal displacements vector of the joint is
organised in the following way

v e = {QB1 qL1 Q71 .- QBN QLN QITN }

={qz q0} 19
v = {4 20} q0 = {a @ qr} (19

The nodal displacement vector qo consists of degrees of freedom of the internal nodes. It is required that the
node arrangement on the face containing q;p . qrx and qrrx, kK = 1,. .., N is coherent with one on the left face
of the kth plate. Therefore, we enforce that|qrp x| = |qrkl = |quT k| = 1qL k| = mrand nyx = nyy, whereny i is
the number of mesh cells in the joint element along the x direction of the face containing qrp . qr x and qr7 k-
The nodal forces vector fj is arranged in the same way.
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Plate 2

qLB;3

Plate N qLBN

(a) A schematic representation of the joint. (b) A finite element model of the joint.

Figure 5. A schematic representation of the joint connecting N plates (a) and its finite element model (b). The
x axis of all plates are aligned with the xj axis of the joint. The degrees of freedom are grouped into internal qy,
edgeqp,qr,qL,1>- - ->qrN and corner qig1, - - . > qLBN>QLT,1> - - - » L T,N degrees of freedom.

The governing equations of motion of the joint are of the same form as in Eq. (2), that is,
Djq =f;, Dy =K;(1+in) — oMy, (20)

where Ky and My are the stiffness and mass matrices of the joint. When no external forces are applied on the
internal nodes of the joint, Eq. (20) can be written as

Dee Der| Jqe | _ JfE
[DIE DH:| {QO 10 @1
where fo = 0. Consequently, one can remove internal degrees of freedom qr using the dynamic condensation as

Djcond 9t = f5,  Djcond = Dep — DpDy;' Dig. (22)

Now, following a similar approach as in “Governing equations of motion”, we apply periodic structure theory on
the nodal displacement sub-vectors along the x;j axis and obtain the following equation

1~)]q],red = f],red: I~)] = TfD],condT] (23)
with
) fipg+ Y 2 A
frp,1 ji=1
f],red = = T7 f] = (24)
fLB,N N1 . .
fian + > VN 4
in=1
and
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where Iy is the my-by-my identity matrix and jx = 1,..

T
Qred = T)qQE,  Qjred = {qLB,l te qLB>N}

I, 0
/li}/":’*l I 0
= o . I
.
Lo

Reflection and transmission at interfaces of the joint.
that is, nodes shared between the plates and the joint. The force equilibrium and displacement continuity condi-
tions must be satisfied at these nodes. Specifically, q;px and frpx, kK = 1,..., N denote nodal displacements and
forces at nodes shared between the kth plate and the joint. Therefore, one can represent q; g x and f; g . in the wave
mode shapes basis of the kth plate using Eq. (18) as follows

, (25)

.,I’l],k—l,k=l,...,N.

Equation (23) considers only interface nodes,

qQipg = Rk(cp;ka,j + @;ka,j)

fLB,k = Rk (é;fka,j —+ QEka,:)

(26)

where Ry is the matrix that transforms the local coordinate system of the kth plate to the global coordinate
system. Since the local xj axis is aligned with the global x; axis, the transformation matrix Ry can be written as

Ry =

Riode 0 e 0 ] 0 0
0 Rpode - 0
. . . . > Rpode = |0 CQS(WIC) - Sin(Wk) (27)
: : 0 sin(yx) cos(Y)
0 0 node | 15, 5 my

where 1, denotes the angle of rotation between y, and y;. Now, we can concatenate individual expressions (26)
for qrp and f p  to express qy red and fj 14 in Eq. (23) as

with

Qred = R(cDgA+ + d>5A*>

Inserting Eq. (28) in Eq. (23) yields

(28)
£ red = R(¢;A+ + ¢;A—>

+ + +

0 (I)q’1 0 ch,l 0 a;
AR R N N E R R e (29)

+ + +

- Ry 0 - Dy 0 - Oy ay
A*=SA~, with §$=—(D;RO, —RD}) ™ (D;RO, — RD). (30)

The expression for S defines a scattering matrix relating the amplitudes A~ and A™ of incoming and outgoing
waves, respectively. The dimension of the square matrix S is > ,_; my, and the scattering coefficients have the
form s/ (w, k), relating an incoming wave i in the plate n and a reflected or transmitted wave j in the plate m

J

at angular frequency w and wave number component k. For the associated energy fluxes, we obtain the energy
scattering coefficients as

where

+
Jjm

m m|2
@k =3
0

n
|5ij

if wave jis propagating.

otherwise.

(31)
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Figure 6. Wave vector (left) and dispersion (right) curves for a cross-ply composite plate. Longitudinal (kp),
shear (ks) and bending (kg) curves are depicted in purple, black and red colour, respectively. Squares and circles
denote wave numbers of incoming and outgoing waves, respectively. The wave vector curves are plotted for a
ﬁ())(ed frequ?ncy % = 3000 Hz, whereas the dispersion curves are plotted for a fixed wave number component
k;=5m™".

o = |Re(iody, 97|

. (32)
+ bt At

i = [Re (i, 87, )|

In the absence of damping, total energy must be conserved, hence the sum of the energy scattering coeflicients

over the outgoing modes equals one, that is,

N
DD oHr=1 (33)

m=1 j

Numerical case examples
In this section, we present two numerical case studies to show the applicability of the method discussed above. In
the first example, we consider an L junction of composite symmetric cross-ply laminated plates, i.e. laminates that
consist of an odd number of orthotropic layers with principal material directions alternating between 0° and 90°
for cross-ply laminates. In the second example, an L-type junction of composite angle-ply laminated plates is
considered. In this case, laminates consist of an odd number of orthotropic layers with principal material direc-
tions alternating between «° and —a°, o € (0°,90°).

In all cases, we compute the energy scattering coeflicients with respect to the wave number component k, for
a fixed frequency f. The results for cross- and angle-ply laminated plates are compared with those obtained using
the semi-analytical approach based on the solution of wave equations in the line-junction approximation®’. We
assume that the system is undamped; however, to facilitate the wave tracking process described in “Incoming
and outgoing waves and the wave basis”, a small damping coefficient = 0.00001 is applied.

Cross-ply laminated plates. A five-layer symmetric cross-ply laminated plate of the total thickness of
h = 0.005 m is considered. The material characteristics of all layers are the same and given in Table 1. The lami-
nation scheme is 0°/90°/0°/90° /0°.

A periodic cell of length d,, = 0.001 m and width d, = 0.001m is modelled in ANSYS with 3 SOLID185 ele-
ments per ply, i.e. 15 finite solid elements in total. The usage of only one element in the cross-section is justified
since the laminates considered are homogeneous in their plane dimensions. However, there must be at least 6-10
FE elements per wavelength to obtain accurate results. In other words, the wave numbers k < WM can
be computed accurately. One can use more elements in the cross-section to alleviate round-off errors due to
truncation of inertia terms in the dynamic stiffness matrix if needed?”.

As presented in “Computation of wave numbers and eigenvectors”, solving (11) or (13) can yield propagating
wave vector pairs (ky, ky ) for a fixed frequency w° or dispersion curves k, = ky(w, k2) for a fixed wave number
component k.. Figure 6 presents bending, shear and longitudinal wave vector curves for a fixed frequency
% = 3000 Hz on the left side and the correspondent dispersion curves for a fixed wave number component
kY = 5m~!on the right side. These numerical dispersion relations can be used to calculate the group velocity
angles and, therefore, propagation angles of transmitted waves via modified Snell’s law.

Next, we consider two identical cross-ply composite plates connected through an L-joint. The correspond-
ing FE model is similar to the model shown in Fig. 5, but now only connecting N = 2 plates. The FE model of
the joint consists of 55 SOLID185 elements; thus, the dimensions of the joint stiffness and mass matrices are
164-by-164.
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Figure 7. Energy scattering coefficients of an L-junction of two SOLID185-based cross-ply laminated plates for
various incident waves plotted with respect to the wave number component ky at a frequency f = 3000 Hz. tg’”
denote semi-analytical scattering coefficients obtained using the method presented in*".

Figure 7 presents a comparison of the energy scattering coeflicients obtained from the current approach and
the semi-analytical approach based on the work of Aimakov et al.?° for various incident modes as a function of
wave number component ky at frequency f = 3000 Hz. We note that the semi-analytical approach is based on
further approximations, such as treating the junction as a one-dimensional line and is considered here only as
a reference. Deviations between the WFE approach and the semi-analytical approach are mainly due to inac-
curacies in the semi-analytical treatment. All solid and dashed lines represent numerical results, whereas circles
and squares show semi-analytical results. Excellent agreement between numerical and semi-analytical energy
scattering coeflicients can be noted for incoming longitudinal and shear waves in Fig. 7b,c , respectively. Hence,
modelling coupled thin composite plates using the semi-analytical method is sufficient for accurately estimating
in-plane wave energy scattering coefficients.

For the case of an incoming bending wave, discrepancies between the WFE and the semi-analytical results
appear. For instance, in Fig. 7a, it can be seen that semi-analytical results underestimate energy reflection and
hence, overestimate energy transmission of an L-junction of plates. In fact, the maximum difference observed
between bending using the WFE and semi-analytical results is ~ 20 to 22%. This can be referred to the fact that
the semi-analytical model results are based on the assumption that the joint can be represented as a shared one-
dimensional line between plates®. This assumption breaks down at higher frequencies since the influence of
the internal joint geometry becomes significant. Notably, the shear strain becomes more critical in the dynamic
response of the joint and this effect is not considered in the semi-analytical model**%.
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kHz

Figure 8. Wave vector (left) and dispersion (right) curves for an angle-ply composite plate. Longitudinal (kg),
shear (ks) and bending (kp) curves are depicted in purple, black and red colour, respectively. Squares and circles
denote wave numbers of incoming and outgoing waves, respectively. Furthermore, green squares and circles
represent parts of the shear wave vector and dispersion curves that exhibit negative group velocity behaviour.
The wave vector curves are plotted for a fixed frequency f = 3000 Hz, whereas the dispersion curves are plotted
for a fixed wave number component ky = 5m™".

The energy scattering coefficients of coupled shear-bending waves are equal, that is, tslé(lz) = tllgé(lz). The
same applies for shear-longitudinal wave coupling, that is, t;Ll(n) = tié(u). The summation to unity of the energy

reflection and transmission coefficients validates the numerical results obtained.

Angle-ply composite plates. A five-layer angle-ply laminated plate of the total thickness of 4 = 0.005 m
is considered. The material characteristics of the individual layers are the same as in the previous example.
The lamination scheme is 45°/ — 45°/45°/ — 45°/45°. A periodic cell of length d, = 0.001 m and width
dy = 0.001 m is again modelled in ANSYS with 15 SOLID185 elements.

Figure 8 presents bending, shear and longitudinal wave vector curves of an angle-ply laminated plate for a
fixed frequency f = 3000 Hz on the left side and the correspondent dispersion curves for a fixed wave number
component k;, = 5m™~! on the right side. Note that there are two shear wave dispersion curves present on both
sides of Fig. 8. The second shear wave (plotted in green) exhibit a negative group velocity phenomenon—they
will be denoted as S, from now on. Details about these features in an orthotropic plate are discussed in*.

A comparison of energy scattering coeflicients obtained from the current approach and from the semi-
analytical method is given in Fig. 9 for various incident modes as a function of wave number component ky
at frequency f = 3000 Hz. Again, numerical and semi-analytical energy scattering coefficients agree well for
incoming longitudinal and shear modes, see Fig. 9b,c .

Deviations in the shape of energy reflection and transmission coefficients can be seen for an incoming bend-
ing wave in the case of SOLID185-based numerical results, see Fig. 9a. This phenomenon can be explained by
the fact that the semi-analytical approach produces effective one-layer plates joined along the shared edge, thus
losing the complexity of the connection between individual layers of plates at the junction.

As in the case of cross-ply laminated plates, curves describing the coupling between shear and bending

waves are symmetric for a range of wave number components |k,| < 7.6 m~!—the correspondent scattering

coefficients obey t;é(lz) = t;(lz)

t;,lg(lz) and t,lg}l(lz) are equal for |kc| < 3.7 m™ L. Furthermore, energy scattering coefficients of longitudinal and

. Similarly, the scattering coefficients of longitudinal and bending coupled waves

shear coupled waves are symmetric around kx = 0 m~, that is, tsli(lz) (ky) = tiém) (—ky).

Conclusion

A hybrid FE/WFE model has been developed predicting the scattering properties for different junctions of two-
dimensional anisotropic composite plates. The influence of the angle of incidence on the distribution of the power
flow of incident bending, shear and longitudinal type waves has been investigated. Numerical results presented
were compared with semi-analytical evaluations of scattering coefficients. The method gives for the first time a
detailed recipe for computing scattering coefficients for the generic case of an arbitrary number of composite
plates connected at a junction without restrictions on the angles at which the plate meet or the orientation of
the principal axes of individual plates. The results of this paper can be used for the computation of wave energy
distributions in SEA by providing coupling loss factors®” and for angle-of-incidence dependent scattering coef-
ficients entering the radiative transfer and DEA method.
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Figure 9. Energy scattering coefficients of an L-junction of two SOLID185-based angle-ply laminated plates for
various incident waves plotted with respect to the wave number component ky at a frequency f = 3000 Hz. tg”’

denote semi-analytical scattering coefficients obtained using the method presented in*".
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