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Metadata analysis indicates biased 
estimation of genetic parameters 
and gains using conventional 
pedigree information instead 
of genomic‑based approaches 
in tree breeding
Jean Beaulieu1*, Patrick Lenz1,2 & Jean Bousquet1

Forest tree improvement helps provide adapted planting stock to ensure growth productivity, fibre 
quality and carbon sequestration through reforestation and afforestation activities. However, there 
is increasing doubt that conventional pedigree provides the most accurate estimates for selection 
and prediction of performance of improved planting stock. When the additive genetic relationships 
among relatives is estimated using pedigree information, it is not possible to take account of 
Mendelian sampling due to the random segregation of parental alleles. The use of DNA markers 
distributed genome-wide (multi-locus genotypes) makes it possible to estimate the realized additive 
genomic relationships, which takes account of the Mendelian sampling and possible pedigree errors. 
We reviewed a series of papers on conifer and broadleaf tree species in which both pedigree-based 
and marker-based estimates of genetic parameters have been reported. Using metadata analyses, 
we show that for heritability and genetic gains, the estimates obtained using only the pedigree 
information are generally biased upward compared to those obtained using DNA markers distributed 
genome-wide, and that genotype-by-environment (GxE) interaction can be underestimated for low 
to moderate heritability traits. As high-throughput genotyping becomes economically affordable, 
we recommend expanding the use of genomic selection to obtain more accurate estimates of genetic 
parameters and gains.

Forest tree breeding traditionally aimed to increase volume production and improve both adaptive traits and 
fiber attributes of forest tree plantations. Ongoing environmental and market changes are currently shifting the 
selection focus towards seedstock production for enhanced carbon sequestration capacities and resistance to 
biotic and abiotic stressors. Those multiple breeding goals and the long-lived perennial nature of trees demand 
for the most precise estimation of genetic parameters and exact selection of individuals that best combine the 
desired properties of various nature (e.g.1,2). Compared with crop or animal breeding, forest tree breeders initi-
ated their research activities quite recently, i.e., in the late 1950’s3. Since then, genetic improvement programs have 
been initiated for a large number of forest tree species from around the world4. The breeding process in forest 
tree species is often slow due to the limited resources available and to its inherent complexities. Among these 
complexities, are: (1) the necessity to set up more or less long-term progeny tests to assess the traits of interest, 
(2) the fact that many of these traits are often mature traits, thus requiring many years or even decades of testing 
before their appropriate assessment can be conducted, and (3) some of the traits are difficult and expensive to 
assess, such as microfibril angle and cell wall thickness.

Traditionally, the selection of trees with desirable attributes for breeding or propagation has been based on 
both pedigree and phenotypic information. The genetic merit of candidate trees in a breeding population is now 
estimated using individual tree model or the so-called animal model in a mixed model framework5–7. Hence, the 

OPEN

1Canada Research Chair in Forest Genomics, Institute of Systems and Integrative Biology and Centre for Forest 
Research, Université Laval, 1030 Avenue de la Médecine, Quebec, QC  G1V 0A6, Canada. 2Natural Resources 
Canada, Canadian Wood Fibre Centre, Quebec, QC, G1V 4C7, Canada. *email: jean.beaulieu@sbf.ulaval.ca

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-06681-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3933  | https://doi.org/10.1038/s41598-022-06681-y

www.nature.com/scientificreports/

performance of a candidate tree and all known pedigree relationships with other members of its population are 
used to estimate its breeding value (EBV). The model is characterized by the fitting of a random component for 
the breeding value of each individual, which can be obtained using Best Linear Unbiased Prediction (BLUP)8. The 
animal model can also account for other environmental and genetic effects9. The additive genetic relationships 
between individuals is of crucial importance in the prediction of breeding values. The probability of identical 
genes by descent occurring in any pair of individuals is called the coancestry10 and the additive genetic relation-
ship is twice the coancestry. The genetic evaluation using BLUP is heavily dependent on the genetic covariance 
among individuals, both for accuracy and unbiased results8, and genetic covariance among individuals includes 
the additive genetic variance, the dominance variance and the epistatic variance. In the present article, we will 
focus on additive genetic variance only.

The additive genetic relationships among individuals are usually represented by a matrix called the Numerator 
Relationship Matrix or A-matrix. The inverse of this matrix is needed for solving the mixed model equations and 
for obtaining the best linear unbiased predictions of breeding values. Henderson11 proposed a recursive method 
to compute this matrix. The method is known as ABLUP. The A-matrix is symmetric. Its diagonal elements are 
equal to 1 + Fi, where Fi is the inbreeding coefficient of the individual i, and its off-diagonal elements equal the 
numerator of the coefficient of relationship between individuals i and j12. The covariance among breeding values 
can be obtained by multiplying the additive genetic variance by the A-matrix. As the additive genetic relationship 
among pairs of relatives is estimated using registered pedigree information, all members of a family receive the 
same expected relationship (for instance, 0.25 for half-sibs, and 0.50 for full-sibs). Hence, it is neither possible to 
take account of Mendelian sampling, which is due to the random segregation of the alleles of the parents13 and 
may cause a deviation of actual relationship from the expected one, nor of potential pedigree identification errors 
or contamination (e.g.14–17). Moreover, Askew and El-Kassaby18 reported that for relatively undomesticated forest 
tree species, the average relationship does not allow detecting unknown population structure and/or inbreeding, 
as often shown for tree species (e.g.14,19). Thus, forest tree breeding values as well as heritability and genetic gain 
estimates obtained only with pedigree information could be biased.

In the early 2000’s, Meuwissen et al.20, in their seminal paper, proposed using genome-wide distributed mark-
ers to model the entire complement of QTL effects across the genome, whether these effects are significant or 
not, and to obtain genomic-estimated breeding values (GEBVs). This method is called genomic selection (GS). 
Since then, it has been tested for the selection of complex traits in numerous species, such as maize and wheat21, 
trees22,23, and cattle24. In the last two decades, there has been a rapid development in DNA marker technologies. 
The availability of large numbers of markers distributed genome-wide and relatively inexpensive high-throughput 
genotyping technologies offers the possibility to improve the efficiency of tree breeding at a reasonable cost25–29. 
Hence, depending on availability of markers for a given species, a large number of individuals can be genotyped 
for up to many thousands of markers. It is then possible to obtain genotypes from many different loci well dis-
tributed across all the chromosomes of a species (e.g.17,30).

Various statistical methods have been developed for GS and they can be classified in two main groups31. The 
methods of the first group are based on the concept that it is possible to predict the genetic value of individu-
als by using a regression model that relates phenotypes to all available markers. When the number of available 
markers generally exceeds the number of individuals in the population used to solve the regression, and the 
predictors (markers) are highly correlated, variable selection or shrinkage estimation procedures are required. 
Hoerl and Kennard32 proposed a method called ridge regression, which introduces a little bias so that the vari-
ance can be substantially reduced, which leads to a lower overall mean squared error. Tibshirani33 introduced 
the least absolute shrinkage and selection operator (LASSO) as an alternative to ridge regression. Since then, 
Bayesian estimation procedures of the shrinkage estimation methods have also been proposed to address the 
problem of multi-collinearity. With these regression methods, the genetic effect of each marker can be estimated 
and the summation of these marker effects for a given individual corresponds to its GEBV. The second group of 
methods uses the genomic relationships between individuals of a population (G-matrix), which are derived from 
their multi-locus genotypes, in a linear mixed or animal model framework to directly estimate the GEBV of any 
individual. It is usually referred to as Genomic Best Linear Unbiased Prediction or simply GBLUP. It is possible 
to use it in the context of an additive infinitesimal model where the standard pedigree-based numerator relation 
matrix (A-matrix) is replaced by the marker-based or realized genomic relationship matrix (G-matrix)31,34. Thus, 
this second marker-based method is more familiar to tree breeders and quantitative geneticists, and its results 
are easier to interpret for them.

More recently, a new method, which makes it possible to combine in a single GS analysis trees that were 
genotyped and trees for which only the pedigree information is known, has been proposed35. This method is 
referred as to the single-step GBLUP. A relationship matrix called H-matrix is generated using information from 
both the A-matrix and the G-matrix, and then again, as for GBLUP, it is possible to work in the context of an 
additive infinitesimal model, by simply replacing the A-matrix by the H-matrix.

Forest geneticists and tree breeders have used all these methods to analyze their data over the last decade. 
Depending of the genetic structure of the populations studied and the experimental design used, they reported 
estimates of heritability and genotype-by-environment (GxE) interaction for several quantitative traits based on 
additive effects only, and additive and non-additive effects (e.g.2,28,36–39). It is thus possible to make comparisons 
between results obtained with the pedigree-based and the marker-based approaches. Using a meta-analytical 
approach, our objective was thus to verify, for a large number of conifer and broadleaf tree species and traits, 
whether the estimates of narrow-sense heritability of quantitative traits as well as the expected genetic gains 
derived from selection were biased following an upward or downward trend when using registered pedigree 
information only, as compared to using marker-based information. We also wanted to compare the estimates of 
GxE interaction obtained with both approaches to determine if they provided the same results.
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Results
Most of the published studies reported results for both growth and wood quality traits (Table 1 and Supplemen-
tary material 1). In a few of the studies, heritability estimates were also presented for insect resistance traits1,2. 
Narrow-sense heritability estimates were available for 87 study-trait pairs of pedigree-based and marker-based 
estimates. In total, this metadata sample represents estimates obtained from 16 distinct species or taxa, corre-
sponding to 23 distinct tree breeding populations. Using a Wilcoxon signed-rank test, we found significant differ-
ences between the pedigree-based and the marker-based narrow-sense heritability estimates (p-value = 3.43e−09) 
when all the traits in all studies were considered, with pedigree-based estimates being higher than marker-
based ones (Fig. 1a). The same trend was also observed for growth traits (p-value = 2.87e−05) and wood quality 
traits (p-value = 7.92e−05), when analyzed separately. When considering only conifers (57 study-trait pairs), the 
pedigree-based narrow-sense heritability estimates were again highly significantly higher than those obtained 
with DNA marker information (p-value = 4.23e−08; Fig. 1c). This trend was also observed for broadleaf species 
studies, although the difference was less significant (p-value = 0.0175; Fig. 1d). Genetic gains after selection of the 
5% top trees for a variety of growth, wood quality and insect resistance traits were also provided in seven stud-
ies on spruces. A comparison of both the pedigree-based and the marker-based estimated genetic gains using a 
Wilcoxon signed-rank test again showed that globally, the gains estimated using the pedigree information only, 
were higher than those estimated using DNA marker information (p-value = 0.0021) (Fig. 1b).

In a few studies and for several traits, results of analyses carried out on more than one site were reported. In 
such cases, estimates of GxE interaction using type-B genetic correlations were presented, which are inversely 
correlated to the amplitude of GxE interaction. We found such estimates in six of the studies reported in the 
literature (Table 2). Although we could observe variation in the estimates between pedigree-based and marker-
based methods, we could not find an overall significant difference (p-value = 0.0644) using a Wilcoxon signed-
rank test. However, this result clearly depended on the type of traits analyzed. Indeed, when the two approaches 
were compared for wood quality traits only, there was no significant difference between them (p-value = 0.9645) 
(Fig. 2a). On the other hand, statistical significance was reached for the other traits (growth and resistance to 
insects pooled together, p-value = 0.0107) (Fig. 2b), with lower type-B genetic correlations and thus higher GxE 
interaction estimates obtained with the information based on DNA markers. Only two studies considered insect 
resistance traits so no formal testing could be conducted for these traits only. When considering only growth 
traits, the statistical difference between pedigree-based and marker-based methods was of the same order of 
magnitude (p-value = 0.0206) (Fig. 2c) as that obtained by regrouping growth and insect resistance traits (Fig. 2b). 
This contrasting result between wood quality traits and the other traits may not be surprising, given that wood 
quality traits are generally under stronger genetic control than the other traits, and thus less influenced by the 
environment40–42. Therefore, the absence of significant difference between the two approaches when all traits were 
considered together was because wood quality traits, which represented 58% of the study-trait pairs analyzed, 
are clearly less influenced by GxE interaction.

However, even for growth traits, the importance of GxE interaction appears to depend on the species and 
the populations considered. For instance, substantial GxE interactions were reported for interior spruce from 
western Canada43, for loblolly pine from southeastern United States44, and for Norway spruce in Sweden45. 
Moreover, these authors have indicated that GS models ideally needed to be calibrated for each breeding zone. 
In contrast to these results, much lower GxE interactions were reported for black spruce30,46, even for growth 
traits. Similarly, it was shown that GxE interaction was also limited in white spruce large genetic trials established 
in eastern Canada28,47. Nevertheless, the sole use of pedigree-based information appeared to underestimate 
the importance of GxE interaction in most studies especially for lower heritability traits, as compared to using 
marker-based methods (Table 2).

Discussion
Results of the present meta-analytical study provides clear evidence that quantitative genetic analyses based 
on registered pedigree information only, resulted in upwardly biased estimates of narrow-sense heritability for 
growth, insect resistance, and wood quality traits in forest tree species, as compared to estimates obtained with 
realized genomic relationships based on DNA markers sampled genome-wide. For open-pollinated families, 
additive genetic variance estimates can be biased upwardly as the assumption of true half-siblings cannot be 
confirmed48,49. Several authors have indeed reported such bias1,43. However, this is the first time that a metadata 
analysis brings evidence of this bias even with full-sib family pedigree structure, although it has already been 
suspected in a few previous studies (e.g.36,50). Indeed, when we removed results of studies on open-pollinated 
families (22 study-trait pairs) in our metadata analysis, the Wilcoxon signed-rank test still remained highly 
significant (p-value = 5.64e−06), thus confirming the observed general bias of using registered pedigree informa-
tion to represent the genetic relationships existing between the individuals making up the breeding population 
analyzed. The same upwardly biased trend was also observed for genetic gain estimates derived from pedigree 
information only, with important implications for conventional tree breeding programs.

The same significant trend was observed in both conifers and broadleaf species, although it was weaker in 
the latter. Several reasons may explain this difference. For conifers, 48 out of the 57 species- trait pairs compared 
(84%) showed higher pedigree-based heritability estimates than marker-based estimates. For broadleaf species, 
22 of the 30 species-traits pairs (73%) showed such results. Thus, the proportion of significant higher pedigree-
based estimates was marginally reduced in broadleaf species. The smaller number of species-trait pairs available 
for broadleaf species as compared to those of conifers may also partly explain the reduction in the significance of 
the statistical test. Indeed, the Wilcoxon matched-pairs signed-ranks test gives more weight to a pair that shows a 
large difference between the two conditions compared than a pair that shows a small difference. For many of the 
species-trait pairs of the broadleaf species, the differences between both the pedigree-based and the marker-based 
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Species Material Traita

Heritability (h2)b
Genetic gain in percent (5% 
selection intensity)b

ReferencePedigree-based Marker-based Pedigree-based Marker-based

Picea glauca

Half-sibs

22-yr height 0.25 0.16 12.1 5.6

23
22-yr wood density 0.39 0.24 7.9 2.3

22-yr wood stiffness 0.31 0.23 13.2 6.0

22-yr microfibril angle 0.38 0.24 14.4 5.4

Full-sibs

17-yr height 0.31 (0.09) 0.12 (0.04) 11.4 5.8

28
17-yr DBH 0.15 (0.07) 0.09 (0.04) 9.3 5.5

7-yr wood density 0.25 (0.07) 0.33 (0.04) 7.1 6.4

17-yr microfibril angle 0.24 (0.07) 0.18 (0.04) 5.7 4.5

Full-sibs

16 to 28-yr height 0.26 (0.06) 0.25 (0.04) 7.6 7.2

1

16 to 28-yr DBH 0.13 (0.04) 0.13 (0.04) 5.7 6.6

16 to 28-yr acoustic velocity 0.54 (0.12) 0.41 (0.08) 10.3 8.7

16 to 28-yr needle piceol 0.57 (0.12) 0.43 (0.08) 43.4 26.6

16 to 28-yr needle pungenol 0.70 (0.13) 0.47 (0.08) 53.4 45.4

Polycross

19-yr height 0.30 (0.11) 0.20 (0.06) 5.8 (0.04) 6.4 (0.10)

17
19-yr DBH 0.27 (0.11) 0.21 (0.06) 6.8 (0.10) 9.3 (0.16)

18-yr wood density 0.42 (0.13) 0.37 (0.06) 4.4 (0.05) 5.9 (0.05)

19-yr wood stiffness 0.48 (0.14) 0.41 (0.06) 5.4 (0.05) 10.1 (0.12)

Picea mariana

Full-sibs

25-yr height 0.68 0.42 13.1 13.0

30
25-yr DBH 0.57 0.29 14.4 12.8

25-yr wood density 0.41 0.39 8.4 8.6

25-yr microfibril angle 0.74 0.43 14.9 12.8

Half-sibs

25-yr height 1.00 (0.20) 0.55 (0.09) 19.1 10.9

This study
25-yr DBH 1.00 (0.00) 0.60 (0.08) 30.6 17.9

25-yr wood density 0.80 (0.21) 0.23 (0.10) 11.6 4.0

25-yr microfibril angle 0.44 (0.20) 0.14 (0.09) 18.2 6.7

Picea abies

Full-sibs

15-yr height 0.47 (0.16) 0.22 (0.08) 16.0 8.0

2

15-yr DBH 0.00 (0.00) 0.00 (0.00) 0.0 0.0

15-yr wood density 0.25 (0.11) 0.26 (0.08) 4.1 5.1

15-yr microfibril angle 0.08 (0.06) 0.06 (0.05) 7.7 9.1

16-yr acoustic velocity 0.37 (0.12) 0.29 (0.08) 7.3 7.1

Cumulative weevil attacks 0.47 (0.12) 0.27 (0.07) 68.0 54.6

Full-sibs

17-yr height 0.13 (0.04) 0.15 (0.05)

45
30-yr wood density (pylodin) 0.41 (0.09) 0.34 (0.06)

30-yr acoustic velocity 0.45 (0.09) 0.37 (0.06)

30-yr wood stiffness 0.44 (0.09) 0.36 (0.06)

P. glauca × P. engelmannii Half-sibs

38-yr height 0.35 (0.14) 0.20 (0.06)

43
38-yr DBH 0.05 (0.08) 0.07 (0.06)

38-yr wood density 0.38 (0.14) 0.18 (0.06)

38-yr wood stiffness 0.28 (0.12) 0.12 (0.06)

Pinus radiata Full-sibs
8-yr branch cluster 0.17 0.18

59

8-yr stem straightness 0.13 0.09

Pinus sylvestris Full-sibs

10-yr height 0.19 (0.06) 0.16 (0.06)

60

30-yr height 0.40 (0.09) 0.37 (0.08)

30-yr DBH 0.24 (0.07) 0.23 (0.07)

36-yr DBH 0.20 (0.07) 0.22 (0.07)

40-yr microfibril angle 0.28 (0.08) 0.24 (0.07)

40-yr wood stiffness 0.39 (0.10) 0.39 (0.09)

40-yr wood density 0.44 (0.10) 0.40 (0.09)

40-yr acoustic velocity 0.46 (0.10) 0.38 (0.08)

Pinus taeda Full-sib clones
6-yr height 0.32 (0.02) 0.31 (0.02)

36,50

6-yr DBH 0.26 (0.07) 0.31 (0.02)

Pinus contorta Full-sibs & half-sibs

10-yr height 0.24 (0.07) 0.25 (0.06)
61,6212-yr wood density 0.57 (0.11) 0.47 (0.06)

12-yr microfibril angle 0.28 (0.08) 0.30 (0.07)

Continued
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heritability estimates were quite small, but the trend remained statistically significant, as that observed for coni-
fers. In addition, one can observe that the heritability estimates obtained with the pedigree information only 
were lower to those from marker information for all species-trait pairs in a single study on 6-yr old E. grandis x 
E. urophylla full-sibs51. After a thorough analysis, these authors concluded that putative pedigree errors (pollen 
contamination and mislabeling) negatively affected their ability to estimate accurate heritability estimates of 
traits based on pedigree information only. This might be the best explanation, knowing that in another study 
on the same hybrid species44, such lower pedigree-based heritability estimates were not observed. As this study 
provided half of the 8 species-trait pairs that did not follow the general trend of higher pedigree-based heritability 
estimates, it had some influence on the lower significance of the statistical test.

While pedigree records and performance data for dairy cattle date back to the late 1800s, together with 
widespread collection of performance data shortly thereafter52, forest tree breeding programs are generally only 
in their second or third generation at best4, and the available pedigree records and performance data are scarce. 
Thus, the presence of any preexisting inbreeding or relatedness among the ancestors of the current generation 
in typical forest genetic experiments is most often unknown unless marker-based assessment is used18,19. Con-
sequently, using the current generation average (theoretical) additive genetic relationships between individuals 
does not allow taking account of ancestral effects. This may partly explain the systematic overestimation of the 
real additive genetic relationships observed in this study when using the pedigree-based approach to estimate 
breeding values and associated genetic parameters in forest trees.

The DNA markers used to estimate identity-by-state relatedness between individuals represent the observed 
(realized genomic relationships) rather than the average (theoretical) relationship values and thus, make it 

Table 1.   Pedigree-based and marker-based estimates of narrow-sense heritability for a variety of traits of 
conifer and broadleaved tree species. a DBH = diameter at breast height. b When reported in the original papers, 
standard errors in parentheses.

Species Material Traita

Heritability (h2)b
Genetic gain in percent (5% 
selection intensity)b

ReferencePedigree-based Marker-based Pedigree-based Marker-based

Pseudotsuga menziesii Full-sibs

12-yr height 0.27 0.17
6335-yr height 0.24 0.17

38-yr wood density 0.43 0.43

Eucalyptus nitens Half-sibs

6-yr height 0.09 (0.09) 0.08 (0.05)

64
6-yr DBH 0.09 (0.09) 0.08 (0.05)

6-yr wood density 0.44 (0.13) 0.46 (0.07)

6-yr wood stiffness (1st log) 0.24 (0.11) 0.29 (0.07)

Ecalyptus benthamii Half-sibs

4.6-yr height 0.09 0.00
654.6-yr DBH 0.33 0.18

4.6-yr volume 0.30 0.14

Eucalyptus pellita Half-sibs

54-month height 0.49 (0.19) 0.13 (0.06)
6654-month DBH 0.01 (0.08) 0.07 (0.05)

61-month kraft pulp yield 0.43 (0.18) 0.10 (0.06)

E. grandis × E. urophylla

Full-sib hybrids

3-yr height 0.42 0.41

44
3-yr wood density 0.59 0.56

3-yr height 0.48 0.39

3.7-yr wood density 0.42 0.34

Outbred F2 full-sib hybrids

3-yr mean annual increment 0.33 0.26
673-yr basic wood density 0.69 0.67

5-yr screened pulp yield 0.46 0.37

Full-sib hybrids

6-yr height 0.10 (0.05) 0.19 (0.05)

51
6-yr circumference at breast 
height 0.09 (0.04) 0.18 (0.04)

5-yr basic wood density 0.23 (0.04) 0.35 (0.05)

5-yr pulp yield 0.27 (0.05) 0.46 (0.05)

E. grandis × E. urophylla, 
E.grandis × camaldulensis

F1 hybrids, Backcross, F2 
hybrids

5-yr height 0.09 (0.13) 0.14 (0.06)

68

5-yr DBH 0.41 (0.15) 0.23 (0.07)

5-yr mean annual increment 0.45 (0.14) 0.21 (0.07)

5-yr wood density 0.70 (0.16) 0.57 (0.05)

5-yr microfibril angle 0.11 (0.11) 0.13 (0.09)

E. urophylla × E. grandis Full-sib hybrid clones 32-month height 0.17 (0.07) 0.15 (0.07) 69

Populus nigra × P. deltoides Full-sib hybrid clones

1-yr height 0.61 0.40
702-yr height 0.73 0.51

2-yr stem circonference 0.73 0.51
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possible to potentially capture distant relationships and the variation around close relationships due to Mendelian 
sampling34,35. Hence, more accurate additive genetic variance and breeding values can be obtained. As indicated 
by several authors28,53, GS can have a substantial impact on the rate of genetic gains, especially because the use 
of realized genomic relationships is associated with increased accuracy in estimating the additive genetic vari-
ance and the breeding values.

One could wonder if the combination of both the pedigree and marker information would help obtain more 
accurate genetic parameter estimates. Single-step GBLUP analysis or the use of blended relationship matrices 
(H-matrix), which makes it possible to carry out an analysis combining both genotyped individuals and those for 
which only the registered pedigree is available, was proposed to take advantage of all the information available35. 
This approach would likely be useful when the number of genotyped individuals is limited. In such non-optimal 
conditions, the marker-based estimates would likely not be more accurate than those obtained with the registered 
pedigree information would, and combining both types of data might be somewhat advantageous, but we would 
not recommend it outright. When the marker density and genome coverage are inadequate or the number of 
genotyped individuals is small relative to the non-genotyped individuals, estimates obtained would likely be 
closer to the upwardly biased pedigree-based genetic parameters, because the information derived from genomic 
data would be insufficient to counterbalance the bias from using pedigree information. Thus, the best option 
would still be the use of genomic-based approaches applied to most or all of the population even in a situation 
where all pedigree errors could be recovered by pedigree reconstruction, given that genomic-based approaches 
also take into account the effects of Mendelian sampling.

One interesting finding of the current metadata analysis is that the pedigree-based approach appears to 
underestimate the importance of GxE interaction as compared with marker-based methods for traits that respond 
more strongly to variation in environmental conditions. To delineate breeding zones and select superior trees 
to assemble their breeding and production populations, tree breeders have traditionally based their decisions 
mainly on growth and adaptive traits. These traits are generally under low to moderate genetic control and 
thus, are more influenced by the environment. Hence, the use of a marker-based approach to estimate more 
precisely GxE interaction would be beneficial, especially to tree breeders who have to address the reforestation 
and plantation needs of land or territories of more heterogeneous nature. The accurate prediction of trait value 
and genetic merit to specific environments is becoming even more important for some tree breeders given the 
context of deploying efficient climate change mitigation measures such as seed transfer and assisted migration.

In addition to obtaining more precise estimates of genetic parameters and gains, GS offers other significant 
advantages over conventional breeding based on registered pedigree information. It indeed makes it possible to 
practice higher selection intensities or facilitate multi-trait selection by screening large number of candidates 
without phenotyping all of them or even phenotyping only a fraction of them2. It also allows considering for-
ward selection of superior individuals at an earlier stage and thus to hasten breeding cycles17,54,55. This increased 

Figure 1.   Pairwise comparisons between pedigree-based and marker-based estimates of (a) narrow-sense 
heritability (h2), (b) genetic gains in percentage (at 5% selection intensity, S.I.), and narrow-sense heritability 
(h2) for (c) conifers and (d) for broadleaf tree species. The symbol X represents the mean. The line in the box 
is the median. The box covers the first to the third quartiles. The dots are outliers, while the horizontal bars 
represent the minimum and the maximum values. Pedigree- and marker-based estimated genetic parameters 
and gains were significantly different based on the Wilcoxon matched-pairs signed-ranks tests.
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flexibility and efficiency will also be proving particularly important in the context of climate change, to allow 
tree breeders to adjust their selection goals more rapidly. Consequently, while being more accurate, the genetic 
gains per time unit provided by the use of GS are considerably increased as well as the benefits and profitability 
of tree breeding programs56. Although our study was specifically on forest tree species, we believe that our results 
might also have similar implications for breeders working with other plant species that are in their first steps of 
domestication.

Overall, tree breeders should take advantage of the reduction of breeding cycles and the increase in accuracy 
of genetic parameters and genetic gain estimates resulting from the use of GS approaches. Over the last decade, 
the cost of genotyping offered by commercial high-throughput genotyping platforms has also been regularly 
decreasing so that such an investment should now be viewed as affordable and essential for the rightful manage-
ment and renewed progress of tree breeding programs.

Material and methods
We conducted a meta-analytical review of scientific papers on tree genomic selection in which both marker-based 
and pedigree-based estimates of narrow-sense heritability were reported. We found 22 studies that were carried 
out over the last 10 years (Table 1 and Supplementary material 1). Among these, 14 were carried out on conifer 
breeding populations, whereas the eight remaining ones were mainly proof-of-concept studies for eucalypts. 
Results of several additional GS studies on forest tree species have also been reported. However, as pedigree-
based genetic parameters were not presented along with marker-based estimates, it was not possible to include 
these additional studies in the current metadata analysis. These studies also relied on various marker-based 
methods and in most cases, whatever the method used, the results were similar. Thus, when results were reported 
for GBLUP as well as for other marker-based methods, we preferentially presented estimates obtained with the 
GBLUP method in Table 1. When GBLUP results were not available, we indicated the marker-based method 

Table 2.   Pedigree-based and marker-based estimates of genotype-by-environment (GxE) interaction for 
a variety of traits of conifer tree species. a DBH = diameter at breast height. b When reported in the original 
papers, standard errors in parentheses.

Species Material

Population size 
parents/families/
progenies Traita

GxEb

ReferencesPedigree-based Marker-based

Picea glauca

Full-sibs 39/59/1748

17-yr height 0.73 (0.12) 0.60 (0.17)

28
17-yr DBH 0,53 (0.19) 0.48 (0.20)

7-yr wood density 0.94 (0.08) 0.95 (0.06)

17-yr microfibril 
angle 1.00 (0.00) 1.00 (0.14)

Full-sibs 212/136/1516

16 to 28-yr height 0.40 (0.17) 0.35 (0.15)

1

16 to 28-yr DBH 0.14 (0.28) 0.17 (0.24)

16 to 28-yr acoustic 
velocity 0.63 (0.16) 0.65 (0.16)

16 to 28-yr piceol 0.80 (0.11) 0.80 (0.13)

16 to 28-yr pungenol 0.72 (0.12) 0.70 (0.13)

Polycross

42/54/1513 19-yr height 0.72 (0.21) 0.60 (0.16)

17

54/38/892

19-yr DBH 0.81 (0.25) 0.70 (0.17)

18-yr wood density 0.93 (0.19) 1.00 (0.00)

19-yr wood stiffness 0.93 (0.16) 0.92 (0.09)

Picea abies

Full-sibs 35/40/726

15-yr height 0.65 (0.15) 0.52 (0.17)

2

15-yr DBH 0.00 (0.00) 0.00 (0.00)

15-yr wood density 0.65 (0.20) 0.76 (0.17)

15-yr microfibril 
angle 0.47 (0.32) 0.43 (0.32)

16-yr acoustic velocity 0.79 (0.15) 0.76 (0.16)

Cumulative weevil 
attacks 0.97 (0.08) 0.86 (0.15)

Full-sibs 55/128/1370

17-yr height 0.48 0.41

45
30-yr wood density 
(pylodin) 0.88 0.90

30-yr acoustic velocity 0.88 0.80

30-yr wood stiffness 0.88 0.94

Pinus contorta Full-sibs & half-sibs 57/42/1429

10-yr height 0.46 (0.24) 0.46 (0.20)

61,6212-yr wood density 0.87 (0.10) 0.78 (0.11)

12-yr microfibril 
angle 1.00 (-) 1.00 (-)
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used. We also listed in Supplementary material 1 all marker-based methods tested in the various studies. GBLUP 
was also the marker-based method that we used for a new study that we conducted on an open-pollinated family 
test of black spruce (Picea mariana (Mill.) B.S.P.) that we incorporated in the present analysis (see Table 1, and 
Supplementary material 2). To determine whether the genetic parameters estimated with the ABLUP method 
were different from those obtained with a marker-based method, were carried out non-parametric Wilcoxon 
matched-pairs signed-ranks tests using the wilcox.test function in the R v.3.6.1 environment57.

We opted for a non-parametric test procedure because the genetic parameters compared were obtained using 
different genetic material as well as experimental designs and marker types. Use of a parametric test would have 
required that data meet some assumptions, such as that differences in the matched-pairs follow a normal distri-
bution and that the sample of pairs is a random sample for its population. In the context of the present metadata 
analysis, these assumptions could not be met adequately. The Wilcoxon matched-pairs signed-ranks test58 is a 
non-parametric test procedure that gives more weight to a pair that shows a large difference between the two 
conditions compared than a pair that shows a small difference. This test makes it possible to tell which member 
of a pair is greater and to rank the differences in order of absolute size. With such a test, we could identify for 
each pair which member is greater, and we could make that judgment globally for the entire sample of matched 
pairs as well.
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