
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4271  | https://doi.org/10.1038/s41598-022-07355-5

www.nature.com/scientificreports

Vulnerability‑oriented directed 
fuzzing for binary programs
Lu Yu1,2, Yuliang Lu1,2*, Yi Shen1, Yuwei Li1 & Zulie Pan1

Directed greybox fuzzing (DGF) is an effective method to detect vulnerabilities of the specified target 
code. Nevertheless, there are three main issues in the existing DGFs. First, the target vulnerable 
code of the DGFs needs to be manually selected, which is tedious. Second, DGFs mainly leverage 
distance information as feedback, which neglects the unequal roles of different code snippets in 
reaching the targets. Third, most of the existing DGFs need the source code of the test programs, 
which is not available for binary programs. In this paper, we propose a vulnerability-oriented directed 
binary fuzzing framework named VDFuzz, which automatically identifies the targets and leverages 
dynamic information to guide the fuzzing. In specific, VDFuzz consists of two components, a target 
identifier and a directed fuzzer. The target identifier is designed based on a neural-network, which can 
automatically locate the target code areas that are similar to the known vulnerabilities. Considering 
the inequality of code snippets in reaching the given target, the directed fuzzer assigns different 
weights to basic blocks and takes the weights as feedback to generate test cases to reach the target 
code. Experimental results demonstrate that VDFuzz outperformed the state-of-the-art fuzzers and 
was effective in vulnerability detection of real-world programs.

Fuzzing is an “automatic testing technique that covers numerous boundary cases using invalid data (from files, 
network protocols, application programming interface calls, and other targets) as application input to better 
ensure the absence of exploitable vulnerabilities”1. It is one of the most popular vulnerability detection technolo-
gies, and has been widely used in both industry and academia. Software manufacturers apply fuzzing during the 
development of their products. For instance, the Microsoft Security Development Lifecycle requires fuzzing at 
every untrusted interface of every product2.

However, the randomness and blindness of fuzzing impedes its efficiency. To improve the effectiveness and 
efficiency of fuzzing, researchers modify fuzzing by adding feedback strategy to the generation of test cases. 
Coverage-based fuzzing3–7, leverages code coverage information as feedback to generate inputs that cover more 
paths. The core motivation of coverage-based fuzzing is that more coverage potentially increases the probability 
of triggering vulnerabilities. The more paths it covers, the higher possibility it has to discover vulnerabilities. 
Although coverage-based fuzzing technology can cover more paths, it has shown that treating all codes of the 
program equally is not appropriate because most covered codes may not contain vulnerabilities8.

Directed fuzzing, on the other hand, aims to reach specific target code area, which is different from the 
coverage-based fuzzers that extends code coverage blindly. It selects inputs strategically that lead program to 
execute target code to find potential vulnerabilities, which can be further applied in patch testing and bug 
reproduction. Traditional directed methods combine fuzzing and symbolic execution9–11. However, symbolic 
execution methods have many issues such as path explosion, which makes these methods not available in testing 
the real-world programs. Bohme et al.12 introduce the concept of DGF. They calculate the distance from the seed 
execution path to the target, and apply the energy schedule method based on simulated annealing. In this way, 
the seeds whose execute paths are closer to target code have more opportunities to mutate, generating test cases 
that are likely to reach target code. DGF aims to overcome the efficiency problem of coverage-based fuzzing and 
the scalability limitation of directed fuzzing based on symbolic execution, and it is proved to be effective in the 
field of vulnerability analysis13–17.

However, DGF faces three main challenges. The first one is automatic target identification. To conduct 
directed fuzzing, the target code must be firstly determined. Many DGFs, such as AFLGo12 and Hawkeye13, need 
to manually mark the target in advance. Other researches use auxiliary information to obtain a prior knowledge 
of target location18, but the information also needs to be extracted and merged manually. Existing automatic 
target localization methods usually focus on specific types of vulnerabilities, such as use-after-free14,15 or memory 
violation ones16,17. Consequently, DGF needs a general automatic target code localization method. The second 
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challenge comes from the inequality of code snippets during vulnerability detection process. Some code snip-
pets are related to vulnerabilities, making the execution covering them be more likely to trigger vulnerabilities8 
than others. Some researches have taken this inequality into consideration, but they only rely on static analysis 
information. Hawkeye13 and VUzzer19 focus on the inequality of edges, and determine the probability of execu-
tion edges based on the control flow graph (CFG). However, dynamic execution information is also important 
when helping to further improve the direction of fuzzing. Third, most of the existing DGFs such as AFLGo12, 
SemFuzz20, RDFuzz21 and FuzzGuard22, conduct fuzzing on open source programs. The technologies used during 
fuzzing, such as instrumentation, are for open source programs and can not be directly applied to binary fuzz-
ing. However, fuzzing technologies on binary programs are also necessary, because most commercial software 
manufacturers do not open their source code.

In this paper, we propose a vulnerability-oriented directed greybox fuzzing method on binary program whose 
source code is not available. To locate target code area automatically, we implement a graph neural network model 
to find code snippets similar to known vulnerability inspired by machine learning, especially deep learning 
technology23. Features of the vulnerability and binary code in test program are extracted and vectorized. Then 
the similarity score is calculated to find the code of test program that may be vulnerable. Compared with previ-
ous works14–17, our method has better scalability and is more general, which is not limited to detecting specific 
types of vulnerabilities. Secondly, we conduct directed fuzzing based on evolutionary algorithm (EA) considering 
the inequivalence of codes, generating test cases that are likely to reach vulnerable functions. Directed fuzzing 
benefits from feedback related to the inequivalence of functions and basic blocks covered during the execution. 
The inequivalence of functions is measured based on the similarity scores produced by neural network. The 
inequivalence of basic blocks is updated adaptively during the fuzzing process.

Based on the above methods, we implemented the corresponding prototype named VDFuzz (Vulnerability-
oriented Directed Fuzzer), and conducted extensive evaluations. To evaluate the capability of target code localiza-
tion, we use top-N accuracy metric to compare VDFuzz with Gemini24. The results show that VDFuzz achieves 
more than 96% in top-50 accuracy, performing better than Gemini. We compared VDFuzz with state-of-the-art 
fuzzing tools AFL3, AFLGo12 and VUzzer19 to evaluate the fuzzing performance. VDFuzz triggers more bugs 
than the other three tools in LAVA-M dataset25. VDFuzz can also help reproduce vulnerabilities and find new 
crashes in real-world programs (tiff2bw, mpg3gain and pdftotext).

In summary, our contributions are as follows.

•	 We propose VDFuzz, a vulnerability-oriented binary fuzzing prototype which applies the automatic localiza-
tion of target code to directed greybox fuzzing.

•	 We apply a neural network model to identify code snippets in test binary program that are likely to be vulner-
able, conducting the automatic target code localization.

•	 Combining dynamic execution information with static analysis information, we take the inequivalence of 
basic blocks and functions as feedback, guiding fuzzing to execute the target code area.

•	 To testify the performance of VDFuzz, we conducted extensive evaluations leveraging programs of the popu-
lar fuzzing benchmark LAVA-M and real-world programs. Experimental results demonstrate that VDFuzz 
performs well in reproducing CVE vulnerabilities and discovering new crashes of binaries.

System overview
The aim of VDFuzz is to identify which parts of the binary program are potentially vulnerable and try to generate 
test cases to trigger the code of these parts. Figure 1 illustrates the overview of VDFuzz, which consists of two 
main components: (1) target identifier and (2) directed fuzzer.

Given the test binary program that may contain vulnerabilities, the (1) target identifier is to identify which 
code of the program is similar to the known vulnerabilities. To this end, we design a neural network-based code 
similarity detection model that produces the similarity score between the functions in test program and the 
known vulnerable function. The functions with higher similarity score are more likely to be vulnerable, and will 
be further considered as the targets of directed fuzzing. The details of (1) target identifier is presented in “Target 
code area identification” section.

Taking the identified vulnerable code as targets, (2) directed fuzzer aims to generate the test cases that can 
reach the targets to verify whether test programs have potential vulnerabilities. We leverage evolutionary algo-
rithm (EA) to select test cases that have high fitness values as seeds, which will be further mutated to generate 
new test cases. To guide the fuzzer to execute target code areas, we assign different weights to basic blocks by 
both the static information and the dynamic execution information, and calculate the fitness according to the 
basic block weights. The “Vulnerability directed fuzzing” section describes the details of (2) directed fuzzer.

Target code area identification
To automatically identify which parts of the test program are potentially vulnerable, we propose a neural network 
model to make the similarity comparison between the functions of the test program and the known vulnerable 
functions.

Figure 2 shows the workflow of the automatic target code area identification, which consists of three steps: 
data preprocessing, feature embedding and code diffing. We firstly preprocess the test binary program, disas-
semble the binary code and extract the data and control dependence between basic blocks in each function in the 
test program. During the feature embedding process, we obtain both semantic features and structural features. 
Semantic features of instructions can be extracted and embedded by the skip-thoughts model in natural language 
processing (NLP) field. Structural features are extracted from the data flow graph and CFG. We apply the graph 
neural network to embed the structural features into matrix. Finally, code diffing is implemented by calculating 
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the similarity score according to the feature matrices. The similarity scores between functions in test program and 
vulnerability are recorded and ranked. We take the functions with high score as the target code area for fuzzing.

Structural feature extraction based on skip‑thoughts model.  Construction of semantic flow 
graph.  In this paper, we define and construct a semantic flow graph (SFG) to represent the structural features of 
functions in program. SFG contains both control and data dependencies between basic blocks. Inspired by26, we 
define the SFG in Definition 1 with basic blocks as nodes and the dependencies between basic blocks as edges.

Definition 1  A SFG is a directed property graph g = (V,E,�,s,d) where V is a set of nodes, E is a set of directed 
edges. s:E→ V and d:E→ V represent the source and destination nodes of the directed edges. The labeling func-
tion �:E→ � assigns a label with � to each edge.

In SFG, only two nodes with data dependency or control dependency can be connected by edges. Although we 
can assign different label values to edges between two nodes according to data dependence or control dependence 
relationship like26, we assign 

∑
 as {0,1} for a simpler representation. Only if there is data or control relationship 

between two nodes, the edge connecting them is labeled as 1.

Figure 1.   The overview of VDFuzz.

Figure 2.   The workflow of target identifier.
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To construct a SFG, we firstly obtain a CFG that records control dependence relationship between basic 
blocks. Based on the CFG, a depth-first search in basic block granularity is implemented to obtain the data 
dependence among basic blocks. We take the entry basic block of function as the start node, searching each avail-
able path. Variables used in each basic block are backtraced to find their definitions. For example, if the variable 
x is used but not defined in basic block B, we will backtrace to find the basic block that defines x. However, the 
analysis is done at the basic block granularity, so if the variable x is defined and used in the same basic block, it 
will be not processed. If there is a variable defined in basic block B that used in A, we will construct an edge from 
B to A and label it with 1. In this way, data dependencies and control dependencies are combined to form a SFG.

Structural feature extraction with graph autoencoder model.  After the construction of SFG, we apply neural 
network model to embed the structural features of the SFG into feature matrix. Traditional learning methods 
assume that the data samples are independent, which is not applicable to SFG, as its vertices have dependency 
with each other. Graph neural network can process graphics data, dealing with graph whose nodes have depend-
encies with some others. To represent the structural features of SFG, we adopt the graph autoencoder (GAE) 
model27 when embedding the structural features of SFG into the feature matrix.

We use the encoder of GAE model to embed the structural features of SFG into a matrix. The encoder part 
of GAE is a two-layer graph convolutional network. It takes the adjacent matrix of nodes in SFG as input, and 
generates a matrix Z representing structural features. Equations (1) and (2) demonstrate the generation of the 
output feature matrix Z

where A′ = D−1/2 × A× D−1/2 is a symmetric normalized adjacency matrix. A is the structural adjacent matrix 
of SFG and X is the feature matrix.

Semantic feature extraction in instruction granularity.  Some technologies in NLP have been suc-
cessfully applied to the representation of program code24,28–32. Inspired by the skip-thoughts model33 in NLP, 
we propose an instruction feature representation method. The skip-thoughts model in NLP can represent the 
relationship between words in a single sentence and the semantic relationship between sentences with their con-
textual sentences. The structure of binary code is similar to the structure of document in NLP. When applying 
skip-thoughts model to represent the features of binary instructions, we treat the instructions in binary code as 
words, basic blocks as sentences and functions as paragraphs.

We disassemble the binary code and extract the basic blocks during data preprocessing. A basic block is a 
straight-line code sequence with only one entry point and one exit. We embed the instruction sequence of each 
basic block, taking the instructions as the minimum input unit. We encode the instruction sequence with the 
following equations through Gated Recurrent Unit (GRU)33

where st corresponding to the tth instruction in the basic block. Besides, zt is the update gate and rt is the reset 
gate.

Feature integration and similarity score calculation.  With the feature matrix containing structural 
and semantic features, we concatenate the generated matrices for similarity calculation. The widely-used siamese 
network34,35 is applied when calculating the similarity score between functions in test program and the known 
vulnerable function.

Siamese network maps feature matrices of the two functions to a new space and judges the similarity between 
the two inputs. It has two branches sharing the same weight parameter. The mapping procedure takes the obtained 
semantic matrix V with N × d1 dimension and structural embedding matrix S with N × d2 dimension as the 
input of the function. The output matrix M is calculated by M = tanh(W1 × VT + P1 × ReLu(P2 × ST))36, 
where W1 , P1 , P2 are the hyperparameters. W1 is a p× d1 dimensional weight matrix, P1 is a p× p dimensional 
parameter matrix with P2 as a p× d2 dimensional parameter matrix. After the mapping of function feature vec-
tor, the cosine distance is used to calculate the similarity score between the two functions.

Similarity score between each function in the test program and the known vulnerable function is calculated. 
The functions with high similarity scores are more likely to have vulnerabilities. We sort the similarity scores 
and select the functions with high similarity score as the target for directed fuzzing.

(1)Z = GCN(X,A)

(2)GCN(X,A) = A
′ × Relu(A′ × X ×W0)×W1,

(3)zt = σ(Wz · [ht−1, st ])

(4)rt = σ(Wr · [ht−1, st ])

(5)h̃t = tanh(W · [rt × ht−1, st ])

(6)ht = (1− zt)× ht−1 + zt × h̃t ,
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Vulnerability directed fuzzing
To conduct the vulnerability directed fuzzing, we propose a seed selection strategy based on evolutionary algo-
rithm to generate test cases that tend to reach the target vulnerable code. Next, we introduce the design details 
of directed fuzzer.

Design of directed fuzzer.  We propose a vulnerability directed fuzzing method to guide test program to 
execute the vulnerable code based on evolutionary algorithm. The seed of fuzzing is selected by fitness value 
according to the feedback of dynamic execution trace information and the static analysis information. We cal-
culate the fitness considering the inequivalence of code snippets, which is represented by different basic block 
weights in guiding program to execute target code.

Algorithm 1 shows the pseudocode of directed fuzzing. Our directed fuzzer is based on the feedback mecha-
nism like VUzzer19. To distinguish our work from VUzzer, we color the pseudocode background differently. The 
workflow of VUzzer is shown in lines 1–7, 9–10 and 22–24 of Algorithm 1. VUzzer adopts a fuzzing strategy 
based on evolutionary algorithm (EA), starting with a set of initial inputs (seeds). The seeds are firstly selected 
as parents based on fitness score, and parents are randomly recombined and mutated to generate children (lines 
5–7). Fitness score of an input is calculated by summing the weights of the basic blocks of its executed trace 
(line 10, 22). The weight of basic blocks in VUzzer is calculated based on the CFG, which only contains static 
code information.

Algorithm 1 Directed Fuzzing
Require: seed for test binary program

1: Procedure Main(seed):

2: BBs.flag=0

3: NewTestcases=InitializeSet(seed)

4: while termination condition is not meet do
5: Parent=ParentSelection(NewTestcases)

6: Children=Recombine(parent)

7: NewTestcases=Mutate(children)

8: NoFoud=0

9: for testcase in NewTestcases do
10: CoveredBB,Trace =ExecuteAndRecord(testcase)

11: NewNodeSet=ObtainNewNode(Trace, CoveredBB)

12: if NewNodeSet==None then
13: NoFound++

14: else
15: NoFound=0

16: end if
17: if NoFound is less than threshold then
18: Weight_BB= WeightUpdate(Trace)

19: else
20: Weight_BB=InitialWeight()

21: end if

22: FitnessCal(Weight_BB)

23: end for
24: end while

25: Procedure ObtainNewNode(Trace,CoveredBB):
26: NewNodeSet=None

27: for BB in Trace do
28: if BB not in CoveredBB then
29: NewNodeSet.add(BB)

30: CoveredBB.add(BB)

31: end if
32: end for
33: return NewNodeSet

The pseudocode with the gray background in Algorithm 1 shows the added functional module of directed 
fuzzer, containing the initial basic block weight assignment and basic block weight update. We make the initial 
weight assignment of basic blocks, adding the information obtained by the target identifier (line 20). The dynamic 
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execution information is applied to update the weight of basic blocks (lines 11–18). The initial basic block weight 
assignment and weight update is further discussed in “Initial basic block weight calculation” subsection and 
“Weight update strategy based on execution trace” subsection. However, directed fuzzing faces the exploration 
and exploitation trade-off problem. The exploitation strategy is to use the updated weight as feedback to gener-
ate seeds veer fuzzer towards target code. The exploration that leads fuzzing cover new paths without updating 
the weight of basic blocks is also necessary. We set a threshold to make transition between the exploration and 
exploitation. If the number of consecutive executions that do not cover new paths exceeds the threshold, we 
apply the explore strategy and reset the weight of basic blocks to the origin weight. Otherwise the weight of basic 
blocks will be updated (lines 17–20 in Algorithm 1).

Initial basic block weight calculation.  The initial weights reflect the inequivalence of functions and 
basic blocks according to the static information. We first assign different weights to functions according to the 
similarity between them and the vulnerable function. Based on the weight of the functions, the initial basic block 
weight is assigned.

Augmented function weight calculation.  In order to expand the influence of different functions on directed 
fuzzing, we propose an augmented function weight calculation method. The function weight is calculated based 
on the similarity score obtained by the target code area identifier.

In the augmented weight calculation process, we assign higher weights to functions with the top 5% similar-
ity score. We select the minimum similarity score in the top 5% ranking as middle value, and take middle value 
as a threshold, assigning higher weights to functions with higher similarity score than middle. For function fi 
with a similarity score denoted as score(fi) which has value more than 0, the weight of fi is assigned by Eq. (7).

where α is assigned according to total function number N of test program. The functions with similarity score 
value less than 0 are regarded to be dissimilar with vulnerable function and their weight value is assigned as a 
minimum positive value.

Initial weight calculation of basic blocks.  For each basic block b, the initial weight is calculated according to the 
weight of function f it belongs to and its structure related weight based on the CFG of f. Inspired by19, we cal-
culate the structure related weight based on the probability of the transition from current basic block to others. 
Rawat et al.19 refer to the probability of executing the input of a specific basic block to the next basic block as the 
transition probability, and derive an input behavior probability model called Markov process from CFG. Each 
basic block has a probability of connecting with other basic blocks. This probability is defined as the reciprocal 
of the out-degree of the basic block, meaning the same connection probability of other basic blocks that have 
control dependence with current basic block. For basic block b, the transition probability is calculated by the 
sum of the product of the transition probability its predecessor pre(b) and the connection probability of pre(b).

We also consider the case where multiple basic blocks are transferred to the same basic block in CFG. This 
basic block has a relative large in-degree while the out-degree is not zero. We call such kind of basic blocks 
merging basic block and treat them differently. We modify the transition probability by Eq. (8), considering the 
influence of in-degree of basic blocks

where prob(ecb) is the probability value of edge ecb , and pre(b) denotes the predecessor of basic block b. For node 
c with out-degree out(c), the prob(ecb) from c to its successor b is 1/|out(c)|.

Besides, we consider the inequivalence of functions when calculating the weight of basic blocks. The initial 
weight w(b) of basic block b is calculated using Eq. (9)

where prob(b) is the transition probability of b and weight(fi) is the weight of function fi that b belongs to.

Weight update strategy based on execution trace.  During the directed fuzzing process, we add 
dynamic execution information to help generate test cases that tend to trigger program crash. The execution 
information is added through updating basic block weight with execution frequency of basic blocks during 
multiple executions. In fuzzing, low-frequency paths are more likely to be exercised by inputs that stress different 
behaviors of the program37. The feedback to fuzzing controls the generation of test cases, veering the execution 
towards paths exercised with low frequency, towards paths where vulnerabilities may lurk.

Take the execution path in Fig. 3 as an example, most test cases lead the program to execute path from node a 
to e, guaranteeing certain functional module of the program. While the path from a to h in Fig. 3 is executed less 
frequently than that from a to e. The execution path through node h can trigger a crash, so the fuzzing veering 
execution towards paths passed through node h is more efficient. We pay more attention to the nodes like h and 
give them more weights, guiding fuzzer to trigger the crash.

The successors of branch node, which are not included in the execution trace are paid more attention because 
they have more opportunities to execute different functional modules, and are more likely to trigger crashes. 

(7)weight(fi) = ⌊(min(1, score(fi)/middle))⌋ × (α − 1)× score(fi)+ score(fi),

(8)prob(b) =
∑

c∈pre(b)

prob(c)× prob(ecb)× 1/|in(b)|,

(9)w(b) = 1/prob(b)× weight(fi),
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We mark such kind of nodes as margin nodes, which is defined in Definition 2 using suc(bi) to represent the 
successors of basic block bi.

Definition 2  For basic block node bi contained in the execution trace {b1, b2, . . . bn} , b’ is defined as a margin 
node if b’ ∈ suc(bi ) and b’  ∈ {b1, b2, . . . bn}.

In Fig. 3, nodes g, h and f are all marked as margin nodes according to Definition 2 while the execution trace 
is {a, b, . . . c, d, e} . Considering the efficiency, we propose a heuristic basic block weight update strategy, which 
is implemented in the function WeightUpdate in Algorithm 1. The basic block weight update process is based 
on the execution trace containing basic block sequence and takes the following steps: 

1.	 For the execution trace containing basic block sequence Trace = {b1, b2, . . .} during each execution, if all 
the basic blocks in Trace have been analyzed, the update process is terminated, else we select basic block bi 
that is not analyzed from Trace and go to step 2.

2.	 Analyze basic block bi and obtain the successor of bi in the control flow graph (CFG). If bi has multiple suc-
cessors(bi is a branch basic block), mark the successors of bi as suc(bi) and go to step 3, else go to step 1.

3.	 If the weight of all basic blocks in suc(bi) is updated, go to step 1. For basic block c′ in suc(bi) whose weight has 
not been updated, if the basic block c′ is in the execution trace Trace, it is not a margin node, and its weight 
is updated in step 4. If c′ is not in Trace, it can be concluded that c′ is a margin node and will be updated in 
step 5.

4.	 The weight of basic block c′ weight(c′) is updated by weight(c′) = max(weight(c′)× γ ,minW) in which γ is 
less than 1, go to step 3.

5.	 The weight of basic block c′ weight(c′) is updated by weight(c′) = min(weight(c′)× δ,maxW) in which δ is 
more than 1, and go to step 3.

To sum up, the weight of basic block is updated according to whether the basic block is margin node or not 
during each execution process. We do not need to record the margin node in extra space, instead, the weight of 
basic block after the branch basic block is updated by multiplied by different coefficients ( γ or δ ) according to 
whether it is in the execution trace or not. We set the maximum weight value maxW and minimum weight value 
minW to prevent the weight from being too large or too small. After each execution of the program, the weight 
of basic blocks is updated by the steps above. For the basic block that is executed less times during multiple 
executions, its weight can be increased in one execution process and decreased in another execution process. 
However, using the update strategy discussed above, the weight of such basic blocks will still gradually increase 
after multiple executions, making them have more opportunities to be covered in future execution.

Results
In the experiment, we aim to answer the following research questions:

RQ1. Ability of vulnerable code identification. Can VDFuzz automatically locate potential vulnerable code 
areas?

RQ2. Performance of CVE vulnerability reproduction. The reproduction of vulnerability is to generate 
input that triggers a crash related to a particular vulnerability when its detail is not released. We want to figure 
out whether VDFuzz can generate test cases that trigger crashes related to a given CVE vulnerability without 
exploitation detail.

RQ3. Performance of finding crashes. Can VDFuzz perform better than the state-of-the-art tools when 
finding labeled bugs in LAVA-M and find new crashes in real-world programs?

Figure 3.   Example of nodes with different execution frequencies.
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RQ4. Directed fuzzing overhead. The weight update is implemented almost after each execution, increasing 
the time overhead of fuzzing. Is the time cost of weight update acceptable considering the efficiency of fuzzing?

Vulnerability localization performance (RQ1).  To verify the performance of vulnerability localization, 
we took the real-world firmware files30 as our test programs, aiming to find out whether the firmware contains 
related third-party vulnerabilities. If the vulnerable code area can be obtained, our target code area localization 
method is proven to be effective. The CVE vulnerabilities affecting OpenSSL and Busybox were selected because 
that real-world firmware files contain the OpenSSL and Busybox libraries.

We take the metric top-N accuracy used in the classification problem. If the firmware contains the vulner-
ability and it has a similarity score ranking in Top-N, the vulnerability is counted as detected. The top-N accuracy 
represents the ratio of the number of firmware that are detected to have vulnerability (with vulnerability has a 
top-N ranking similarity score) to the total number of firmware files containing vulnerabilities. For each CVE 
vulnerability, we collected k firmware files containing it and made comparison between functions in firmware 
files and the known vulnerable function. t is used to represent the number of firmware files containing vulner-
abilities detected by our method. The top-N accuracy in this paper is the ratio of t to k.

To evaluate the performance of VDFuzz, we compared it with the state-of-the-art code similarity detection 
model, Gemini24, which is designed based on graph embedding neural network. During the evaluation, we 
selected the vulnerabilities in third-party libraries and detected whether the firmware files that used the third-
party library contain the related vulnerabilities. We chose three CVE vulnerabilities related to OpenSSL and Bus-
ybox third-party library including CVE-2018-20679, CVE-2015-3197 and CVE-2015-1794. Considering third-
party library used by firmware files contains 103 order of magnitude functions, we used top-1, top-10 and top-50 
accuracy to compare VDFuzz with Gemini. For example, libssl.so used by DCS-1100 includes 1048 functions.

After calculating the similarity scores and ranking them, the top-1, top-10 and top-50 accuracy of VDFuzz 
and Gemini are shown in Table 1. It can be seen that the top-1 accuracy of both tools are relatively low, which 
is no more than 16%, while the top-10 accuracy is much higher than top-1 accuracy. This is mainly because the 
target localization is based on static analysis, making some functions having similar features. When mapping 
functions with similar features, the matrices with close distance obtain close similarity scores. However, the top-
50 accuracy of VDFuzz is more than 96% in finding the three vulnerabilities. In addition, the top-50 accuracy 
of VDFuzz is higher than Gemini, which means that the feature extracted by VDFuzz can better represent the 
binary code. Although the top-1 and top-10 accuracy of VDFuzz is not as high as the top-50 accuracy, considering 
the thousands of functions contained in the third-party library, we can still narrow the scope of program space 
search and implement the localization of target code.

Reproduction of vulnerabilities (RQ2).  Vulnerability reproduction is one of the most important appli-
cation scenarios of directed fuzzing. Vulnerability report may contain only a brief description of the affected 
function and the type of attack it caused. For safety, details of vulnerabilities will not be released in most cases. 
This makes the reproduction of CVE vulnerability necessary to give further analysis.

Based on the CVE description information with the affected function name, we aimed to generate test 
cases that can reproduce the crash. We chose mpg321, mp3gain and pdftotext applications compiled with 
AddressSanitizer38. AddressSanitizer can record the context information when a crash is triggered. Based on 
the information of AddressSanitizer, we could validate whether the crashes are related to the CVE vulnerabilities. 
Table 2 shows the CVE IDs and related vulnerability that VDFuzz can reproduce. We took the reproduction of 
CVE-2017-11552 as an example. The related vulnerability of CVE-2017-11552 is the mad_decoder_run function 
in mpg321 application. The crash details are shown in Fig. 6 of “Appendix” section.

Table 1.   Top-N accuracy of vulnerability detection in real-world firmware.

CVE-ID

VDFuzz Gemini

Top-1 (%) Top-10 (%) Top-50 (%) Top-1 (%) Top-10 (%) Top-50 (%)

CVE-2018-20679 15.4 73.1 96.1 7.7 61.5 80.8

CVE-2015-3197 10.8 81.9 97.6 3.6 59.0 84.3

CVE-2015-1794 8.8 75.0 97.1 3.0 54.4 75

Table 2.   CVE vulnerability reproduced by VDFuzz.

Program CVE-ID Vulnerability

mpg321 CVE-2017-11552 mad_decoder_run

mpg321 CVE-2019-14247 scan

mp3gain CVE-2018-10777 WriteMP3GainAPETag

pdftotext CVE-2019-13281 decodeImage
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Performance of finding crashes (RQ3).  Crashes on LAVA‑M datasets.  In this section, VDFuzz is com-
pared with the most relevant work VUzzer, which also implements directed fuzzing on binaries. Considering 
that AFLGo is a classic directed greybox fuzzing tool and is based on AFL, we also compared VDFuzz with 
AFLGo and AFL.

LAVA-M is a widely used dataset containing four programs (base64, md5, uniq and who) with multiple 
automatically injected vulnerabilities25. Each bug has a unique id number. Therefore, we can easily determine 
whether the triggered bug is unique to others. It is usually used as a benchmark for evaluating the bug detection 
capability of fuzzers19,39–42.

Table 3 presents the number of bugs found by VDFuzz, VUzzer, AFL and AFLGo. It can be observed that 
VDFuzz triggers more bugs than the other fuzzers. AFL and AFLGo can not trigger the crash of base64 and 
md5sum, and their detected bug number in other two files is far less than that of VUzzer and VDFuzz. This may 
be mainly because the feedback used by AFL is coverage information, and AFLGo uses static distance metric. 
VDFuzz is based on the evolutionary algorithm of VUzzer. Still, it can detect more bugs than VUzzer in all the 
four programs. VUzzer can not detect any crashes on md5sum, while VDFuzz can find 28 unique marked bugs. 
In addition, VDFuzz triggers a stack crash that is not marked in the who program shown in Fig. 5 in “Appendix” 
section. From the discussion above, the performance of VDFuzz is better than the other three tools.

Crashes on real‑world programs.  We also investigated the effectiveness of VDFuzz in real-world programs. 
VDFuzz was applied to three programs, which is tiff2bw (v3.6.1), mp3gain (v1.5.2) and pdftotext (v2.0), and 
found four new crashes. However, considering the security related vulnerability management regulations, we list 
only the crash description by AddressSanitizer in Table 4 instead the detail of the crash.

Time overhead of directed fuzzing (RQ4).  Vulnerability directed fuzzing process consists of three main 
stages related to the time overhead: augmented function weight calculation, initial basic block weight assign-
ment and basic block weight update. Both augmented function weight calculation and the initial basic block 
weight assignment are done once-for-all. However, the basic block weight update is done after almost every 
dynamic execution during fuzzing. Therefore, in this section, we mainly focus on the time cost of basic block 
weight update.

We took binaries in LAVA-M and real-world binaries (tiff2bw, mpg321, mp3gain and pdftotext40) as our test 
programs. We recorded the time cost of the weight update process and the size of each execution. The size of 
execution trace refers to the number of basic blocks executed. The size of execution trace is divided into five 
intervals: [0,1000), [1000, 2000), [2000, 4000), [4000, 6000), [6000, ∞ ). The average weight update time cost of the 
five intervals is 0.00096, 0.00084, 0.00067, 0.00078 and 0.00081 seconds respectively. Figure 4 a) and b) show the 
average time cost of weight update and the distribution of time cost in each interval. In Fig. 4, the x-axis records 
the range of execution trace size, and the y-axis records the related time cost. As can be seen from Fig. 4b, the 
size of execution trace is concentrated near the median line, which shows the average time cost is close to each 
other regardless of the time interval. Program mp3gain and who have an average execution trace size of 1068.4 
and 3435.7, making the average weight update time 0.897 and 2.3 seconds. The time overhead of basic block 
update is acceptable, guaranteeing the efficiency of directed fuzzing.

Related work
In this section, we introduce the research work related with VDFuzz.

Table 3.   Unique bugs found by fuzzers in LAVA-M.

AFL AFLGo VUzzer VDFuzz

Uniq 9 10 27 28

Base64 0 0 17 20

md5sum 0 0 – 28

Who 1 1 50 165

Total 10 11 94 241

Table 4.   Unknown crashes found by VDFuzz.

Program Version Crash description by Asan

tiff2bw 3.6.1 Related to tif_dirinfo.c

tiff2bw 3.6.1 Floating point exception

mp3gain 1.5.2 Global buffer overflow

pdftotext 2.0 Heap-buffer-overflow
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Symbolic execution based fuzzing.  Most of the early directed fuzzing technologies are combined with 
symbolic execution9–11,43. Such fuzzers can reach a deeper path, but they are usually not scalable because of the 
complex constraint solving. Driller44 combines symbolic execution with concrete execution to generate test cases 
when fuzzing process can not find new paths. Driller applies symbolic execution during fuzzing process, while 
DeepFuzzer45 utilizes the symbolic execution only when generating initial seeds, which improves the efficiency.

Coverage‑based fuzzing.  Coverage-based fuzzing aims to cover as many paths as possible to detect bugs. 
Intuitively, covering more paths means more comprehensive testing of the program. AFL is the outstanding 
fuzzer of this type. AFLFast37 models coverage-based fuzzing as a Markov chain, and optimizes AFL’s strategy of 
energy assignment according to the path execution probability. Angora46 and FairFuzz47 mutate specific bytes of 
the input to explore more rare branches (less executed branches) to increase code coverage. NEUZZ48 simulates 
the branch behavior of program using neural network. It strategically modifies certain bytes of seeds by optimi-
zation such as gradient descent to cover new paths. However, the coverage-based fuzzing sometimes can not find 
the vulnerability efficiently. This is because its path exploration strategy treats all code equally instead of being 
specific to vulnerable code.

Directed greybox fuzzing.  AFLGo12 leverages simulated annealing algorithm to generate test cases that 
are closer to the targets. Hawkeye13 combines the static and dynamic analysis method to make seed selection, 
energy distribution and adaptive mutation. It records the execution trace and calculates the similarity met-
ric between the target trace and trace of seed. Later researches make modification on metrics that help seed 
selection18,20,49–51. Most researches apply directed greybox fuzzing to program with source code rather than 
binary programs. For example, AFLGo relies on the source code to calculate the distance between functions and 
the distance between basic blocks.

Besides, some researchers focus on certain-typed target during fuzzing14–17. UAFuzz14 targets use-after-free 
(UAF) vulnerability and takes sequence similarity metrics between seed and target UAF vulnerability execution 
trace. UAFL15 also leverages target sequence coverage as feedback to find UAF vulnerabilities. EM-Fuzz52 focuses 
on memory vulnerability by making memory sensitive operations instrumentation.

(a) Time overhead of basic block weight update. (b) Distribution of time overhead.

Figure 4.   Basic block weight update time overhead.

Figure 5.   Crash triggered in program who.
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With the development of machine learning, neural network is also applied to improve the efficiency of fuzzing. 
V-Fuzz41 makes target vulnerability prediction and applies genetic algorithm to guide fuzzing to target vulner-
able area. FuzzGuard22 uses deep neural network model to predict the reachability of the test cases and filter 
them before execution. Both V-Fuzz and FuzzGuard identify the vulnerable code using the predictive model, 
calculating the possibility of vulnerabilities in the code. While we make similarity comparison on target code to 
automatically identify multiple code areas that may be vulnerable.

Conclusion
In this paper, we propose VDFuzz, a vulnerability-oriented directed fuzzing framework for binary programs. 
Different from previous directed greybox fuzzing methods that identify target code area manually or focus on 
certain type of vulnerabilities, VDFuzz leverages a neural-network based code similarity detection model to 
automatically identify the vulnerable code as the target. Besides, VDFuzz takes both static and dynamic informa-
tion to help generate seeds considering the inequality of basic blocks in steering the fuzzer towards the target. 
VDFuzz is applicable to binary programs whose source code is not released. Most of the directed greybox fuzz-
ing methods make program instrumentation on target source code to record the static distance between code 
snippet or dynamic code coverage during execution. Instead, in VDFuzz we propose a heuristic weight strategy 
considering the inequality of both basic blocks and functions to help select seeds that are more likely to trigger 
vulnerabilities, which does not need the source code of test program.

We have evaluated VDFuzz on LAVA-M dataset and 4 real-world programs (mpg321,mp3gain,pdftotext and 
tiff2bw). In LAVA-M, VDFuzz can find total 241 bugs containing 240 labeled bugs and one new stack-related 
crash. When fuzzing the real-world programs, VDFuzz can reproduce 4 CVE vulnerabilities and 4 new crashes, 
proving the effectiveness of VDFuzz.

Future work includes developing heuristics on combining taint analysis and lightweight symbolic execution 
method to make magic-byte detection and cover larger search space.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.

Appendix
See Figs. 5 and 6.

Received: 3 October 2021; Accepted: 17 February 2022

References
	 1.	 Oehlert, P. Violating assumptions with fuzzing. IEEE Security Privacy 3, 58–62 (2005).
	 2.	 Howard, M. & Lipner, S. The Security Development Lifecycle Vol. 8 (Microsoft Press Redmond, 2006).
	 3.	 AFL. American Fuzzy Lop. https://​lcamt​uf.​cored​ump.​cx/​afl/. Accessed 23 Sep 2021.
	 4.	 Blair, W. et al. Hotfuzz: Discovering algorithmic denial-of-service vulnerabilities through guided micro-fuzzing. arXiv preprint 

arXiv:​2002.​03416 (2020).
	 5.	 Schumilo, S., Aschermann, C., Gawlik, R., Schinzel, S. & Holz, T. kafl: Hardware-assisted feedback fuzzing for os kernels. in 26th 

USENIX Security Symposium USENIX Security 17), 167–182 (2017).
	 6.	 Wang, M. et al. Riff: Reduced instruction footprint for coverage-guided fuzzing. in 2021 USENIX Annual Technical Conference 

USENIX ATC 21), 147–159 (2021).
	 7.	 Zhou, C., Wang, M., Liang, J., Liu, Z. & Jiang, Y. Zeror: Speed up fuzzing with coverage-sensitive tracing and scheduling. in Pro‑

ceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, 858–870 (2020).
	 8.	 Shin, Y. & Williams, L. Can traditional fault prediction models be used for vulnerability prediction? Empirical Softw. Eng. 1, 25–59 

(2013).
	 9.	 Ganesh, V., Leek, T. & Rinard, M. Taint-based directed whitebox fuzzing. in 2009 IEEE 31st International Conference on Software 

Engineering, 474–484 (IEEE, 2009).
	10.	 Ma, K.-K., Phang, K. Y., Foster, J. S. & Hicks, M. Directed symbolic execution. in International Static Analysis Symposium, 95–111 

(Springer, 2011).
	11.	 Marinescu, P. D. & Cadar, C. Katch: High-coverage testing of software patches. in Proceedings of the 2013 9th Joint Meeting on 

Foundations of Software Engineering, 235–245 (2013).
	12.	 Böhme, M., Pham, V.-T., Nguyen, M.-D. & Roychoudhury, A. Directed greybox fuzzing. in Proceedings of the 2017 ACM SIGSAC 

Conference on Computer and Communications Security, 2329–2344 (2017).
	13.	 Chen, H. et al. Hawkeye: Towards a desired directed grey-box fuzzer. in Proceedings of the 2018 ACM SIGSAC Conference on 

Computer and Communications Security, 2095–2108 (2018).

Figure 6.   mad_decoder_run vulnerability example.

https://lcamtuf.coredump.cx/afl/
http://arxiv.org/abs/2002.03416


12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4271  | https://doi.org/10.1038/s41598-022-07355-5

www.nature.com/scientificreports/

	14.	 Nguyen, M.-D., Bardin, S., Bonichon, R., Groz, R. & Lemerre, M. Binary-level directed fuzzing for use-after-free vulnerabilities. 
In 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020), 47–62 (2020).

	15.	 Wang, H. et al. Typestate-guided fuzzer for discovering use-after-free vulnerabilities. in 2020 IEEE/ACM 42nd International 
Conference on Software Engineering (ICSE), 999–1010 (IEEE, 2020).

	16.	 Wen, C. et al. Memlock: Memory usage guided fuzzing. in Proceedings of the ACM/IEEE 42nd International Conference on Software 
Engineering, 765–777 (2020).

	17.	 Coppik, N., Schwahn, O. & Suri, N. Memfuzz: Using memory accesses to guide fuzzing. in 2019 12th IEEE Conference on Software 
Testing, Validation and Verification (ICST), 48–58 (IEEE, 2019).

	18.	 Kim, J. & Yun, J. Poster: Directed hybrid fuzzing on binary code. in Proceedings of the 2019 ACM SIGSAC Conference on Computer 
and Communications Security, 2637–2639 (2019).

	19.	 Rawat, S. et al. Vuzzer: Application-aware evolutionary fuzzing. NDSS 17, 1–14 (2017).
	20.	 You, W. et al. Semfuzz: Semantics-based automatic generation of proof-of-concept exploits. in Proceedings of the 2017 ACM SIGSAC 

Conference on Computer and Communications Security, 2139–2154 (2017).
	21.	 Mathis, B. et al. Parser-directed fuzzing. in Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design 

and Implementation, 548–560 (2019).
	22.	 Zong, P. et al. Fuzzguard: Filtering out unreachable inputs in directed grey-box fuzzing through deep learning. in 29th USENIX 

Security Symposium USENIX Security 20), 2255–2269 (2020).
	23.	 Yu, X. et al. Adagum: An adaptive graph updating model-based anomaly detection method for edge computing environment. 

Security Commun. Netw. 2021 (2021).
	24.	 Xu, X. et al. Neural network-based graph embedding for cross-platform binary code similarity detection. in Proceedings of the 

2017 ACM SIGSAC Conference on Computer and Communications Security, 363–376 (2017).
	25.	 Dolan-Gavitt, B. et al. Lava: Large-scale automated vulnerability addition. in 2016 IEEE Symposium on Security and Privacy (SP), 

110–121 (IEEE, 2016).
	26.	 Yamaguchi, F. Pattern-based vulnerability discovery. Ph.D. thesis, Niedersächsische Staats-und Universitätsbibliothek Göttingen 

(2015).
	27.	 Kipf, T. N. & Welling, M. Variational graph auto-encoders. arXiv preprint arXiv:​1611.​07308 (2016).
	28.	 Grieco, G. et al. Toward large-scale vulnerability discovery using machine learning. in Proceedings of the Sixth ACM Conference 

on Data and Application Security and Privacy, 85–96 (2016).
	29.	 Lee, Y. J., Choi, S.-H., Kim, C., Lim, S.-H. & Park, K.-W. Learning binary code with deep learning to detect software weakness. in 

KSII The 9th International Conference on Internet (ICONI) 2017 Symposium (2017).
	30.	 Feng, Q. et al. Scalable graph-based bug search for firmware images. in Proceedings of the 2016 ACM SIGSAC Conference on Com‑

puter and Communications Security, 480–491 (ACM, 2016).
	31.	 Gao, J., Yang, X., Fu, Y., Jiang, Y. & Sun, J. Vulseeker: A semantic learning based vulnerability seeker for cross-platform binary. in 

Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, 896–899 (ACM, 2018).
	32.	 Zuo, F. et al. Neural machine translation inspired binary code similarity comparison beyond function pairs. arXiv preprint arXiv:​

1808.​04706 (2018).
	33.	 Kiros, R. et al. Skip-thought vectors. Adv. Neural Inf. Process. Syst. 3294–3302 (2015).
	34.	 Chopra, S., Hadsell, R. & LeCun, Y. Learning a similarity metric discriminatively, with application to face verification. in 2005 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), Vol. 1, 539–546 (IEEE, 2005).
	35.	 Norouzi, M., Fleet, D. J. & Salakhutdinov, R. R. Hamming distance metric learning. Adv. Neural Inf. Process. Syst. 1061–1069 (2012).
	36.	 Yu, L., Lu, Y., Shen, Y., Huang, H. & Zhu, K. Bedetector: A two-channel encoding method to detect vulnerabilities based on binary 

similarity. IEEE Access 9, 51631–51645 (2021).
	37.	 Böhme, M., Pham, V.-T. & Roychoudhury, A. Coverage-based greybox fuzzing as markov chain. IEEE Trans. Softw. Eng. 45, 489–506 

(2017).
	38.	 Serebryany, K., Bruening, D., Potapenko, A. & Vyukov, D. Addresssanitizer: A fast address sanity checker. in 2012 USENIX Annual 

Technical Conference USENIX ATC 12), 309–318 (2012).
	39.	 Li, Y. et al. Steelix: Program-state based binary fuzzing. in Proceedings of the 2017 11th Joint Meeting on Foundations of Software 

Engineering, 627–637 (2017).
	40.	 Peng, H., Shoshitaishvili, Y. & Payer, M. T-fuzz: Fuzzing by program transformation. in 2018 IEEE Symposium on Security and 

Privacy (SP), 697–710 (IEEE, 2018).
	41.	 Li, Y. et al. V-fuzz: Vulnerability-oriented evolutionary fuzzing. arXiv preprint arXiv:​1901.​01142 (2019).
	42.	 Li, Y. et al. Unifuzz: A holistic and pragmatic metrics-driven platform for evaluating fuzzers. in 30th USENIX Security Symposium 

USENIX Security 21) (2021).
	43.	 Person, S., Yang, G., Rungta, N. & Khurshid, S. Directed incremental symbolic execution. Acm Sigplan Notices 46, 504–515 (2011).
	44.	 Stephens, N. et al. Driller: Augmenting fuzzing through selective symbolic execution. NDSS 16, 1–16 (2016).
	45.	 Liang, J. et al. Deepfuzzer: Accelerated deep greybox fuzzing. IEEE Trans. Dependable Secure Comput. 18(6), 2675–2688 (2019).
	46.	 Chen, P. & Chen, H. Angora: Efficient fuzzing by principled search. in 2018 IEEE Symposium on Security and Privacy (SP), 711–725 

(IEEE, 2018).
	47.	 Lemieux, C. & Sen, K. Fairfuzz: A targeted mutation strategy for increasing greybox fuzz testing coverage. in Proceedings of the 

33rd ACM/IEEE International Conference on Automated Software Engineering, 475–485 (2018).
	48.	 She, D. et al. Neuzz: Efficient fuzzing with neural program smoothing. in 2019 IEEE Symposium on Security and Privacy (SP), 

803–817 (IEEE, 2019).
	49.	 Liang, H., Zhang, Y., Yu, Y., Xie, Z. & Jiang, L. Sequence coverage directed greybox fuzzing. in 2019 IEEE/ACM 27th International 

Conference on Program Comprehension (ICPC), 249–259 (IEEE Computer Society, 2019).
	50.	 Liang, H., Jiang, L., Ai, L. & Wei, J. Sequence directed hybrid fuzzing. in 2020 IEEE 27th International Conference on Software 

Analysis, Evolution and Reengineering (SANER), 127–137 (IEEE, 2020).
	51.	 Österlund, S., Razavi, K., Bos, H. & Giuffrida, C. Parmesan: Sanitizer-guided greybox fuzzing. in 29th USENIX Security Symposium 

USENIX Security 20), 2289–2306 (2020).
	52.	 Gao, J. et al. Em-fuzz: Augmented firmware fuzzing via memory checking. IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. 

39, 3420–3432 (2020).

Acknowledgements
This work is supported by the National Key Research and Development Program of China (No. 2017YFB0802900).

Author contributions
Data curation, Y.L.; Formal analysis, L.Y.; Investigation, Y.L.; Methodology,Y.S.; Project administration, L.Y.; 
Resources, Y.L.; Software, Y.S.; Supervision, Y.L.; Validation, Y.L.; Writing—original draft, Z.P.; Writing—review 
and editing, Y.L. and Y.L.

http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1808.04706
http://arxiv.org/abs/1808.04706
http://arxiv.org/abs/1901.01142


13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4271  | https://doi.org/10.1038/s41598-022-07355-5

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Vulnerability-oriented directed fuzzing for binary programs
	System overview
	Target code area identification
	Structural feature extraction based on skip-thoughts model. 
	Construction of semantic flow graph. 
	Structural feature extraction with graph autoencoder model. 

	Semantic feature extraction in instruction granularity. 
	Feature integration and similarity score calculation. 

	Vulnerability directed fuzzing
	Design of directed fuzzer. 
	Initial basic block weight calculation. 
	Augmented function weight calculation. 
	Initial weight calculation of basic blocks. 

	Weight update strategy based on execution trace. 

	Results
	Vulnerability localization performance (RQ1). 
	Reproduction of vulnerabilities (RQ2). 
	Performance of finding crashes (RQ3). 
	Crashes on LAVA-M datasets. 
	Crashes on real-world programs. 

	Time overhead of directed fuzzing (RQ4). 

	Related work
	Symbolic execution based fuzzing. 
	Coverage-based fuzzing. 
	Directed greybox fuzzing. 

	Conclusion
	References
	Acknowledgements


