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Data‑driven discovery 
of Green’s functions 
with human‑understandable deep 
learning
Nicolas Boullé1*, Christopher J. Earls2,3 & Alex Townsend2,4

There is an opportunity for deep learning to revolutionize science and technology by revealing its 
findings in a human interpretable manner. To do this, we develop a novel data-driven approach for 
creating a human–machine partnership to accelerate scientific discovery. By collecting physical system 
responses under excitations drawn from a Gaussian process, we train rational neural networks to 
learn Green’s functions of hidden linear partial differential equations. These functions reveal human-
understandable properties and features, such as linear conservation laws and symmetries, along with 
shock and singularity locations, boundary effects, and dominant modes. We illustrate the technique 
on several examples and capture a range of physics, including advection–diffusion, viscous shocks, 
and Stokes flow in a lid-driven cavity.

Deep learning (DL) holds promise as a scientific tool for discovering elusive patterns within the natural and 
technological world1,2. These patterns hint at undiscovered partial differential equations (PDEs) that describe 
governing phenomena within biology, fluid dynamics, and physics. From sparse and noisy laboratory observa-
tions, we aim to learn mechanistic laws of nature3,4. Recently, scientific computing and machine learning have 
successfully converged on PDE discovery5–8, PDE learning9–14, and symbolic regression15,16 as promising means 
for applying machine learning to scientific investigations. These methods attempt to discover the coefficients of 
a PDE model or learn the operator that maps excitations to system responses. The recent DL techniques address-
ing the latter problem are based on approximating the solution operator associated with a PDE by a neural 
network9–13. While excellent for solving PDEs, we consider them as “black box” and focus here on a data-driven 
strategy that improves human understanding of the governing PDE model.

In contrast, we offer a radically different, alternative approach that is backed by theory17 and infuse an inter-
pretation in the model by learning well-understood mathematical objects that imply underlying physical laws. 
We devise a DL method, employed for learning the Green’s functions18 associated with unknown governing linear 
PDEs, and train the neural networks (NNs) by collecting physical system responses from random excitation 
functions drawn from a Gaussian process. The empirically derived Green’s functions relate the system’s response 
(or PDE solution) to a forcing term, and can then be used as a fast reduced-order PDE solver. The existing Graph 
Kernel Network12 and DeepGreen11 techniques also aim to learn solution operators of PDEs based on Green’s 
functions. While they show competitive performance in predicting the solution of the PDE for new forcing func-
tions, they fail to capture Green’s functions accurately, which makes the extraction of qualitative and quantitative 
features of the physical system challenging.

Our primary objective is to study the discovered Green’s functions for clues regarding the physical proper-
ties of the observed systems. Our approach relies on a novel and adaptive neural network architecture called a 
rational neural network19, which has higher approximation power than standard networks and carries human-
understandable features of the PDE, such as shock and singularity locations.

In this paper, we use techniques from deep learning to discover the Green’s function of linear differential 
equations Lu = f  from input–output pairs (f, u), as opposed to directly learning L , or model parameters. In this 
sense, our approach is agnostic to the forward PDE model, but nonetheless offers insights into its physical prop-
erties. There are several advantages to learning the Green’s function. First, once the Green’s function is learned 
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by a neural network (NN), it is possible to compute the solution, u, for a new forcing term, f, by evaluating an 
integral (see Eq. (1)); which is more efficient than training a new NN. Second, the Green’s function associated 
with L contains information about the operator, L , and the type of boundary constraints that are imposed; which 
helps uncover mechanistic understanding from experimental data. Finally, it is easier to train NNs to approxi-
mate Green’s functions, which are square-integrable functions under sufficient regularity conditions18,20,21, than 
trying to approximate the action of the linear differential operator, L , which is not bounded22. Also, any prior 
mathematical and physical knowledge of the operator, L , can be exploited in the design of the NN architecture, 
which could enforce a particular structure such as symmetry of the Green’s function.

Results
Deep learning Green’s functions.  Our DL approach (see  Fig.  1) begins with excitations (or forcing 
terms), {fj}Nj=1 , sampled from a Gaussian process (GP) having a carefully designed covariance kernel17, and cor-
responding system responses, {uj}Nj=1 . It is postulated that there is an unknown linearized governing PDE so that 
Luj = fj . The selection of random forcing terms is theoretically justified17 and enables us to learn the dominant 
eigenmodes of the solution operator, using only a small number, N, of training pairs. The Green’s function, G, 
and homogeneous solution, uhom , which encodes the boundary conditions associated with the PDE, satisfy

and are approximated by two rational neural networks: NG and Nhom.
A rational NN consists of a NN with trainable rational activation functions whose coefficients are learned 

simultaneously with the weights and biases of the network. Rational NNs have better approximation properties 
than standard NNs19, both in theory and in practice, which makes them ideal for the present application. The 
parameters of the NNs representing the Green’s function and homogeneous solution are simultaneously learned 
through minimization of the loss function displayed in Fig. 1D (Supplementary Material, Sect. 2). We discretize 
the integrals in the loss function at the specified measurement locations {xi}Nu

i=1 , within the domain, � , and forc-
ing term sample points, {yi}

Nf

i=1 , respectively, using a quadrature rule.
In the Supplementary Material, Fig. S4, we also present numerical results obtained from sparse training data, 

or noisy spatial measurements, which demonstrate the robustness of our method (Supplementary Material, 
Sect. 4). Additionally, our DL technique is data-driven and requires minimal by-hand parameter tuning. In fact, 
all the numerical examples described here and in the Supplementary Material are performed using a unique 
rational NN architecture, initialization procedure, and optimization algorithm.

Human‑understandable features.  The trained NNs contain both the desired Green’s function and 
homogeneous solution, which we evaluate and visualize to glean novel insights concerning the underlying, gov-

(1)uj(x) =

∫

�

G(x, y)fj(y) dy + uhom(x), x ∈ �,

Figure 1.   Schematic of our DL method for learning Green’s functions from input-output pairs. (A) The 
covariance kernel of the Gaussian process (GP), which is used to generate excitations. (B) The random 
excitations and the system’s response are recorded (C). (D) A loss function is minimized to train rational NNs 
(E). (F) The learned Green’s function and homogeneous solution are visualized by sampling the NNs.
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erning PDE (Fig. 2). In this way, we achieve one part of our human interpretation goal: finding a link between 
the properties of the Green’s function and that of the underlying differential operator and solution constraints.

As an example, if the Green’s function is symmetric, i.e., G(x, y) = G(y, x) for all x, y ∈ � , then the operator 
L is self-adjoint. Another aspect of human interpretability is that the poles of the trained rational NN tend to 
cluster in a way that reveal the location and type of singularities in the homogeneous solution. Finally, there is a 
direct correspondence between the dominant eigenmodes and eigenvalues (as well as the singular vectors and 
singular values) of the learned Green’s function and those of the differential operator. The correspondence gives 
insight into the important eigenmodes that govern the system’s behavior (Supplementary Material, Sect. 5).

Numerical examples.  As a first example, we consider a second-order differential operator having suitable 
variable coefficients to model a viscous shock at x = 023. The system’s responses are obtained by solving the PDE, 
with Dirichlet boundary conditions, using a spectral numerical solver for each of the N = 100 random forcing 
terms, sampled from a GP having a squared-exponential covariance kernel17. The learned Green’s function is dis-
played in Fig. 3A and satisfies the following symmetry relation: G(x, y) = G(−x,−y) , indicating the presence of 
a reflective symmetry group within the underlying PDE. Indeed, if u is a solution to Lu = f  with homogeneous 
boundary conditions, then u(−x) is a solution to Lv = f (−x) . We also observe in Fig. 3B,C that the homogene-
ous solution is accurately captured and that the poles of the homogeneous rational NN cluster near the real axis 
around x = 0 : the location of the singularity induced by the shock (Supplementary Material, Sect. 5E).

Next, we reproduce the same viscous shock numerical experiment, except that this time we remove measure-
ments of the system’s response from the training dataset in the interval [− 0.2, 0.2] : adjacent to the shock front. 
By comparing Fig. 3A–F, we find that the Green’s function and homogeneous solution, learned by the rational 
NNs, may not be affected in the region outside of the interval with missing data. In some cases, the NNs can still 
accurately capture the main features of the Green’s function and homogeneous solution in the region lacking 
measurements. The robustness of our method to noise perturbation and corrupted or missing data is of significant 
interest and promising for real applications with experimental data.

We next apply our DL method to discover the Green’s function and homogeneous solution of an advec-
tion–diffusion operator, where the advection is dominant only within the right half of the domain. The output of 
the Green’s function NN is plotted in Fig. 3G, where we observe the disparate spatial behaviors of the dominant 
physical mechanisms. This can be recognized when observing the restriction of the Green’s function to the sub-
domain [−1, 0] × [−1, 0] , where the observed solution is reminiscent of the Green’s function for the Laplacian; 
thus indicating that the PDE is diffusive on the left half of the domain. Similarly, the restriction of the learned 
Green’s function to [0, 1] × [0, 1] is characteristic of advection.

In Fig. 3H,I, we display the homogeneous solution NN, along with the phase of the rational NN, evaluated 
on the complex plane. The agreement between the exact and learned homogeneous solution illustrates the abil-
ity of the DL method to accurately capture the behavior of a system within “multiphysics” contexts. The choice 
of rational NNs is crucial here: to deepen our understanding of the system, as the poles of the homogeneous 
rational NN characterize the location and type of singularities in the homogeneous solution. Here the change 
in behavior of the differential operator from diffusion to advection is delineated by the location of the poles of 
the rational NN.

Figure 2.   Feature extraction from learned Green’s functions. The NNs for the learned Green’s function (A) 
and homogeneous solution (B) enable the extraction of qualitative and quantitative features associated with the 
differential operator. For example, the symmetries in the Green’s function reveal PDE invariances (C), poles of 
rational NNs identify singularity type and location (D), the dominant eigenvalues (E) and eigenmodes (F) of the 
learned Green’s function are related to the eigenvalues and eigenmodes of the differential operator.
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Nonlinear and vector‑valued equations.  We can also discover Green’s functions from forcing terms 
and concomitant solutions to nonlinear differential equations possessing semi-dominant linearity. In Fig. 4A–C, 
we visualize the Green’s function NNs of three operators with cubic nonlinearity considered in Ref.11. The non-
linearity does not prevent our method from discovering a Green’s function of an approximate linear model, 
from which one can understand features such as symmetry and boundary conditions. This property is crucial 
for tackling time-dependent problems, where the present technique may be extended and applied to uncover 
linear propagators.

Finally, we consider a Stokes flow in a two-dimensional lid-driven cavity to emphasize the ability of our 
method to handle systems of differential equations in two dimensions. In this context, the relation between the 
system’s responses and the forcing terms can be expressed using a Green’s matrix, which consists of a two-by-two 
matrix of Green’s functions and whose components reveal features of the underlying system such as symmetry 
and coupling (Fig. 4D, Supplementary Material, Sects. 7, 8D). Figure 4E,F illustrate that the homogeneous solu-
tion to the Stokes equation is accurately captured by the homogeneous rational NN, despite the corner singulari-
ties and coarse measurement grid (Supplementary Material, Sect. 8D).

Discussion
Contrary to existing works in the literature10–12,24, our primary aim is to uncover mechanistic understanding 
from input–output data using a human-understandable representation of the underlying, but hidden, differential 
operator. This representation takes the form of a rational NN19 for the Green’s function. We extensively described 
all the physical features of the operator that can be extracted and discovered from the learned Green’s function 
and homogeneous solutions, such as linear conservation laws, symmetries, shock front and singularity locations, 
boundary conditions, and dominant modes.

The DL method for learning Green’s functions of linear differential operators naturally extends to the case of 
three spatial dimensions but these systems are more challenging due to the GPU memory demands required to 

Figure 3.   Green’s functions learned by rational neural networks. (A) Green’s function of a differential operator 
with a viscous shock at x = 0 , learned by a rational NN. (B) Learned and exact (computed by a classical spectral 
method) homogeneous solution to the differential equation with zero forcing term. (C) Phase portrait of the 
homogeneous rational NN evaluated on the complex plane. (D–F) Similar to (A–C), but without any system’s 
response measurements in x ∈ [− 0.2, 0.2] (see vertical black lines) near the shock. (G) Learned Green’s function 
and homogeneous solution (H) of an advection–diffusion operator with advection occurring for x ≥ 0 . (I) 
Phase portrait of the homogeneous NN on the complex plane.
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represent the six-dimensional inputs used to train the NN representing the Green’s function. However, alternative 
optimization algorithms than the one used in this paper and described in “Methods” section, such as mini-batch 
optimization25,26, may be employed to alleviate the computational expense of the training procedure.

While our method is demonstrated on linear differential operators, it can be extended to nonlinear, time-
dependent problems that can be linearized using an implicit-explicit time-stepping scheme27,28 or an iterative 
method29. This process allows us to learn the Green’s functions of linear time propagators and understand physical 
behavior in time-dependent problems from input-output data such as the time-dependent Schrödinger equa-
tion (Supplementary Material, Sect. 9). The numerical experiments conducted in Fig. 4A–C highlight that our 
approach can discover Green’s functions of linearizations of nonlinear differential operators.

Our deep learning method for learning Green’s functions and extracting human-understandable properties of 
partial differential equations benefits from the adaptivity of rational neural networks and its support for qualita-
tive feature detection and interpretation. We successfully tested our approach with noisy and sparse measure-
ments as training data (Supplementary Material, Sect. 4). The design of our applied network architectures, and 
covariance kernel used to generate the system forcing is guided by rigorous theoretical statements17,19 that offer 
performance guarantees. This shows that our proposed deep learning method may be used to discover new 
mechanistic understanding with machine learning.

Methods
Green’s functions.  We consider linear differential operators, L , defined on a bounded domain � ⊂ R

d , 
where d ∈ {1, 2, 3} denotes the spatial dimension. The aim of our method is to discover properties of the opera-
tor, L , using N input-output pairs {(fj , uj)}Nj=1 , consisting of forcing functions, fj : � → R , and system responses, 
uj : � → R , which are solutions to the following equation:

where D is a linear operator acting on the solutions, u, and the domain, � ; with g being the constraint. We assume 
that the forcing terms have sufficient regularity, and that the operator, D , is a constraint so that Eq. (2) has a 
unique solution18. An example of constraint is the imposition of homogeneous Dirichlet boundary conditions 

(2)Luj = fj , D(uj ,�) = g ,

Figure 4.   Linearized models and Stokes flow. (A–C) Green’s functions of three differential operators: 
Helmholtz, Sturm–Liouville, and biharmonic, with cubic nonlinearity. (D) Matrix of Green’s functions of a 
two-dimensional Stokes flow in a lid-driven cavity, evaluated at a two-dimensional slice. Velocity magnitude and 
streamlines of the exact (E) and learned (F) homogeneous solution to the Stokes equations with zero applied 
body force.
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on the solutions: D(uj ,�) := uj|∂� = 0 . Note that boundary conditions, integral conditions, jump conditions, 
or non-standard constraints, are all possible (Supplementary Material, Sect. 5A).

A Green’s function18,30–32 of the operator, L , is defined as the solution to the following equation:

where L is acting on the function x  → G(x, y) for fixed y ∈ � , and δ(·) denotes the Dirac delta function. The 
Green’s function is well-defined and unique under mild conditions on L , and suitable solution constraints 
imposed via an operator, D (see Eq. (2))18. Moreover, if (f, u) is an input-output pair, satisfying Eq. (2) with 
g = 0 , then

Therefore, the Green’s function associated with L can be thought of as the right inverse of L.
Let uhom be the homogeneous solution to (2), so that

Using superposition, we can construct solutions, uj , to Eq. (2) as uj = ũj + uhom , where ũj satisfies

Then, the relation between the system’s response, uj , and the forcing term, fj , can be expressed via the Green’s 
function as

Therefore, we train two NNs: NG : �×� → R ∪ {±∞} and Nhom : � → R , to learn the Green’s function, 
and also the homogeneous solution associated with L and the constraint operator D . Note that this procedure 
allows us to discover boundary conditions, or constraints, directly from the input–output data without imposing 
it in the loss function (which often results in training instabilities33).

Rational neural networks.  Rational NNs19 consist of NNs with adaptive rational activation functions 
x  → σ(x) = p(x)/q(x) , where p and q are two polynomials, whose coefficients are trained at the same time as 
the other parameters of the networks, such as the weights and biases. These coefficients are shared between all 
the neurons in a given layer but generally differ between the network’s layers. This type of network was proven 
to have better approximation power than standard Rectified Linear Unit (ReLU) networks34,35, which means that 
they can approximate smooth functions more accurately with fewer layers and network parameters19. It is also 
observed in practice that rational NNs require fewer optimization steps and therefore can be more efficient to 
train than other activation functions19.

The NNs, NG and Nhom , which approximate the Green’s function and homogeneous solution associated with 
Eq. (2), respectively, are chosen to be rational NNs19 with 4 hidden layers and 50 neurons in each layer. We choose 
the polynomials, p and q, within the activation functions to be of degree 3 and 2, respectively, and initialize the 
coefficients of all the rational activation functions so that they are the best (3, 2) rational approximant to a ReLU 
(see the Supplementary Material of Ref.19 for details). The motivation is that the flexibility of the rational func-
tions brings extra benefit in the training and accuracy over the ReLU activation function. We highlight that the 
increase in the number of trainable parameters, due to the adaptive rational activation functions, is only linear 
with respect to the number of layers and negligible compared to the total number of parameters in the network as:

The weight matrices of the NNs are initialized using Glorot normal initializer36, while the biases are initial-
ized to zero.

Another advantage of rational NNs is the potential presence of poles, i.e., zeros of the polynomial q. While 
the initialization of the activation functions avoids training issues due to potential spurious poles, the poles can 
be exploited to learn physical features of the differential operator (Supplementary Material, Sect. 5E). Therefore, 
the architecture of the NNs also supports the aim of a human-understandable approach for learning PDEs. In 
higher dimensions, such as d = 2 or d = 3 , the Green’s function is not necessarily bounded along the diagonal, 
i.e., {(x, x), x ∈ �} ; thus making the poles of the rational NNs crucial.

Finally, we emphasize that the enhanced approximation properties of rational NNs19 make them ideal for 
learning Green’s functions and, more generally, approximating functions within regression problems. These 
networks may also be of benefit to other approaches for solving and learning PDEs with DL techniques, such as 
PINNs37, DeepGreen11, DeepONet10, Neural operator12, and Fourier neural operator24.

Data generation.  We create a training dataset, consisting of input-output functions, {(fj uj)} for 1 ≤ j ≤ N , 
in three steps: (1) Generating the forcing terms by sampling random functions from a Gaussian process 
(GP), (2) Solving Eq. (2) for the generated forcing terms, and (3) Sampling the forcing terms, fj , at the points 
{y1, . . . , yNf

} ⊂ � and the system’s responses, uj , at {x1, . . . , xNu } ⊂ � . Here, Nf  and Nu are the forcing and solu-
tion discretization sizes, respectively. We recommend that all the forcing terms are sampled on the same grid and 

LG(x, y) = δ(y − x), x, y ∈ �,

u(x) =

∫

�

G(x, y)f (y) dy, x ∈ �.

Luhom = 0, D(uhom,�) = g .

Lũj = fj , D(ũj ,�) = 0.

uj(x) =

∫

�

G(x, y)fj(y) dy + uhom(x), x ∈ �.

Number of rational coefficients = 7× number of hidden layers = 28.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4824  | https://doi.org/10.1038/s41598-022-08745-5

www.nature.com/scientificreports/

similarly for the system’s responses. This minimizes the number of evaluations of NG during the training phase 
and reduces the computational and memory costs of training.

The spatial locations of points {yi} and the forcing discretization size, Nf  , are chosen arbitrarily to train the 
NNs as the forcing terms are assumed to be known over � . In practice, the number, Nu , and location of the 
measurement points, {xi} , are imposed by the nature of the experiment, or simulation, performed to measure 
the system’s response. When � is an interval, we always select Nf = 200 , Nu = 100 , and equally-spaced sampled 
points for the forcing and response functions. Further details on the training data generation are available in the 
Supplementary Material, Sect. 1. We then analyze the robustness of our method for learning Green’s functions 
with respect to the number and location of the measurement points in the Supplementary Material, Sect. 4.

Neural network training.  The NNs are implemented with single-precision floating-point format within 
the TensorFlow DL library38, and are trained (the numerical experiments are performed on a desktop com-
puter with a Intel® Xeon® CPU E5-2667 v2 @ 3.30 GHz and a NVIDIA® Tesla® K40m GPU) using a two-step 
optimization procedure to minimize the loss function (Supplementary Material, Sect. 2). First, we use Adam’s 
algorithm25 for the first 1000 optimization steps (or epochs), with default learning rate 0.001 and parameters 
β1 = 0.9 , β2 = 0.999 . Then, we employ the limited memory BFGS, with bound constraints (L-BFGS-B) optimi-
zation algorithm39,40, implemented in the SciPy library41, with a maximum of 5× 104 iterations. This training 
procedure is used by Lu et al. to train physics-informed NNs (PINNs) and mitigate the risk of the optimizer 
getting stuck at a poor local minima42. The L-BFGS-B algorithm is also successful for PDE learning9 and PDE 
solvers using DL techniques37,42. Moreover, this optimization algorithm takes advantage of the smoothness of 
the loss function by using second-order derivatives and often converges in fewer iterations than Adam’s algo-
rithm and other methods based on stochastic gradient descent42. Within this setting, rational NNs are beneficial 
because the activation functions are smooth while maintaining an initialization close to ReLU (Supplementary 
Material, Fig. S2).

Theoretical justification.  Our approach for learning Green’s functions associated with linear differential 
operators has a theoretically rigorous underpinning. Indeed, it was shown in Ref.17 that uniformly elliptic opera-
tors in three dimensions have an intrinsic learning rate, which characterizes the number of training pairs needed 
to construct an ǫ-approximation in the L2-norm of the Green’s function, G, with high probability, for 0 < ǫ < 1 . 
The number of training pairs depends on the quality of the covariance kernel used to generate the random forc-
ing terms, {fj}Nj=1 . Our choice of covariance kernel (Supplementary Material, Sect. 1) is motivated by the GP 
quality measure17,43, to ensure that our set of training forcing terms is sufficiently diverse to capture the action of 
the solution operator, f  → u(x) =

∫
�
G(x, y)f (y) dy , on a diverse set of functions.

Similarly, the choice of rational NNs to approximate the Green’s function, and the homogeneous solution, is 
justified by the higher approximation power of these networks over ReLU19. Other adaptive activation functions 
have been proposed for learning or solving PDEs with NNs44, but they are only motivated by empirical obser-
vations. Both theory and experiments support rational NNs for regression problems. The number of trainable 
parameters, consisting of weight matrices, bias vectors, and rational coefficients, needed by a rational NN to 
approximate smooth functions within 0 < ǫ < 1 , can be completely characterized19. This motivates our choice 
of NN architecture for learning the Green’s functions.

Data availability
All data and codes used in this article and the Supplementary Material are publicly available on the GitHub and 
Zenodo repositories at https://​github.​com/​NBoul​le/​green​learn​ing/45 to reproduce the numerical experiments 
and figures. A software package, including additional examples and documentation, is also available at https://​
green​learn​ing.​readt​hedocs.​io/.

Received: 18 November 2021; Accepted: 11 March 2022

References
	 1.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436 (2015).
	 2.	 Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
	 3.	 Brunton, S. L., Noack, B. R. & Koumoutsakos, P. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477 (2020).
	 4.	 Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422 (2021).
	 5.	 Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynami-

cal systems. Proc. Natl. Acad. Sci. U.S.A. 113, 3932 (2016).
	 6.	 Schaeffer, H. Learning partial differential equations via data discovery and sparse optimization. Proc. Math. Phys. Eng. Sci. 473, 

20160446 (2017).
	 7.	 Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. Data-driven discovery of partial differential equations. Sci. Adv. 3, e1602614 

(2017).
	 8.	 Zhang, J. & Ma, W. Data-driven discovery of governing equations for fluid dynamics based on molecular simulation. J. Fluid Mech. 

https://​doi.​org/​10.​1017/​jfm.​2020.​184 (2020).
	 9.	 Raissi, M. Deep hidden physics models: Deep learning of nonlinear partial differential equations. J. Mach. Learn. Res. 19, 932 

(2018).
	10.	 Lu, L., Jin, P., Pang, G., Zhang, Z. & Karniadakis, G. E. Learning nonlinear operators via DeepONet based on the universal approxi-

mation theorem of operators. Nat. Mach. Intell. 3, 218 (2021).
	11.	 Gin, C. R., Shea, D. E., Brunton, S. L. & Kutz, J. N. DeepGreen: Deep learning of Green’s functions for nonlinear boundary value 

problems. Sci. Rep. 11, 1 (2021).
	12.	 Li, Z., et al., Neural operator: Graph kernel network for partial differential equations. Preprint at http://​arxiv.​org/​abs/​2003.​03485 

(2020).

https://github.com/NBoulle/greenlearning/
https://greenlearning.readthedocs.io/
https://greenlearning.readthedocs.io/
https://doi.org/10.1017/jfm.2020.184
http://arxiv.org/abs/2003.03485


8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4824  | https://doi.org/10.1038/s41598-022-08745-5

www.nature.com/scientificreports/

	13.	 Feliu-Faba, J., Fan, Y. & Ying, L. Meta-learning pseudo-differential operators with deep neural networks. J. Comput. Phys. 408, 
109309 (2020).

	14.	 Raissi, M., Yazdani, A. & Karniadakis, G. E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. 
Science 367, 1026 (2020).

	15.	 Schmidt, M. & Lipson, H. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 324, 81 
(2009).

	16.	 Udrescu, M.-L. & Tegmark, M. AI Feynman: A physics-inspired method for symbolic regression. Sci. Adv. 6, 2631 (2020).
	17.	 Boullé, N. & Townsend, A. Learning elliptic partial differential equations with randomized linear algebra. Found. Comput. Math. 

https://​doi.​org/​10.​1007/​s10208-​022-​09556-w (2022).
	18.	 Stakgold, I. & Holst, M. J. Green’s Functions and Boundary Value Problems (Wiley, 2011).
	19.	 Boullé, N., Nakatsukasa, Y. & Townsend, A. Rational neural networks. Adv. Neural Inf. Process. Syst. 33, 14243–14253 (2020).
	20.	 Grüter, M. & Widman, K.-O. The Green function for uniformly elliptic equations. Manuscr. Math. 37, 303 (1982).
	21.	 Dong, H. & Kim, S. Green’s matrices of second order elliptic systems with measurable coefficients in two dimensional domains. 

Trans. Am. Math. Soc. 361, 3303 (2009).
	22.	 Kreyszig, E. Introductory Functional Analysis with Applications (Wiley, 1978).
	23.	 Lee, J.-Y. & Greengard, L. A fast adaptive numerical method for stiff two-point boundary value problems. SIAM J. Sci. Comput. 

18, 403 (1997).
	24.	 Li, Z. et al. Fourier neural operator for parametric partial differential equations. In International Conference on Learning Repre-

sentations (ICLR) (2021).
	25.	 Kingma, D. P. & Ba, J.: Adam: A method for stochastic optimization. In International Conference on Learning Representations 

(ICLR) (2015).
	26.	 Li, M., Zhang, T., Chen, Y. & Smola, A. J. Efficient mini-batch training for stochastic optimization. In Proc. 20th ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, 661–670 (2014).
	27.	 Ascher, U. M., Ruuth, S. J. & Spiteri, R. J. Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. 

Appl. Numer. Math. 25, 151 (1997).
	28.	 Pareschi, L. & Russo, G. Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. 

Comput. 25, 129 (2005).
	29.	 Kelley, C. T. Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995).
	30.	 Evans, L. C. Partial Differential Equations (American Mathematical Society, 2010).
	31.	 Arfken, G., Weber, H. & Harris, F. E. Mathematical Methods for Physicists 7th edn. (Academic Press, 2012).
	32.	 Myint-U, T. & Debnath, L. Linear Partial Differential Equations for Scientists and Engineers (Birkhäuser, 2007).
	33.	 Wight, C. L. & Zhao, J. Solving Allen–Cahn and Cahn–Hilliard equations using the adaptive physics informed neural networks. 

Commun. Comput. Phys. 29, 930 (2021).
	34.	 Glorot, X., Bordes, A. & Bengio, Y. Deep Sparse Rectifier Neural Networks. Proc. 14th International Conference on Artificial Intel-

ligence and Statistics (AISTATS) (2011), 315–323.
	35.	 Yarotsky, D. Error bounds for approximations with deep ReLU networks. Neural Netw. 94, 103 (2017).
	36.	 Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. Proc. 13th International Confer-

ence on Artificial Intelligence and Statistics, 249–256 (2010).
	37.	 Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward 

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686 (2019).
	38.	 Abadi, M. et al. TensorFlow: A System for Large-Scale Machine Learning. 12th USENIX Conference on Operating Systems Design 

and Implementation, 265–283 (2016).
	39.	 Liu, D. C. & Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503 (1989).
	40.	 Byrd, R. H., Lu, P., Nocedal, J. & Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 

16, 1190 (1995).
	41.	 Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261 (2020).
	42.	 Lu, L., Meng, X., Mao, Z. & Karniadakis, G. E. DeepXDE: A deep learning library for solving differential equations. SIAM Rev. 63, 

208 (2021).
	43.	 Boullé, N. & Townsend, A. A generalization of the randomized singular value decomposition.International Conference on Learning 

Representations (ICLR) (2022).
	44.	 Jagtap, A. D., Kawaguchi, K. & Karniadakis, G. E. Adaptive activation functions accelerate convergence in deep and physics-

informed neural networks. J. Comput. Phys. 404, 109136 (2020).
	45.	 Boullé, N. NBoulle/GreenLearning—Software and datasets (version v10). Zenodo. https://​doi.​org/​10.​5281/​zenodo.​46560​20 (2021).

Acknowledgements
We thank Gregory Bewley for suggestions on the manuscript. This work was supported by the EPSRC Centre for 
Doctoral Training in Industrially Focused Mathematical Modelling through Grant EP/L015803/1 in collaboration 
with Simula Research Laboratory. C.J.E. was supported by the Army Research Office (ARO) Biomathematics 
Program Grant W911NF-18-1-0351. A.T. was supported by the National Science Foundation Grants DMS-
1818757, DMS-1952757, and DMS-2045646.

Author contributions
N.B., C.J.E., and A.T. conceptualized the methodology. N.B. developed the software and visualized the results. 
N.B., C.J.E., and A.T. analyzed the results and wrote the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​08745-5.

Correspondence and requests for materials should be addressed to N.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1007/s10208-022-09556-w
https://doi.org/10.5281/zenodo.4656020
https://doi.org/10.1038/s41598-022-08745-5
https://doi.org/10.1038/s41598-022-08745-5
www.nature.com/reprints


9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4824  | https://doi.org/10.1038/s41598-022-08745-5

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	Data-driven discovery of Green’s functions with human-understandable deep learning
	Results
	Deep learning Green’s functions. 
	Human-understandable features. 
	Numerical examples. 
	Nonlinear and vector-valued equations. 

	Discussion
	Methods
	Green’s functions. 
	Rational neural networks. 
	Data generation. 
	Neural network training. 
	Theoretical justification. 

	References
	Acknowledgements


