www.nature.com/scientificreports

scientific reports

W) Check for updates

Data-driven discovery

of Green's functions

with human-understandable deep
learning

Nicolas Boullé'™*, Christopher J. Earls?? & Alex Townsend?*

There is an opportunity for deep learning to revolutionize science and technology by revealing its
findings in a human interpretable manner. To do this, we develop a novel data-driven approach for
creating a human-machine partnership to accelerate scientific discovery. By collecting physical system
responses under excitations drawn from a Gaussian process, we train rational neural networks to

learn Green'’s functions of hidden linear partial differential equations. These functions reveal human-
understandable properties and features, such as linear conservation laws and symmetries, along with
shock and singularity locations, boundary effects, and dominant modes. We illustrate the technique
on several examples and capture a range of physics, including advection—diffusion, viscous shocks,
and Stokes flow in a lid-driven cavity.

Deep learning (DL) holds promise as a scientific tool for discovering elusive patterns within the natural and
technological world!2. These patterns hint at undiscovered partial differential equations (PDEs) that describe
governing phenomena within biology, fluid dynamics, and physics. From sparse and noisy laboratory observa-
tions, we aim to learn mechanistic laws of nature®*. Recently, scientific computing and machine learning have
successfully converged on PDE discovery®, PDE learning’'4, and symbolic regression'>!® as promising means
for applying machine learning to scientific investigations. These methods attempt to discover the coefficients of
a PDE model or learn the operator that maps excitations to system responses. The recent DL techniques address-
ing the latter problem are based on approximating the solution operator associated with a PDE by a neural
network®'®. While excellent for solving PDEs, we consider them as “black box” and focus here on a data-driven
strategy that improves human understanding of the governing PDE model.

In contrast, we offer a radically different, alternative approach that is backed by theory'” and infuse an inter-
pretation in the model by learning well-understood mathematical objects that imply underlying physical laws.
We devise a DL method, employed for learning the Green's functions'® associated with unknown governing linear
PDEs, and train the neural networks (NNs) by collecting physical system responses from random excitation
functions drawn from a Gaussian process. The empirically derived Green’s functions relate the system’s response
(or PDE solution) to a forcing term, and can then be used as a fast reduced-order PDE solver. The existing Graph
Kernel Network!? and DeepGreen'! techniques also aim to learn solution operators of PDEs based on Green’s
functions. While they show competitive performance in predicting the solution of the PDE for new forcing func-
tions, they fail to capture Green’s functions accurately, which makes the extraction of qualitative and quantitative
features of the physical system challenging.

Our primary objective is to study the discovered Green’s functions for clues regarding the physical proper-
ties of the observed systems. Our approach relies on a novel and adaptive neural network architecture called a
rational neural network®, which has higher approximation power than standard networks and carries human-
understandable features of the PDE, such as shock and singularity locations.

In this paper, we use techniques from deep learning to discover the Green’s function of linear differential
equations Lu = f from input—output pairs (f, u), as opposed to directly learning £, or model parameters. In this
sense, our approach is agnostic to the forward PDE model, but nonetheless offers insights into its physical prop-
erties. There are several advantages to learning the Green’s function. First, once the Green’s function is learned

IMathematical Institute, University of Oxford, Oxford OX2 6GG, UK. Center for Applied Mathematics, Cornell
University, Ithaca, NY 14853, USA. 3School of Civil and Environmental Engineering, Cornell University, Ithaca,
NY 14853, USA. “Department of Mathematics, Cornell University, Ithaca, NY 14853, USA. email: boulle@
maths.ox.ac.uk

Scientific Reports |

(2022) 12:4824 | https://doi.org/10.1038/s41598-022-08745-5 nature portfolio

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-08745-5&domain=pdf

www.nature.com/scientificreports/

A

Unknown system

““.‘.‘E(u) =fonQ

%, Boundary
*.conditions on 9Q

:"‘:: C

GP covariance kernel
1.0 1.0

0.8 D 1 N 1
06 LOSS:EZ

0.4 j=1

/ﬂ (u,m ~ M) = [Note.0)50) dy)2 do

H“Jl‘iz(m

0.2

" 00 lTra in lTra in
000 025 050 075 1.00 E

x

J/Algorithmically informed

samples from theory ///I\\\\ /m\ym

K 7 DL Hom. DL Green'’s
) solution function
Excite H —_— \\
cee ; Source/forcing \\\\W// \\\\\’////
.) u G
59¢ 0 4 Extract & Extract &
L 23] F visualize visualize
0 Homogeneous solution Green'’s function
_ - g 1.0 1.0 0.25
f 2
/ 0.8 0.20
| E 0.5 4
f P oo y 06 0.15
\ eoe Response 2 04 0.10
el 4
@ —05 0.2 0.0
o
= ~1.0 T r T 0.0 0.00
] IS 000 025 050 075 100 0.00 025 050 0.5 1.00
E xT x
=)
i

Figure 1. Schematic of our DL method for learning Green’s functions from input-output pairs. (A) The
covariance kernel of the Gaussian process (GP), which is used to generate excitations. (B) The random
excitations and the system’s response are recorded (C). (D) A loss function is minimized to train rational NNs
(E). (F) The learned Green’s function and homogeneous solution are visualized by sampling the NNG.

by a neural network (NN), it is possible to compute the solution, u, for a new forcing term, f, by evaluating an
integral (see Eq. (1)); which is more efficient than training a new NN. Second, the Green’s function associated
with £ contains information about the operator, £, and the type of boundary constraints that are imposed; which
helps uncover mechanistic understanding from experimental data. Finally, it is easier to train NNs to approxi-
mate Green’s functions, which are square-integrable functions under sufficient regularity conditions'®**!, than
trying to approximate the action of the linear differential operator, £, which is not bounded?. Also, any prior
mathematical and physical knowledge of the operator, £, can be exploited in the design of the NN architecture,
which could enforce a particular structure such as symmetry of the Green’s function.

Results

Deep lea rnlng Green'’s functions. Our DL approach (see Fig. 1) begins with excitations (or forcing
terms), {f; = 1> sampled from a Gaussian process (GP) having a carefully designed covariance kernel", and cor-
respondmg system responses, {u; }J_1 It is postulated that there is an unknown linearized governing PDE so that
Luj = f;. The selection of random forcing terms is theoretically justified'” and enables us to learn the dominant
eigenmodes of the solution operator, using only a small number, N, of training pairs. The Green’s function, G,
and homogeneous solution, upen, which encodes the boundary conditions associated with the PDE, satisfy

uj(x) = /Q G i) dy + uhom(x), x € R, 1)

and are approximated by two rational neural networks: Mg and MVhom-

A rational NN consists of a NN with trainable rational activation functions whose coeflicients are learned
simultaneously with the weights and biases of the network. Rational NNs have better approximation properties
than standard NNs", both in theory and in practice, which makes them ideal for the present application. The
parameters of the NNs representing the Green’s function and homogeneous solution are simultaneously learned
through minimization of the loss function displayed in Fig. 1D (Supplementary Material, Sect. 2). We discretize
the integrals in the loss funcHon at the specified measurement locations {x; f\] > within the domain, €2, and forc-
ing term sample points, {y;};~ ! 1» respectively, using a quadrature rule.

In the Supplementary Material, Fig. S4, we also present numerical results obtained from sparse training data,
or noisy spatial measurements, which demonstrate the robustness of our method (Supplementary Material,
Sect. 4). Additionally, our DL technique is data-driven and requires minimal by-hand parameter tuning. In fact,
all the numerical examples described here and in the Supplementary Material are performed using a unique
rational NN architecture, initialization procedure, and optimization algorithm.

Human-understandable features. The trained NNs contain both the desired Green’s function and
homogeneous solution, which we evaluate and visualize to glean novel insights concerning the underlying, gov-

Scientific Reports | (2022) 12:4824 | https://doi.org/10.1038/s41598-022-08745-5 nature portfolio

www.nature.com/scientificreports/

E

Learned Green'’s function Symmetries Dominant eigenvalues
1.0 22 1.0 22 102
0.5 1 b 1 0.5 - b 1 e oo,
10° A
Y 00 0 Y 00 0
10—2 -
—0.5 q —11 —0.5 q —11
-1.0 T T T —22 -1.0 T T T —22 10~4 T
-10 -05 00 05 1.0 Extract features \ -1.0 —05 00 05 1.0 10° 10! 102
z 7 x n
B Homogeneous solution D Singularity location F Dominant eigenmodes
3.0 100 2
— Exact
154 Learned { 50 14
\ [\
\ I
004\ e / 0 0+
\ 7~ N\ i
\ \ |
—154 ™ \ / —50 —1-
\ /
\ J
\/
—3.0 T T T —100 T T -2 T T T
-1.0 -05 0.0 0.5 1.0 -10 -05 0.0 0.5 1.0 -10 -05 0.0 0.5 1.0

Figure 2. Feature extraction from learned Green’s functions. The NNs for the learned Green’s function (A)

and homogeneous solution (B) enable the extraction of qualitative and quantitative features associated with the
differential operator. For example, the symmetries in the Green’s function reveal PDE invariances (C), poles of
rational NNs identify singularity type and location (D), the dominant eigenvalues (E) and eigenmodes (F) of the
learned Green’s function are related to the eigenvalues and eigenmodes of the differential operator.

erning PDE (Fig. 2). In this way, we achieve one part of our human interpretation goal: finding a link between
the properties of the Green’s function and that of the underlying differential operator and solution constraints.
As an example, if the Green’s function is symmetric, i.e., G(x, y) = G(y, x) for all x, y € €2, then the operator
L is self-adjoint. Another aspect of human interpretability is that the poles of the trained rational NN tend to
cluster in a way that reveal the location and type of singularities in the homogeneous solution. Finally, there is a
direct correspondence between the dominant eigenmodes and eigenvalues (as well as the singular vectors and
singular values) of the learned Green’s function and those of the differential operator. The correspondence gives
insight into the important eigenmodes that govern the system’s behavior (Supplementary Material, Sect. 5).

Numerical examples. As a first example, we consider a second-order differential operator having suitable
variable coeflicients to model a viscous shock at x = 0%. The system’s responses are obtained by solving the PDE,
with Dirichlet boundary conditions, using a spectral numerical solver for each of the N = 100 random forcing
terms, sampled from a GP having a squared-exponential covariance kernel'”. The learned Green’s function is dis-
played in Fig. 3A and satisfies the following symmetry relation: G(x, y) = G(—x, —y), indicating the presence of
a reflective symmetry group within the underlying PDE. Indeed, if u is a solution to Lu = f with homogeneous
boundary conditions, then u(—x) is a solution to Lv = f (—x). We also observe in Fig. 3B,C that the homogene-
ous solution is accurately captured and that the poles of the homogeneous rational NN cluster near the real axis
around x = 0: the location of the singularity induced by the shock (Supplementary Material, Sect. 5E).

Next, we reproduce the same viscous shock numerical experiment, except that this time we remove measure-
ments of the system’s response from the training dataset in the interval [— 0.2, 0.2]: adjacent to the shock front.
By comparing Fig. 3A-F, we find that the Green’s function and homogeneous solution, learned by the rational
NNs, may not be affected in the region outside of the interval with missing data. In some cases, the NNs can still
accurately capture the main features of the Green’s function and homogeneous solution in the region lacking
measurements. The robustness of our method to noise perturbation and corrupted or missing data is of significant
interest and promising for real applications with experimental data.

We next apply our DL method to discover the Green’s function and homogeneous solution of an advec-
tion—diffusion operator, where the advection is dominant only within the right half of the domain. The output of
the Green’s function NN is plotted in Fig. 3G, where we observe the disparate spatial behaviors of the dominant
physical mechanisms. This can be recognized when observing the restriction of the Green’s function to the sub-
domain[—1,0] x [—1, 0], where the observed solution is reminiscent of the Green’s function for the Laplacian;
thus indicating that the PDE is diffusive on the left half of the domain. Similarly, the restriction of the learned
Green’s function to [0, 1] x [0, 1]is characteristic of advection.

In Fig. 3H,I, we display the homogeneous solution NN, along with the phase of the rational NN, evaluated
on the complex plane. The agreement between the exact and learned homogeneous solution illustrates the abil-
ity of the DL method to accurately capture the behavior of a system within “multiphysics” contexts. The choice
of rational NN is crucial here: to deepen our understanding of the system, as the poles of the homogeneous
rational NN characterize the location and type of singularities in the homogeneous solution. Here the change
in behavior of the differential operator from diffusion to advection is delineated by the location of the poles of
the rational NN.

Scientific Reports |

(2022) 12:4824 |

https://doi.org/10.1038/s41598-022-08745-5 nature portfolio

www.nature.com/scientificreports/

A Green’s function B Homogeneous solution C Phase portrait
1.0 0 1o - - 2
= Exact
0.5 -2 0.5 4 === Learned 37/2
Y o0 / -4 x
—0.5 —6 /2
—-1.0 -8 T T T 0
-1.0 —05 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0 —1.0 -05 0.0 0.5 1.0
T T Re(2)
1.0 0 1o - - 2
Exact] A
0.5 —2 0.5 4 === Learnpd [3mw/2
Y o0 -4 0.0 - ™
—0.5 —6 —0.5 - : /2
’
—1.0 -8 -0 T T T 0
-1.0 —05 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0 —1.0 —05 0.0 0.5 1.0
T T Re(2)
1.0 0.0 5 4 = 2
05 xact
0.5 = == Learned 3m/2
-1.0 14
Y o0 ~15 x
—2.0 0
—0.5 /2
—25
~1.0 —3.0 -1 T T T 0
-1.0 —0.5 0.0 0.5 1.0
x x

Figure 3. Green’s functions learned by rational neural networks. (A) Green’s function of a differential operator
with a viscous shock at x = 0, learned by a rational NN. (B) Learned and exact (computed by a classical spectral
method) homogeneous solution to the differential equation with zero forcing term. (C) Phase portrait of the
homogeneous rational NN evaluated on the complex plane. (D-F) Similar to (A-C), but without any system’s
response measurements in x € [— 0.2, 0.2] (see vertical black lines) near the shock. (G) Learned Green’s function
and homogeneous solution (H) of an advection-diffusion operator with advection occurring for x > 0. (I)
Phase portrait of the homogeneous NN on the complex plane.

Nonlinear and vector-valued equations. We can also discover Green’s functions from forcing terms
and concomitant solutions to nonlinear differential equations possessing semi-dominant linearity. In Fig. 4A-C,
we visualize the Green’s function NN of three operators with cubic nonlinearity considered in Ref.!. The non-
linearity does not prevent our method from discovering a Green’s function of an approximate linear model,
from which one can understand features such as symmetry and boundary conditions. This property is crucial
for tackling time-dependent problems, where the present technique may be extended and applied to uncover
linear propagators.

Finally, we consider a Stokes flow in a two-dimensional lid-driven cavity to emphasize the ability of our
method to handle systems of differential equations in two dimensions. In this context, the relation between the
system’s responses and the forcing terms can be expressed using a Green’s matrix, which consists of a two-by-two
matrix of Green’s functions and whose components reveal features of the underlying system such as symmetry
and coupling (Fig. 4D, Supplementary Material, Sects. 7, 8D). Figure 4E,F illustrate that the homogeneous solu-
tion to the Stokes equation is accurately captured by the homogeneous rational NN, despite the corner singulari-
ties and coarse measurement grid (Supplementary Material, Sect. 8D).

Discussion
Contrary to existing works in the literature , our primary aim is to uncover mechanistic understanding
from input-output data using a human-understandable representation of the underlying, but hidden, differential
operator. This representation takes the form of a rational NN for the Green’s function. We extensively described
all the physical features of the operator that can be extracted and discovered from the learned Green’s function
and homogeneous solutions, such as linear conservation laws, symmetries, shock front and singularity locations,
boundary conditions, and dominant modes.

The DL method for learning Green’s functions of linear differential operators naturally extends to the case of
three spatial dimensions but these systems are more challenging due to the GPU memory demands required to

10-12,24

Scientific Reports | (2022) 12:4824 | https://doi.org/10.1038/s41598-022-08745-5 nature portfolio

www.nature.com/scientificreports/

A

27 0.00 27 0.00 2 0.14
La— —025 Y = —012 Y & 0.07
0 ~0.50 0 —0.24 0 0.00
0 T 27 0 s 27 0 s 27
xr xr
D G G1,2 E Exact velocity
25 - . 1.0
0.8
0.6
y 0 y
0.4
0.2
-5 0.0
xr
Ga,1
1.0 6 1.0
0.8
. ’ 0.6
Y o054 0 Y
“
0.2
0.0 - —6 0.0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
xr xr T

Figure 4. Linearized models and Stokes flow. (A-C) Green’s functions of three differential operators:
Helmholtz, Sturm-Liouville, and biharmonic, with cubic nonlinearity. (D) Matrix of Green’s functions of a
two-dimensional Stokes flow in a lid-driven cavity, evaluated at a two-dimensional slice. Velocity magnitude and
streamlines of the exact (E) and learned (F) homogeneous solution to the Stokes equations with zero applied
body force.

represent the six-dimensional inputs used to train the NN representing the Green’s function. However, alternative
optimization algorithms than the one used in this paper and described in “Methods” section, such as mini-batch
optimization®**¢, may be employed to alleviate the computational expense of the training procedure.

While our method is demonstrated on linear differential operators, it can be extended to nonlinear, time-
dependent problems that can be linearized using an implicit-explicit time-stepping scheme*>*® or an iterative
method?. This process allows us to learn the Green'’s functions of linear time propagators and understand physical
behavior in time-dependent problems from input-output data such as the time-dependent Schrodinger equa-
tion (Supplementary Material, Sect. 9). The numerical experiments conducted in Fig. 4A-C highlight that our
approach can discover Green’s functions of linearizations of nonlinear differential operators.

Our deep learning method for learning Green’s functions and extracting human-understandable properties of
partial differential equations benefits from the adaptivity of rational neural networks and its support for qualita-
tive feature detection and interpretation. We successfully tested our approach with noisy and sparse measure-
ments as training data (Supplementary Material, Sect. 4). The design of our applied network architectures, and
covariance kernel used to generate the system forcing is guided by rigorous theoretical statements'”'* that offer
performance guarantees. This shows that our proposed deep learning method may be used to discover new
mechanistic understanding with machine learning.

Methods

Green’s functions. We consider linear differential operators, £, defined on a bounded domain 2 C R4,
where d € {1,2, 3} denotes the spatial dimension. The aim of our method is to discover properties of the opera-
tor, £, using N input-output pairs {(f;, uj) }X_,, consisting of forcing functions, f; : 2 — R, and system responses,
uj Q2 — R, which are solutions to the fojl owing equation:

Luj=f, Dw,Q) =g @)

where D is a linear operator acting on the solutions, u, and the domain, 2; with g being the constraint. We assume
that the forcing terms have sufficient regularity, and that the operator, D, is a constraint so that Eq. (2) has a
unique solution’®. An example of constraint is the imposition of homogeneous Dirichlet boundary conditions

Scientific Reports |

(2022) 12:4824 | https://doi.org/10.1038/s41598-022-08745-5 nature portfolio

www.nature.com/scientificreports/

on the solutions: D(u), 2) := ujlye = 0. Note that boundary conditions, integral conditions, jump conditions,
or non-standard constraints, are all possible (Supplementary Material, Sect. 5A).
A Green’s function'®**-3? of the operator, £, is defined as the solution to the following equation:

LG(x,y) =8y — x), X,y €,

where £ is acting on the function x — G(x, y) for fixed y € €, and §(-) denotes the Dirac delta function. The
Green’s function is well-defined and unique under mild conditions on £, and suitable solution constraints
imposed via an operator, D (see Eq. (2))'8. Moreover, if (f;, u) is an input-output pair, satisfying Eq. (2) with
g =0, then

u(x) = /Q G(x, y)f (y) dy, x € Q.

Therefore, the Green’s function associated with £ can be thought of as the right inverse of L.
Let upom be the homogeneous solution to (2), so that

»Cuhom =0, D(unhom,) = g.
Using superposition, we can construct solutions, u;, to Eq. (2) as uj = ﬁj ~+ Unhom, Where i satisfies
Liy=f, D@, =0.

Then, the relation between the system’s response, u;, and the forcing term, ﬁ, can be expressed via the Green’s
function as

uj(x) = /QG(x,y)ﬁ(y) dy + upom (%), x € Q.

Therefore, we train two NNs: Vg : @ x — R U {£oo}and Mo : € — R, to learn the Green’s function,
and also the homogeneous solution associated with £ and the constraint operator D. Note that this procedure
allows us to discover boundary conditions, or constraints, directly from the input-output data without imposing
it in the loss function (which often results in training instabilities®).

Rational neural networks. Rational NNs' consist of NNs with adaptive rational activation functions
x = o(x) = p(x)/q(x), where p and q are two polynomials, whose coefficients are trained at the same time as
the other parameters of the networks, such as the weights and biases. These coefficients are shared between all
the neurons in a given layer but generally differ between the network’ layers. This type of network was proven
to have better approximation power than standard Rectified Linear Unit (ReLU) networks®**, which means that
they can approximate smooth functions more accurately with fewer layers and network parameters®. It is also
observed in practice that rational NNs require fewer optimization steps and therefore can be more efficient to
train than other activation functions'®.

The NNs, N and Mo, which approximate the Green’s function and homogeneous solution associated with
Eq. (2), respectively, are chosen to be rational NNs' with 4 hidden layers and 50 neurons in each layer. We choose
the polynomials, p and g, within the activation functions to be of degree 3 and 2, respectively, and initialize the
coefficients of all the rational activation functions so that they are the best (3, 2) rational approximant to a ReLU
(see the Supplementary Material of Ref.' for details). The motivation is that the flexibility of the rational func-
tions brings extra benefit in the training and accuracy over the ReLU activation function. We highlight that the
increase in the number of trainable parameters, due to the adaptive rational activation functions, is only linear
with respect to the number of layers and negligible compared to the total number of parameters in the network as:

Number of rational coefficients = 7 x number of hidden layers = 28.

The weight matrices of the NN are initialized using Glorot normal initializer*®, while the biases are initial-
ized to zero.

Another advantage of rational NNs is the potential presence of poles, i.e., zeros of the polynomial g. While
the initialization of the activation functions avoids training issues due to potential spurious poles, the poles can
be exploited to learn physical features of the differential operator (Supplementary Material, Sect. 5E). Therefore,
the architecture of the NNs also supports the aim of a human-understandable approach for learning PDEs. In
higher dimensions, such asd = 2 or d = 3, the Green’s function is not necessarily bounded along the diagonal,
i.e, {(x,x), x € Q}; thus making the poles of the rational NNs crucial.

Finally, we emphasize that the enhanced approximation properties of rational NNs' make them ideal for
learning Green’s functions and, more generally, approximating functions within regression problems. These
networks may also be of benefit to other approaches for solving and learning PDEs with DL techniques, such as
PINNs¥, DeepGreen'!, DeepONet!?, Neural operator'?, and Fourier neural operator?.

Data generation. We create a training dataset, consisting of input-output functions, {(f; u;)} forl <j < N,
in three steps: (1) Generating the forcing terms by sampling random functions from a Gaussian process
(GP), (2) Solving Eq. (2) for the generated forcing terms, and (3) Sampling the forcing terms, f;, at the points
... ,ny} C Qand the system’s responses, uj, at {x1,...,xn,} C Q. Here, Ny and N, are the forcing and solu-
tion discretization sizes, respectively. We recommend that all the forcing terms are sampled on the same grid and

Scientific Reports |

(2022) 12:4824 | https://doi.org/10.1038/s41598-022-08745-5 nature portfolio

www.nature.com/scientificreports/

similarly for the system’s responses. This minimizes the number of evaluations of N during the training phase
and reduces the computational and memory costs of training.

The spatial locations of points {y;} and the forcing discretization size, Ny, are chosen arbitrarily to train the
NN as the forcing terms are assumed to be known over €. In practice, the number, N, and location of the
measurement points, {x;}, are imposed by the nature of the experiment, or simulation, performed to measure
the system’s response. When Q is an interval, we always select Ny = 200, N, = 100, and equally-spaced sampled
points for the forcing and response functions. Further details on the training data generation are available in the
Supplementary Material, Sect. 1. We then analyze the robustness of our method for learning Green’s functions
with respect to the number and location of the measurement points in the Supplementary Material, Sect. 4.

Neural network training. The NNs are implemented with single-precision floating-point format within
the TensorFlow DL library*, and are trained (the numerical experiments are performed on a desktop com-
puter with a Intel Xeon CPU E5-2667 v2 @ 3.30 GHz and a NVIDIA Tesla” K40m GPU) using a two-step
optimization procedure to minimize the loss function (Supplementary Material, Sect. 2). First, we use Adam’s
algorithm? for the first 1000 optimization steps (or epochs), with default learning rate 0.001 and parameters
B1 = 0.9, B2 = 0.999. Then, we employ the limited memory BFGS, with bound constraints (L-BFGS-B) optimi-
zation algorithm®, implemented in the SciPy library*!, with a maximum of 5 x 10? iterations. This training
procedure is used by Lu et al. to train physics-informed NNs (PINNs) and mitigate the risk of the optimizer
getting stuck at a poor local minima*%. The L-BFGS-B algorithm is also successful for PDE learning® and PDE
solvers using DL techniques®*?>. Moreover, this optimization algorithm takes advantage of the smoothness of
the loss function by using second-order derivatives and often converges in fewer iterations than Adam’s algo-
rithm and other methods based on stochastic gradient descent*?. Within this setting, rational NNs are beneficial
because the activation functions are smooth while maintaining an initialization close to ReLU (Supplementary
Material, Fig. S2).

Theoretical justification. Our approach for learning Green’s functions associated with linear differential
operators has a theoretically rigorous underpinning. Indeed, it was shown in Ref.!” that uniformly elliptic opera-
tors in three dimensions have an intrinsic learning rate, which characterizes the number of training pairs needed
to construct an e-approximation in the L>-norm of the Green’s function, G, with high probability, for 0 < € < 1.
The number of training pairs depends on the quality of the covariance kernel used to generate the random forc-
ing terms, {f; } 1. Our choice of covariance kernel (Supplementary Material, Sect. 1) is motivated by the GP
quality measure17 3, to ensure that our set of training forcing terms is sufficiently diverse to capture the action of
the solution operator, f > u(x) = [, G(x,y)f (¥) dy, on a diverse set of functions.

Similarly, the choice of rational NNs to approximate the Green’s function, and the homogeneous solution, is
justified by the higher approximation power of these networks over ReLU'. Other adaptive activation functions
have been proposed for learning or solving PDEs with NNs*, but they are only motivated by empirical obser-
vations. Both theory and experiments support rational NN for regression problems. The number of trainable
parameters, consisting of weight matrices, bias vectors, and rational coefficients, needed by a rational NN to
approximate smooth functions within 0 < € < 1, can be completely characterized". This motivates our choice
of NN architecture for learning the Green’s functions.

Data availability

All data and codes used in this article and the Supplementary Material are publicly available on the GitHub and
Zenodo repositories at https://github.com/NBoulle/greenlearning/* to reproduce the numerical experiments
and figures. A software package, including additional examples and documentation, is also available at https://
greenlearning.readthedocs.io/.

Received: 18 November 2021; Accepted: 11 March 2022
Published online: 22 March 2022

References
. LeCun, Y, Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436 (2015).
. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
. Brunton, S. L., Noack, B. R. & Koumoutsakos, P. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477 (2020).
. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422 (2021).
. Brunton, S. L., Proctor, J. L. & Kutz,]. N. Discovering governing equations from data by sparse identification of nonlinear dynami-
cal systems. Proc. Natl. Acad. Sci. U.S.A. 113, 3932 (2016).
. Schaeffer, H. Learning partial differential equations via data discovery and sparse optimization. Proc. Math. Phys. Eng. Sci. 473,
20160446 (2017).
7. Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. Data-driven discovery of partial differential equations. Sci. Adv. 3, 1602614
(2017).
8. Zhang, J. & Ma, W. Data-driven discovery of governing equations for fluid dynamics based on molecular simulation. J. Fluid Mech.
https://doi.org/10.1017/jfm.2020.184 (2020).
9. Raissi, M. Deep hidden physics models: Deep learning of nonlinear partial differential equations. J. Mach. Learn. Res. 19, 932
(2018).
10. Lu, L, Jin, P, Pang, G., Zhang, Z. & Karniadakis, G. E. Learning nonlinear operators via DeepONet based on the universal approxi-
mation theorem of operators. Nat. Mach. Intell. 3, 218 (2021).
11. Gin, C.R,, Shea, D. E,, Brunton, S. L. & Kutz, J. N. DeepGreen: Deep learning of Green’s functions for nonlinear boundary value
problems. Sci. Rep. 11, 1 (2021).
12. Li, Z., et al., Neural operator: Graph kernel network for partial differential equations. Preprint at http://arxiv.org/abs/2003.03485
(2020).

G W N =

[=2)

Scientific Reports |

(2022) 12:4824 | https://doi.org/10.1038/s41598-022-08745-5 nature portfolio

https://github.com/NBoulle/greenlearning/
https://greenlearning.readthedocs.io/
https://greenlearning.readthedocs.io/
https://doi.org/10.1017/jfm.2020.184
http://arxiv.org/abs/2003.03485

www.nature.com/scientificreports/

13. Feliu-Faba,], Fan, Y. & Ying, L. Meta-learning pseudo-differential operators with deep neural networks. J. Comput. Phys. 408,
109309 (2020).

14. Raissi, M., Yazdani, A. & Karniadakis, G. E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations.
Science 367, 1026 (2020).

15. Schmidt, M. & Lipson, H. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 324, 81
(2009).

16. Udrescu, M.-L. & Tegmark, M. Al Feynman: A physics-inspired method for symbolic regression. Sci. Adv. 6, 2631 (2020).

17. Boullé, N. & Townsend, A. Learning elliptic partial differential equations with randomized linear algebra. Found. Comput. Math.
https://doi.org/10.1007/s10208-022-09556-w (2022).

18. Stakgold, I. & Holst, M.]. Green’s Functions and Boundary Value Problems (Wiley, 2011).

19. Boullé, N., Nakatsukasa, Y. & Townsend, A. Rational neural networks. Adv. Neural Inf. Process. Syst. 33, 14243-14253 (2020).

20. Griiter, M. & Widman, K.-O. The Green function for uniformly elliptic equations. Manuscr. Math. 37, 303 (1982).

21. Dong, H. & Kim, S. Green’s matrices of second order elliptic systems with measurable coeflicients in two dimensional domains.
Trans. Am. Math. Soc. 361, 3303 (2009).

22. Kreyszig, E. Introductory Functional Analysis with Applications (Wiley, 1978).

23. Lee, J.-Y. & Greengard, L. A fast adaptive numerical method for stiff two-point boundary value problems. SIAM J. Sci. Comput.
18, 403 (1997).

24. Li, Z. et al. Fourier neural operator for parametric partial differential equations. In International Conference on Learning Repre-
sentations (ICLR) (2021).

25. Kingma, D. P. & Ba, J.: Adam: A method for stochastic optimization. In International Conference on Learning Representations
(ICLR) (2015).

26. Li, M., Zhang, T., Chen, Y. & Smola, A. J. Efficient mini-batch training for stochastic optimization. In Proc. 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 661-670 (2014).

27. Ascher, U. M., Ruuth, S. J. & Spiteri, R. J. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations.
Appl. Numer. Math. 25,151 (1997).

28. Pareschi, L. & Russo, G. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci.
Comput. 25, 129 (2005).

29. Kelley, C. T. Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995).

30. Evans, L. C. Partial Differential Equations (American Mathematical Society, 2010).

31. Arfken, G., Weber, H. & Harris, F. E. Mathematical Methods for Physicists 7th edn. (Academic Press, 2012).

32. Myint-U, T. & Debnath, L. Linear Partial Differential Equations for Scientists and Engineers (Birkhauser, 2007).

33. Wight, C. L. & Zhao, J. Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive physics informed neural networks.
Commun. Comput. Phys. 29, 930 (2021).

34. Glorot, X., Bordes, A. & Bengio, Y. Deep Sparse Rectifier Neural Networks. Proc. 14th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) (2011), 315-323.

35. Yarotsky, D. Error bounds for approximations with deep ReLU networks. Neural Netw. 94, 103 (2017).

36. Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. Proc. 13th International Confer-
ence on Artificial Intelligence and Statistics, 249-256 (2010).

37. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686 (2019).

38. Abadi, M. et al. TensorFlow: A System for Large-Scale Machine Learning. 12th USENIX Conference on Operating Systems Design
and Implementation, 265-283 (2016).

39. Liu, D. C. & Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503 (1989).

40. Byrd, R. H,, Lu, P, Nocedal, J. & Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput.
16, 1190 (1995).

41. Virtanen, P. ef al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261 (2020).

42. Lu, L., Meng, X., Mao, Z. & Karniadakis, G. E. DeepXDE: A deep learning library for solving differential equations. SIAM Rev. 63,
208 (2021).

43. Boullé, N. & Townsend, A. A generalization of the randomized singular value decomposition.International Conference on Learning
Representations (ICLR) (2022).

44. Jagtap, A. D., Kawaguchi, K. & Karniadakis, G. E. Adaptive activation functions accelerate convergence in deep and physics-
informed neural networks. J. Comput. Phys. 404, 109136 (2020).

45. Boullé, N. NBoulle/GreenLearning—Software and datasets (version v10). Zenodo. https://doi.org/10.5281/zenod0.4656020 (2021).

Acknowledgements

We thank Gregory Bewley for suggestions on the manuscript. This work was supported by the EPSRC Centre for
Doctoral Training in Industrially Focused Mathematical Modelling through Grant EP/L015803/1 in collaboration
with Simula Research Laboratory. C.J.E. was supported by the Army Research Office (ARO) Biomathematics
Program Grant W911NF-18-1-0351. A.T. was supported by the National Science Foundation Grants DMS-
1818757, DMS-1952757, and DMS-2045646.

Author contributions
N.B.,, C.J.E., and A.T. conceptualized the methodology. N.B. developed the software and visualized the results.
N.B.,, C.J.E,, and A.T. analyzed the results and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1038/541598-022-08745-5.

Correspondence and requests for materials should be addressed to N.B.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Scientific Reports | (2022) 12:4824 | https://doi.org/10.1038/s41598-022-08745-5 nature portfolio

https://doi.org/10.1007/s10208-022-09556-w
https://doi.org/10.5281/zenodo.4656020
https://doi.org/10.1038/s41598-022-08745-5
https://doi.org/10.1038/s41598-022-08745-5
www.nature.com/reprints

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

Scientific Reports | (2022) 12:4824 | https://doi.org/10.1038/s41598-022-08745-5 nature portfolio

http://creativecommons.org/licenses/by/4.0/

	Data-driven discovery of Green’s functions with human-understandable deep learning
	Results
	Deep learning Green’s functions.
	Human-understandable features.
	Numerical examples.
	Nonlinear and vector-valued equations.

	Discussion
	Methods
	Green’s functions.
	Rational neural networks.
	Data generation.
	Neural network training.
	Theoretical justification.

	References
	Acknowledgements

