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An efficient ANFIS-EEBAT approach
to estimate effort of Scrum projects

Mohit Arora®?, Sahil Verma®?, Kavita®?, Marcin Wozniak®3", Jana Shafi®* &
Muhammad Fazal ljaz®>*

Software effort estimation is a significant part of software development and project management. The
accuracy of effort estimation and scheduling results determines whether a project succeeds or fails.
Many studies have focused on improving the accuracy of predicted results, yet accurate estimation of
effort has proven to be a challenging task for researchers and practitioners, particularly when it comes
to projects that use agile approaches. This work investigates the application of the adaptive neuro-
fuzzy inference system (ANFIS) along with the novel Energy-Efficient BAT (EEBAT) technique for effort
prediction in the Scrum environment. The proposed ANFIS-EEBAT approach is evaluated using real
agile datasets. It provides the best results in all the evaluation criteria used. The proposed approach is
also statistically validated using nonparametric tests, and it is found that ANFIS-EEBAT worked best
as compared to various state-of-the-art meta-heuristic and machine learning (ML) algorithms such as
fireworks, ant lion optimizer (ALO), bat, particle swarm optimization (PSO), and genetic algorithm
(GA).

Estimating effort is a crucial component of software project management, especially when it comes to planning
and monitoring a project. In software projects, cost and schedule overruns are recurring concerns. According
to a study undertaken by Mckinsey and the University of Oxford on 5400 large-scale IT projects, large software
projects run 66 percent over budget and 33 percent overtime on average'. As evident by Standish group chaos
manifesto?, approx. 43 percent of the software projects entered crises as a result of wrong predictions of effort
and its associated costs. Researchers explored and applied estimation types, techniques, and tools ranging from
traditional to machine learning estimation for various agile methodologies. Software projects are complex and
inherently uncertain which can be handled well by adaptive models. As per the systematic literature review
published by Arora et.al’. IT managers working in Agile projects rely on traditional estimation techniques like
planning poker, expert judgment, etc. which is suffered from individual bias. Our proposed approach has been
inspired by the principles of adaptive networks and neuro-fuzzy to assist managers in deciding appropriate
resources for the projects. The main ingredient of the proposed model is a hybrid neuro-fuzzy inference engine
tuned by a novel EEBAT algorithm. Scrum project data has been seeded into the knowledge base to demonstrate
the efficacy of the system. IT stakeholders are using issue tracking systems like JIRA*, which provides a holistic
ecosystem to manage, integrate and collaborate end-to-end IT services but does not support Machine Learning
assisted estimation. This paper makes an attempt to fill this void by not only narrowing down the actual-estimated
effort gap but also producing results within the stipulated time and space constraints. The remaining work has
been bifurcated as follows, “Related work” discusses related work, “Energy Efficient BAT (EEBAT) approach”
describes Energy Efficient BAT approach, “Scrum effort estimation using ANFIS-EEBAT approach” discusses
scrum estimation using ANFIS-EEBAT approach, “Experimental results and discussion” describes the experi-
mental results and discussions, “Statistical validations” discusses various statistical tests to prove the effectiveness
of the proposed model, “Threat to validity” discusses the threat to validity, and “Concluding remarks” discusses
the concluding remarks.

Related work

It can be inferred from the underlying literature that effort estimation has been the most targeted area of research
in the software engineering domain because of its unquenchable need in IT and its associated industries. Pro-
cess model transitions can be seen in the literature from waterfall to agile, thereby the traditional approaches of
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ML techniques Accuracy parameter (MMRE) Dataset used Outperformed

Fireworl;g algorithm optimized Neural MMRE-0.0293 2} projects devglopgflzkl;y six software compa- TLBO, TLBABC, DABC, LM
network nies presented in Zia’s*! work

Multiagent Techniques? MMRE—O0.1 12 Web projects Delphi, PP

Mamdani fuzzy inference systems?

MMRE (sprint1)-0.28
MMRE (sprint2)-0.15
MMRE (sprint3)-0.09

Three sprints of real soft- are projects

Comparison with actual estimate

General Regression Neural Networks
(GRNN), Probabilistic Neural Networks
(PNN), GMDH Polynomial Neural Network
(GMDHPNN), Cascade Correlation Neural

GRNN MMRE—0.3581
PNN MMRE—1.5776
GMDHPNN MMRE—0.1563

21 agile projects

Regression (Zia's work), PNN, GRNN,
GMDHPNN

Network (CCNN)**

CCNN MMRE—0.1486

Stochastic Gradient Boosting (SGB), RF, DT* | RF MMRE—0.2516

SGB MMRE—0.1632
21 agile projects SGB outperformed RE, DT

DT MMRE—0.3820

Bayesian Networks*

Accuracy—Above 90% for six data sets | 160 tasks in real agile projects Comparison with an actual estimate

Hybrid ABC-PSO algorithm?”

ABC, PSO, GRNN, PNN, GMDPNN,

MMRE—0.0569 CCNN

21 agile projects

Support Vector Machine (SVM), NB, KNN,

SVM MMRE—0.50

NB MMRE—0.85 699 issues of inventive software designers,

Comparison with an actual estimate

DT®# KNN MMRE—0.70 5607 issues from 8 open source projects
DT MMRE—0.98
Naive Bayes (NB)* MMRE—2.044 10 teams in IBM rational team concert None

Table 1. ML Techniques used in agile scrum.

estimation like empirical, Delphi-Cost, etc., are not much suitable for estimation in the later®. Researchers have
used machine learning techniques to bridge the gap of actual and estimated effort in agile inspired software and
recorded a significant improvement. Agile aims to respond to changes positively thus soft computing techniques
done justice by satisfying these inherent characteristics and provides reliable estimating. In a pool of wide variety
of ML techniques, neuro-fuzzy frameworks® assists well in establishing complex relationships between various
people, process, and project attributes. The uncertainty of requirements and less available historical data makes
training difficult and predictions vague. ML techniques have been used in conjuncture with a wide variety of
optimizations’ like quality weighting in the analogy-based estimation, attribute weighting, tuning Artificial
Neural Networks (ANN) adjustment (weight and bias), ANFIS adjustment, and variables positioning. Many
prominent authors have reviewed and compared various regression-based and empirical techniques and found
inferences wherein the former is outperforming the later with a significant margin. The study is not limited to few
factors affecting estimation; instead, an exponential expansion can be seen vis-a-vis an increase in complexity of
software projects. In some scenarios, conflicting outcomes have also been recorded in the literature irrespective of
underlying process models. The estimation accuracy is changing with different datasets® and/or scenarios’ using
the same machine learning model. Authors are having conflicting interests’ w.r.t regression and other machine
learning model comparisons. ANN and Case-Based Reasoning (CBR) correlation analysis has been carried out
in Ref.® and found ANN outperforms CBR whereas in Ref.!’ detailed the contrary outcome.

In agile state-of-the-art reports and majority of literary resources, IT stakeholders carry out story point
estimation, using Analogy, Planning Poker (PP), Expert Judgment (EJ]), etc. A very few ML techniques have
been applied in the field of agile estimating; however, it is needed the most, because of requirements volatility.
They have either applied alone or in blend with other machine learning or non-machine learning methods!!-*%.
GA has been used with CBR, ANN, and Support Vector Regressor (SVR) for hyper parameter tuning. Fuzzy
logic®, Decision Trees (DT), Bayesian Networks (BN) with reviews attempted in the field of effort and cost
estimation'®'*!>. In a recent study of agile effort estimation, Deep Belief Network—Ant Lion Optimizer (DBN-
ALO)' hybrid approach has outperformed DT, Random Forest (RF) but they are expensive to train as it has
complex data models. Authors in Ref.!” have created ensemble of Analogy and Artificial Bee colony for software
development effort estimation. Ensemble are evaluated in Ref.!® and outperforming solos. A hydrid system based
on Firefly algorithm for predicting maintainability emphasize on the change and quality management is used in
Ref.””. Based on the trends and recorded observations by researchers, ML assisted estimation related literature
has been presented in Table 1.

All the techniques mentioned and discussed in this section are derived from general estimation approaches
to demonstrate a trail of estimation trends.

Energy Efficient BAT (EEBAT) approach. The underlying architecture of the proposed approach has
been inspired by the universal estimator i.e., Adaptive Neuro-Fuzzy Inference System®. ANFIS, in its original
form, proved variously valued and promising solutions for problems of heavyweight process models in context
to software estimation. ANFIS has some inherent pros and cons, which makes it a little less efficient for estimat-
ing in an agile environment if applied as a standard. Some shortcoming of ANFIS includes high computational
cost due to complex structure and gradient learning hence for large inputs it will be slow, type and no. of mem-
bership functions, location of a membership function, curse of dimensionality and trade-off between interpret-
ability i.e. rules and accuracy. As Agility is injecting ‘change} a de-facto ingredient in the reshaping the culture of
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Figure 1. Standard ANFIS architecture. Number of Story Points and Project Velocity are given as inputs. These
inputs have been derived from 21 projects dataset (dataset sample given in Table 2). ANFIS based exhaustive
search MATLAB functionality has been used to decide the inputs. Different inputs (as feature pairs) tested
against Actual Time. The feature pair with minimum error has been chosen in input layer.

software engineering, it becomes a mandate to optimized ANFIS hyper parameters to predict and adjust scrum
projects effort during all prominent sprints. EEBAT has optimized the learning curve of the base ANFIS.

Standard ANFIS architecture. Adaptive Neuro-Fuzzy Inference System, popularly known as a universal
estimator and Takagi-Sugeno Fuzzy System makes use of potentials of both neural network and fuzzy logic in a
package and is computationally more efficient than Mamdani, which mostly depends on the expert knowledge.
The architecture of a standard ANFIS is given in Fig. 1 and has primarily five layers of perceptron’s or neurons in
which perceptron’s or neurons in the identical layer are alike and have similar functionalities as follows

Fuzzifying layer: Each neuron is an adaptive node consisting of premise parameters.
Implication layer: Neurons indicate the product of inputs.

Normalizing layer: Each neuron is fixed.

Defuzzyfing layer: Each neuron is also an adaptive one consisting of consequence parameters.
Combining layer: It contains a single neuron that adds up all the inputs.

Energy efficient BAT approach. Standard BAT algorithm® has certain inherent issues like failure to con-
verge to global optima, multimodal optimization, poor exploration, slow rate of convergence, and no population
diversity. To address these issues, various BAT variants have been introduced by researchers across the globe
like Adaptive multi-swarm bat algorithm (AMBA)*, Bat with Mutation®’, BATDNN?*, Binary Bat algorithm,
Differential Operator & Levy flights Bat*?, Directed Artificial Bat Algorithm (DABA), Double- subpopulation
Lévy flight bat algorithm (DLBA)*, Dynamic Virtual Bats Algorithm (DVBA)®, Improved Bat algorithm (cost
estimation)?’, Improved dynamic virtual bats algorithm with probabilistic selection®, Island multi populational
parallel bat algorithm (IBA)*, Levy flight-based bat algorithm (LBA)*?, LogisticBatDNN™*, MeanBatDNN®,
Modified Bat Algorithm (ANN)*, Modified Bat Algorithm (Stability Analysis)*’, Multi-Objective bat algorithm
(MOBA)*, Novel bat algorithm with multiple strategies coupling (mixBA)*, Piecewise-BatDNN™, shrink factor
bat algorithm (SBA)*, Simplified Adaptive Bat based on frequency*!, SinBatDNN?>. Authors in Ref.** endorsed
the use of optimization techniques to reduce and determine effort of software projects. The list of inferences that
have been deduced from these variants are: Handling trade-off between exploration and exploitation, Converg-
ing to global optima instead of being trapped in local minima, Flexibility in the integration of the bat variants in
different models, Diversity factor to maintain the distinctness of population and Improvising the algorithm for
multimodal functions.

In our proposed algorithm, we update the standard bat algorithm by considering a new parameter called
Energy which will update the position and velocity of the bat based on its distance from the prey. We propose
two new factors for the energy parameter—eagerness and magnitude of work, that dynamically get updated for
controlling exploration and exploitation trade-off. It becomes exhaustive for a bat or pair of bats to search for its
target or prey due to continuous echolocation (lack of cognitive ability), exploration (failure to converge), and
exploitation (trapping in local optima). To address these concerns, EEBAT is proposed. The distinctive features
of the proposed algorithm are—the energy parameter and memory capability. The Energy Parameter, E can be
calculated using Eq. (1).
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Effort Vi D A% Sprint size Team size Team salary | Actual time Est time Actual cost Estimated cost Time MRE Cost MRE
156 4.2 0.687 2.7 10 22 230,000 63 58 1,200,000 1,023,207.14 7.93 14.73
202 3.7 0.701 2.5 10 21 260,000 92 81 1,600,000 1,680,663.89 11.95 5.04
173 4 0.878 3.3 10 22 250,000 56 52 1,000,000 992,269.51 7.14 0.77
331 4.5 0.886 3.8 10 22 300,000 86 87 2,100,000 2,002,767.22 1.16 4.63

Table 2. Dataset sample. In the sample dataset, there are 13 fields discussed below. Each row represents an
agile Project. Projects names are not revealed in the referred dataset. The Effort represents Number of Story
Points. V; is Initial Team Velocity. D is Deceleration, which affects the Team Velocity. V is the Final adjusted
team velocity, calculated by V = (V;)P. Sprint Size is the size of a typical Sprint in a Scrum Project. Team Size is
the size of Scrum Team. Team Salary is the salary of Scrum Team Members. Actual Time field value represents
Number of Days, for instance, in first row 156 Story Points (SP) took 63 days to complete Est. Time is the
value of the estimated time calculated by Zia?! in his paper. Actual Cost is the cost of Scrum Project. Estimated
Cost is the estimated calculated by Zia. Time MRE is the value of Magnitude of Relative Error calculated by
MRE(Time) = (Actual Time — Est. Time)/Actual time. Cost MRE is calculated by MRE(Cost) = (Actual Cost —
Estimated Cost)/Actual Cost.

E = fitness; x mean(P}), (1)

where fitness;, is the fitness of the current bat. The population diversity due to energy lets the bat intelligently
assess its capability thus improving time complexity and convergence. The mean of the best positions is taken to
find a convergence junction, as every bat in the population finds a different position for one value of the param-
eter. These positions are the best solutions as evident by the fitness value calculated so the collective energy of
these deduced positions determines their optimality.

The memory capability of the bat, the population in standard bat has no history of the previous solutions
encountered by the previous bats hence, novel solutions are left and premature convergence occurs. To solve this
gap of the standard bat, the second improvement proposed is the introduction of memory capability. After every
iteration, we store the position of bats in a special space called Memory Space (MS). This capability improves
exploration as previously encountered solutions are prevented from being explored and exploited, hence improv-
ing the rate of convergence. This prevents the population from being trapped in local optima. It improves the
time complexity of the algorithm.

Scrum effort estimation using ANFIS-EEBAT approach. ANFIS provides increased learning, adapt-
ing, and non-linear abilities, as it makes use of combined advantages of Neuro and Fuzzy inference systems
and thereby can be trained without an explicit empirical knowledge pool. Despite carrying strong estimation
capabilities, ANFIS architecture needs parameter adjusting and tuning. The objective function of the ANFIS-
EEBAT approach is to optimize parameters of ANFIS using an energy-efficient BAT algorithm. To begin with,
the system needs its food to start estimating the effort of new projects. Our approach depends on the training of
certain project parameters which will be primarily inserted in the knowledge base. However, the data needs to be
understandable, so before training, it is being passed from the data preparation module. This section discusses
our proposed algorithm ANFIS-EEBAT in context to effort estimation.

Methodology

In “Methodology”, we have considered Six Software houses agile project data, as sample inputs, to begin with,
mentioned in Table 2. The algorithm of the proposed methodology is presented in four broad categories given
below.

Dataset loading and feature selection. The dataset has been taken initially from six software houses
which implemented agile-based projects and the following steps have been employed.

® Loading the agile project dataset.
® Perform a feature selection using an exhaustive search based on ANFIS.

Data set partitioning and model selection. The transformed data will be split into training and testing
sets.

® Partitioning of transformed data into training and testing sets in the ratio 80:20.
e Train the ANFIS-EEBAT model using training data.

Testing part. In this part, model prediction on test data has been performed.

® Performing prediction using a trained model.
e Comparing prediction results with the original dataset.
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Performance evaluation. In this step, model performance will be evaluated through Squared Correlation
Coeflicient (R2), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), MMRE, and PRED. These performance evaluation metrices are defined as follows

® Squared correlation coefficient: It is used and defined to assess the efficacy of regression. It can be represented
using the Eq. (2).

R — 1 Zf-il(ActualEﬁort — Estimated Effort)? 2
- SN (Actual effort — Mean (Actual Effort))?

® Mean absolute percentage error: It determines absolute accuracy for different estimation models. The term
absolute is considered as the assessment of the cost estimations from the actual recognized costs. MAPE can
be calculated using the Eq. (3).

1 ZN Actual Effort — Estimated Effort

MAPE; = —
: i=1 Actual Effort

100
N | % €)

In this, the first summation is done for each estimated point, divided by the number of suitable points N.
e Prediction (PRED (x)): In mathematical definition, PRED(x) is mathematically determined as Eq. (4)

N
PRED(x) = Z [MRE; < x])[N > 0 (4)
i=1

PRED(X) Value is Calculated uSing the Eq. (5)

Here, ‘N’ represents the total of projects and ‘K’ is the count of projects having MRE below or equal to x. The
value of x can be either 0.25, 0.50. 0.75 or 1.0. If a common value of x is 0.50, then PRED (0.50) refers to the % of
projects whose MRE is less than or equal to 50%. Measuring the accuracy of estimation in scrum is an essential
activity and determines its superiority with self and others.

® Perform model comparison using various performance metrics.
e Compare the output of the above defined metrics

Deducing optimal parameters from EEBAT. The proposed system after the default initialization pro-
cess will undergo tuning of base fuzzy system parameters by EEBAT. The inherent training algorithm of ANFIS
will be replaced by EEBAT. The parameters of base fuzzy system will be adjusted based on fitness/error function
Mean Magnitude of Relative Error (MMRE) which should be low, as given in Eq. (6).

ZN |estimated—actual|
i=1 actual (6)
N

MMRE =

Here, N is the number of projects in the dataset genfis is used as a base fuzzy system with fuzzy c-means clus-
tering to create rules and input MFs in the forward pass. EEBAT will minimize the error in the backward pass
run. The detailed supposition stages of effort estimation are given in Fig. 2.

Employing optimized parameters in ANFIS obtained by EEBAT. In this step, values of error met-
rics, e.g. MMRE will be observed. The optimized parameters obtained in the previous section will be initialized
as default parameters of MFs of base fuzzy system.

Experimental results and discussion
The accuracy achieved by the system depicts the efficacy of the proposed system. Many researchers have presented
their hybrid approaches by incorporating meta-heuristic algorithms for parameter(s) optimization.

Dataset sample. The dataset sample is given in Table 2. The dataset has been taken from Zia?'.

Renaming, identification and selection of features and labels. We have renamed few fields of
Dataset and performed ANFIS based exhaustive search to find the best combination of fields which is chosen
as inputs aka features and is matched against output aka label. This exhaustive search has been carried out
in MATLAB. Fields named “Effort”, “V” and “Actual Time” from Table 2 is renamed to “No. of Story Points”,
“Velocity” and “Actual Effort” respectively. Table 3 shows that our label “Actual Effort” is mostly affected by “No.
of Story Points” and “Velocity” with minimum value of Train error i.e., 0.6504. The other pairs (No. of Story
Points — Team Size) and (Velocity — Team Size) has not been selected as the value of the train error is more vis-
a-vis chosen pair. This section assists I'T managers in making better decisions of features selection.
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stages of Scrum Projects Effort Estimation. EEBAT algorithm will determine new parameters for ANFIS. The
training and testing of optimized ANFIS will be carried out. The results of estimated Effort are given in the

upcoming section.

Features Train error
No. of story points, velocity 0.6504
No. of story points, team size 4.9212
Velocity, team size 15.7069

Table 3. Feature analysis table.

The least indispensable features selection minimizes complexity and produce software effort estimation results

in less time*3.

The deduced features and label after renaming is given in Table 4.

Expansion of dataset using k-means SMOTE.

We have applied k-means based Synthetic Minority

Over Sampling Technique (SMOTE) using Eq. (7), a data augmentation technique on Zia dataset, to generate
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Features Labels

No. of story points | Velocity | Actual effort
156 2.7 63

202 2.5 92

173 33 56

331 3.8 86

Table 4. Dataset features and labels.

Statistics | No. of story points | Velocity Actual effort
Count 162.000000 162.000000 | 162.000000
Mean 159.648148 3.054938 54.333333
Std 72.914182 0.384328 23.046806
Min 62.000000 2.400000 21.000000
Max 339.000000 4.200000 | 112.000000

Table 5. Descriptive statistics of the dataset.

synthetic values of features and labels. The purpose of this step is to address the issues of a modest amount of
data for training and testing.

x' = x +rand(0,1) x |x — xx|. (7)

Here, x is the element of minority class set A, is the element of a set A; which is calculated using k nearest
neighbors of x, sampled at some rate N. The new dataset is labeled as ZKmS (Zia K-means SMOTE) and is being
used in our ANFIS-EE- BAT model.

Descriptive statistics of the dataset. The descriptive statistics of ZKmS has been given in Table 5. It
includes count (number of projects in the dataset), mean, and standard deviation, minimum and maximum
value of “No. of Story Points”, “Velocity” and “Actual Effort” in dataset.

The statistics “Count” with value 162 signifies that ZKmS contains 162 projects data. “Mean” represents the
average value of the fields. “Std” is the standard deviation which represents the difference of the field values from

the Mean value. “Min” and “Max” show the minimum and maximum value respectively.

Model selection. ANFIS-EEBAT has been applied to the features from the dataset as per the step given
below.

Data loading and generate fuzzy inference system. After we input features in the proposed ANFIS-
EEBAT model, the antecedent layer creates the input MFs. The initial set of parameters for ANFIS and EEBAT
are given in Table 6. The values of ANFIS parameters have been optimized using EEBAT.

Building ANFIS-EEBAT model structure. After setting up the initial parameters, the proposed model’s
structure is shown in Fig. 3.

The ANFIS and EEBAT parameters are explained in the Table 6. The Number of inputs is “2” which are “No.
of Story Points” and “Velocity”. The Number of outputs is “1” which is “Actual Effort”. The learning algorithm is
“EEBAT”. The value “4” in number of inputs MFs parameter signify that there exists 4 Gaussian MFs for each
input with unique set of Gaussian parameters. “Fuzzy C-Means” partitioning method has been employed which
is used to create base fuzzy inference sys- tem. The input MF is “gaussmf (Gaussian)” that represents our data
in normal distribution and the output MF is “linear” which produces a singular value. The base fuzzy system is
created using “genfis3” functionality of MATLAB. The “And” method signifies the product of weights of neuro-
fuzzy system with the in- puts. The “Or” method utilizes “probor (probabilistic or)” which is the algebraic sum
of the previous layers. The implication and aggregation are set to “min” and “max” respectively. “wtaver” i.e.,
weightage average is used for defuzzification. The training iterations aka epochs are set to 100 as after this value
over fitting occurs. The iterations have been validated against several trials. The error tolerance is set to le—5.
The initial BAT population is set to “40”. The maximum number of iterations is “100”. Pulse rate signifies opti-
mal solution searching precision of the algorithm. The tuning parameters of ANFIS are the optimal solution.
Loudness controls the speed of convergence of the algorithm. The value of fmin and fmax determines the range
of frequency, which assists in global searching capability. Alpha and gamma are constants. The values for each
parameter are obtained during several exhaustive trials.
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ANFIS parameters EEBAT parameters
Number of inputs 2 Population size | 40
Number of outputs 1 Max iterations | 100
Learning algorithm EEBAT Pulse rate 0.3
Number of inputs MFs [4 4] Loudness 0.9
Partitioning method Fuzzy C-means | fmin 0
Input MF type gaussmf fmax 0.1
Output MF type Linear Alpha 0.9
Base fuzzy system genfis3 Gamma 0.9
And method Prod

Or method Probor

Implication Min

Aggregation Max

Defuzzification wtaver

Maximum iterations 100

Error tolerance le-5

Table 6. ANFIS and EEBAT parameters.

input inputmf rule outputmf output

Logical Operations

@® or

not

Figure 3. ANFIS-EEBAT structure. It contains five layers, as discussed in Fig. 1. There are two inputs, four pairs
of input MFs, four set of rules, four output MFs and one output. The two inputs are “No. of Story Points” and
“Velocity”. The output is “Estimated Effort” The operations performed at different layers are synonymous with
the description in Fig. 1. There are three basic logical operations, “and’, “or”, “not” depicted in the figure with
three color codes “blue’, “red” and “green” respectively. The rules are created using logical “and” operation in our

case. The logical “or” and “not” operations are unused.

ANFIS-EEBAT MFs and rules view. After the training and testing, membership function parameters are
adjusted using EEBAT and can be seen in Fig. 4a,b. The rules for the same are shown in Fig. 5.

ANFIS-EEBAT surface plot. The surface plot shown in Fig. 6 depicts the mapping of the features with the
labels. It can be deduced from the surface plot that for our features, the output is linear, which is following the
Takagi Sugeno type 3 Fuzzy Inference System (FIS).

ANFIS-EEBAT performance evaluation. ANFIS-EEBAT model’s performance has been evaluated using
various metrics such as Squared Correlation Coefficient (R?), Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE), MMRE, and PRED and is given in Table 7 for ZKmS
and Zia datasets. ANFIS-EEBAT has also been compared with other state-of- the-art models on aforementioned
datasets and summarized in Tables 8 and 9. Our approach is accurate to 98.47% and 99.93% on ZKmS and Zia
datasets, respectively and will assist the IT industry stakeholders in getting accurate estimates of their respective
projects. It also provides 100% estimation accuracy up to 2.4% for PRED. The RSquare value for the ANFIS-
EEBAT is very high and can be seen in the Table 7 (0.98472 for ZKmS and 0.99934 for Zia datasets). As a result,
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Figure 4. (a) Membership function for Inputl i.e., No. of Story Points. The x-axis and y-axis represent “No. of
Story Points” and membership values of inputl respectively. The set of four unique MFs created are represented
as curves (inlclusterl, inlcluster2, inlcluster3, inlcluster4) in the figure. (b) Membership function for Input2
i.e., Velocity. The x-axis and y-axis represent “Velocity” and membership values of input2 respectively. The set
of four unique MFs created are represented as curves (inlclusterl, inlcluster2, inlcluster3, inlcluster4) in the
figure. The curves are overlapped due to the minute values of “Velocity” which is ranging from 2.4 to 4.2.

there is a strong positive link between the story point, velocity, and the estimated work necessary to develop the
software, with little changes in one causing considerable changes in the other.

The lowest MMRE and highest PRED (15%) signify the efficacy of ANFIS-EEBAT over other techniques.
Various techniques are employed on ZKmS dataset for comparative analysis. Standard ANFIS uses hybrid (Back-
propogation and Least Square Regression (LSE)) learning for training. In ANFIS-GA, ANFIS-PSO and ANFIS-
BAT the default learning algorithm of ANFIS have been replaced by Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), and BAT, respectively. GA, PSO and BAT are well known nature inspired meta-heuristic
algorithms. Their innate ability of finding optimal solutions provides valuable feedback in exploration and com-
parison. Random Forest is an ensemble learning method which performs mean prediction of singular trees for
estimation. Radial Basis Function (RBF) kernel-based Support Vector Regressor (SVR) has been used. Stochastic
Gradient Boosting (SGB) has also been employed for estimation. It is a well-known algorithm which inculcates
randomness and variation in boosting which increases robustness in learning complex data.
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Figure 5. ANFIS-EEBAT rules view. Each row of plot represents a rule. There are a set of four rules based on
input and output membership functions. The red line is a slider for selecting the input values. For instance,

we have selected the value of “No. of Story Points” as 84.8 and “Velocity” as 2.48. The yellow color in the plots
depicts how input variable is used in the rules. The blue color in the output membership function, “Effort’,
signifies how output is utilized in the rules. The output of each rule is combined and defuzzified to create an
aggregated output in the bottom-right plot. The estimated effort, 33 is the output and is shown by the red color
line.

No._of_S Poi b 4
0._of_Story_Points Velocity
Figure 6. ANFIS-EEBAT surface plot.
Dataset | R? RMSE | MAE MAPE | MMRE | PRED (25%) | PRED (2.4%)
ZKmS | 0.984723 |2.827164 |0.440483 |0.971148 |3.910372 | 100 100
Zial7 0.999349 | 0.74579 | 0.35558 | 1.019133 | 1.518311 |100 100

Table 7. ANFIS-EEBAT performance metric evaluation.

Statistical validations

Because the dataset in software effort estimating studies does not fit into any particular distribution, nonparamet-
ric tests are advised*!. As per the nature of our data, non-parametric tests such as Friedman*® have been applied
to the ZKmS dataset using SPSS. The average ranking of the models using this test is shown in Fig. 8. The test
provides the lowest rank to the best technique.
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Techniques R? RMSE MAE MAPE MMRE PRED (15%)
ANFIS 0.982857 3.042915 | 0.57697 0.896473 4.310884 | 100
ANFIS-GA 0.973329 4.269707 | 2.025023 | 3.525099 6.568641 | 96.67
ANFIS-PSO 0.977309 3.439497 | 0.366967 | 0.857856 4.498164 | 96.67
ANFIS-BAT 0.955252 4.972847 | 1.386903 | 2.748092 5.78877 | 86.67
Random forest 0.812542 9.935695 | 0.325292 | 1.394628 | 13.38908 | 66.67

SVR 0.294153 | 19.4183 3.678706 | 0.965226 | 20.50747 | 46.67

SGB 0.955736 4.759849 | 0.35478 0.825001 5.676487 | 93.33
ANFIS-EEBAT 0.98472 2.82716 | 0.44048 0.97115 3.91037 | 100

Table 8. Results on ZKmS with other techniques.

Techniques R? MAE MMRE | PRED (25%) | PRED (2.4%)
ANFIS 0.982857 0.57697 4.310884 | 100 40
ANFIS-GA 0.973329 2.025023 6.568641 | 100 20
ANFIS-PSO 0.977309 0.366967 4.498164 | 100 40
ANFIS-BAT 0.955252 1.386903 5.78877 100 40

Zia regression'” Not available* | Not available | 7.19 57.14 0

Fireworks algorithm'® | 0.9946 Not available | 2.9339 Not available | Not available
DBN-ALO" Not available | Not available | 2.225 98.4321 Not available
ANFIS-EEBAT 0.99935 0.35558 1.518 100 100

Table 9. Results on Zia with other techniques. *The data of performance metrics is not available in the
referred research papers. This comparison has been performed on the real agile projects. It can be inferred

that in spite of good accuracies by Fireworks optimized neural network and Deep Belief Network-Ant Lion
Optimizer (DBN-ALO), a gap of actual and estimated effort is still present. This gap has been further narrowed
down using ANFIS-EEBAT approach with a PRED of 100 close to 2.4%. Figure 7 depicts the Box Plot of
ANFIS-EEBAT with other models.
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Figure 7. Box Plot of ANFIS-EEBAT with other models on ZKmS dataset. It can be inferred from the plot that
ANFIS-EEBAT has the lowest value of the median.
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Figure 8. Friedman test rank comparison on ZKmS We have considered our null hypothesis that all the
models are similar. The standard chi-square value for 4 degrees of freedom, df, and alpha=0.05 is 9.488 and our
chi-square value is 10.133, which rejects our null hypothesis. The value of Asymp. Sig. (0.038) is less than the
significance value of alpha (0.05) which ascertains that models are dissimilar. The mean rank of ANFIS-EEBAT
is 2.47 as compared to ANFIS (2.87), ANFIS-PSO (2.93), ANFIS-GA (3.73) and ANFIS-BAT (3.0).

Threat to validity

The dataset has been generated using SMOTE (k-means) from the original agile data taken from six software
houses and the proposed algorithm has been applied on both Zia and ZKmS to validate its efficiency. However,
it can be validated on more datasets.

Concluding remarks

Estimation is an indispensable requisite that assist project managers to take firm decisions and fulfilling client
commitments. As per the current literature, during the start of any typical IT project, managers primarily depend
upon the empirical estimation. Due to the complex nature of projects, estimation based on an educated guess does
not yield fruitful results. Machine Learning assisted estimation, narrows down the gap of actual and estimated
effort to a substantial level. We have attempted to bridge the aforementioned gap to a greater extent using the
ANFIS-EEBAT approach. Our approach is making use of the three capabilities viz, neural networks, fuzzy, and
novel BAT. The complexity of the proposed algorithm is managed by our novel energy equation and memory
space concept. This work can be extended using other optimization algorithms like firefly, Sail Fish Optimizer.
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The data shall be made available on request.
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