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Design and validation 
of a semi‑automatic bone 
segmentation algorithm from MRI 
to improve research efficiency
Lauren N. Heckelman1,2, Brian J. Soher3, Charles E. Spritzer3, Brian D. Lewis1 & 
Louis E. DeFrate1,2,4*

Segmentation of medical images into different tissue types is essential for many advancements in 
orthopaedic research; however, manual segmentation techniques can be time- and cost-prohibitive. 
The purpose of this work was to develop a semi-automatic segmentation algorithm that leverages 
gradients in spatial intensity to isolate the patella bone from magnetic resonance (MR) images of 
the knee that does not require a training set. The developed algorithm was validated in a sample 
of four human participants (in vivo) and three porcine stifle joints (ex vivo) using both magnetic 
resonance imaging (MRI) and computed tomography (CT). We assessed the repeatability (expressed 
as mean ± standard deviation) of the semi-automatic segmentation technique on: (1) the same MRI 
scan twice (Dice similarity coefficient = 0.988 ± 0.002; surface distance = − 0.01 ± 0.001 mm), (2) the 
scan/re-scan repeatability of the segmentation technique (surface distance = − 0.02 ± 0.03 mm), (3) 
how the semi-automatic segmentation technique compared to manual MRI segmentation (surface 
distance = − 0.02 ± 0.08 mm), and (4) how the semi-automatic segmentation technique compared 
when applied to both MRI and CT images of the same specimens (surface distance = − 0.02 ± 0.06 mm). 
Mean surface distances perpendicular to the cartilage surface were computed between pairs of 
patellar bone models. Critically, the semi-automatic segmentation algorithm developed in this work 
reduced segmentation time by approximately 75%. This method is promising for improving research 
throughput and potentially for use in generating training data for deep learning algorithms.

Recent advances in orthopaedic research have relied heavily on medical imaging to investigate in  vivo 
biomechanics1–7. In particular, previous studies have used magnetic resonance imaging (MRI)-based, three-
dimensional (3D) solid modeling techniques to investigate in vivo exercise-induced cartilage deformations8–11, 
ligament/tendon elongations12,13, and knee kinematics14–17, to name a few. These techniques often require 
researchers to manually segment bones from magnetic resonance (MR) images, which is a laborious process. 
The automation of bone segmentation has the potential to greatly improve research efficiency and throughput.

Manual segmentation of bones from MR images takes many hours per MR scan. As a result, this process can 
be cost- and time-prohibitive. Because there is a need for ways to reduce analysis time, some groups have used 
semi-automated algorithms18–22, specialized MRI pulse sequences with computed tomography (CT)-like bone 
contrast3,23–29, statistical shape modeling 4, interactive image segmentation30,31, and deep learning5,6 to improve 
the efficiency of the segmentation process.

Although MRI is regarded for its soft-tissue visualization, bone signal in most MR images is low as compared 
to other imaging modalities such as radiography and CT. Most boundary detection algorithms rely on gradients 
in signal intensity (including Prewitt32, Marr-Hildreth33, Canny34, and Sobel35). Therefore, contrast is a critical 
feature for segmentation. Specifically, a high contrast (or a large intensity gradient) between bone and the sur-
rounding soft tissue is critical for boundary detection algorithms to be able to isolate bones. Contrast between 
the bone and cartilage tissue can be quantified using the following Eq.36:
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Larger contrast values indicate greater signal differences between these adjacent tissues.
The purpose of this investigation was to develop and validate a semi-automatic boundary detection algorithm 

to isolate the bones from MR images. We hypothesized that our semi-automatic bone segmentation algorithm 
would provide a comparable accuracy to both manual segmentation of MR images and the semi-automatic 
segmentation of CT images, especially near bone regions adjacent to articular cartilage.

Methods
We performed four unique segmentation comparisons to validate our semi-automatic segmentation algorithm 
(Fig. 1). First, we compared the repeatability of our proposed technique by applying the semi-automatic bone 
segmentation algorithm to the same MRI scan twice. Second, we assessed how well our semi-automatic bone 
segmentation algorithm could isolate the patella from two different MRI scans of the same human participants. 
Third, we evaluated the differences between manual and semi-automatic segmentations of MRI scans of the 
same human participants. Finally, we compared the semi-automatic segmentations of MRI and CT scans of the 
same porcine specimens. We imaged porcine specimens to avoid subjecting our human volunteers to the ion-
izing radiation present during CT imaging. Additional information regarding the in vivo and ex vivo imaging 
protocols and the segmentation validation methods will be described in more detail below.
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Figure 1.   Overview of comparisons made between segmentation techniques. In human participants, the semi-
automatic segmentations of T1 VIBE MRI scans were compared to: (1) repeated semi-automatic segmentations 
of the same T1 VIBE MRI scans, (2) semi-automatic segmentations of second T1 VIBE MRI scans of the same 
participants, and (3) manual segmentations of DESS MRI scans of the same participants. In porcine specimens, 
the semi-automatic segmentations of T1 VIBE MRI scans were compared to the semi-automatic segmentations 
of CT scans of the same specimens. T1 VIBE T1-weighted Volume-Interpolated Breathhold Examination 
with Water Excitation, DESS Double Echo Steady-State, MRI Magnetic Resonance Imaging, CT Computed 
Tomography.
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Recruitment & in  vivo imaging protocol.  Four healthy participants (1 male, 3 females; mean age: 
28 years, range 23–38 years; mean body mass index (BMI): 22.8 kg/m2, range 21.5–24.2 kg/m2) were recruited 
and enrolled in this Duke University Institutional Review Board-approved study. All protocols adhered to the 
approved guidelines, and informed consent was received from all subjects prior to participation in the inves-
tigation. Exclusion criteria included any history of lower-extremity injury, surgery, or pain prior to the study. 
All individuals underwent MR imaging of their dominant knee (defined as the leg with which they would kick 
a ball37) at 7AM in the Center for Advanced Magnetic Resonance Development within the Duke University 
Hospital on a 3.0 T MR scanner (TIM Trio; Siemens Healthcare; Malvern, PA) with an 8-channel knee coil 
(Invivo; Gainesville, FL). Due to previous work comparing bones segmented from CT images and various 
pulse sequences38, sagittal T1-weighted volume-interpolated breathhold examination with water excitation (T1 
VIBE) MR images were acquired (Table 1; Figs. 2A; 3A). Double echo steady-state (DESS) MR images were also 
acquired for validation purposes, as these images have been used previously for manual segmentation of the 
patella (Table 1; Figs. 2B, 3A)8,39,40.

Porcine stifle joint preparation & ex  vivo imaging protocol.  Three intact porcine stifles were 
obtained from a local abattoir. The joints were stored in a cold room at 4 °C prior to CT imaging in the Duke 
Cancer Center (Fig. 3B; scanner: Somatom Definition Flash, Siemens Healthcare; Malvern, PA; matrix: 512 × 512 
pixels; resolution: 0.3 × 0.3 × 0.6 mm; voltage potential (peak): 120 kVp; tube current: 240 mA). Next, all joints 
were stored overnight in the 4 °C cold room and then imaged the following day in the Duke Center for Advanced 
Magnetic Resonance Development using the same T1 VIBE MRI sequence as was used for the human in vivo 
scans (Table 1; Fig. 3B).

Semi‑automatic bone segmentation algorithm.  We developed an algorithm to semi-automatically 
segment the bones from both MR and CT images in MATLAB (The MathWorks, Inc.; Natick, MA). The major 
steps of this process are outlined in Fig. 4 and will be further explained in the subsequent sections.

Table 1.   MRI parameters. T1 VIBE T1-weighted volume-interpolated breathhold examination with water 
excitation, DESS double echo steady-state.

Pulse sequence T1 VIBE DESS

Flip angle 10° 25°

Repetition time, TR (ms) 12 17

Echo time, TE (ms) 4.9 6

Matrix size (pixels) 248 × 256, interpolated to
496 × 512 512 × 512

Resolution (mm) 0.7 × 0.7 × 0.7, interpolated to
0.4 × 0.4 × 0.7 0.3 × 0.3 × 1

Acquisition time (minutes:seconds) 4:28 9:49

Water excitation Yes No

Contrast 0.95 0.72

Rationale for testing Agreement with CT38 Knee8,39, Ankle41

Figure 2.   Sagittal (A) T1 VIBE and (B) DESS MR images were acquired of each human participant’s dominant 
knee. While DESS images have been reliably used for knee joint bone and cartilage model generation in the 
past, T1 VIBE had greater contrast between the bone and adjacent cartilage (0.95 vs. 0.72). DESS Double Echo 
Steady-State, T1 VIBE T1-weighted Volume-Interpolated Breathhold Examination with Water Excitation.
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A custom MATLAB graphical user interface (GUI) was designed to carry out the segmentation steps. To 
use this program, T1 VIBE MR images (human and porcine) or sagittal CT images (porcine only) are imported 
into MATLAB.

The edges in each image are identified using a Canny filter in MATLAB (Fig. 4, Step 1)34. The threshold and 
standard deviation of the Canny filter are manually selected to maximize the identification of the bone edges, 
while also limiting noise. The threshold of the Canny filter is defined using a value on a normalized scale from 
0–1. All edges stronger than this threshold are preserved. We aimed to keep our threshold as low as possible (to 
preserve as many edges as possible), while still removing some extraneous edges due to image noise. The selected 
thresholds were approximately equal for all scans within a given modality (range 0.02–0.07 for MRI, 0.15–0.25 
for CT), and the default standard deviation (0.10) was used for all scans. Next, the first and last slices contain-
ing the bone of interest are manually identified. The image stack is then manually cropped to isolate the bone 
of interest (Fig. 4, Step 2). Next, the user selects slice(s) to initialize using a multi-step process (Fig. 4, Step 3):

1.	 Use drop-down menu to select a slice to initialize.
2.	 Remove points to break the 8-pixel connectivity (up, down, left, right, and four corners) of Canny edges that 

are not along the bone boundary.

Figure 3.   Imaging protocols for the in vivo and ex vivo arms of the experiment. (A) T1 VIBE and DESS MR 
images were acquired of each human (in vivo) participant’s dominant knee. (B) The porcine (ex vivo) imaging 
protocol consisted of CT imaging followed by the same T1 VIBE MRI sequence performed on the human 
participants. T1 VIBE T1-weighted Volume-Interpolated Breathhold Examination with Water Excitation, DESS 
Double Echo Steady-State, MR magnetic resonance, CT computed tomography.

1. Edge Detection 2. Crop Image 3. Select Edges 4. Segmentation 5. Point Cloud

Figure 4.   Semi-automatic segmentation steps for isolating bone from either MR or CT images. (1) A Canny 
edge detection filter is used to identify all edges in each image. The edges are overlaid in yellow on each image. 
(2) The image volume is cropped around the bone of interest (patella). (3) On a single starting image slice, the 
user selects the edges of the patella previously identified by the Canny filter. The selected edges are highlighted 
in cyan. (4) This starting slice is then used to determine the edges nearest these points in adjacent slices in the 
image volume. The user can remove stray edge points in any slice before proceeding. (5) The identified bone 
edges are converted into a three-dimensional point cloud.
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3.	 Select edges around the bone boundary to keep.
4.	 Repeat steps 1–3 until all chosen slices are initialized.

The bone edges from each initialized slice are used as a starting point from which to extract the nearest Canny 
edge pixels from the image immediately before and after the chosen slice. In this study, the edges were initial-
ized in approximately one out of every five images. Following slice initialization, the user can step through the 
remaining images one at a time so corrections can be made before proceeding to the next image (Fig. 4, Step 4). 
After all images are processed, the user can export the coordinates of a 3D point cloud of the designated bone 
(Fig. 4, Step 5; Fig. 5A).

Validation—Dice similarity coefficient.  To determine the repeatability of the semi-automatic segmen-
tation algorithm, we applied this technique to the T1 VIBE MR scans of the human patellae twice per scan. This 
enabled us to determine the Dice similarity coefficient (DSC) of our segmentation outcomes42:

where |X ∩ Y | represents the number of elements the sets X and Y  have in common, and |X| and |Y | represent 
the number of elements in the sets X and Y  , respectively. Dice similarity coefficients range from 0 to 1, where 
0 indicates no agreement between datasets and 1 indicates full agreement between datasets. We computed the 
DSC for each MR slice containing patellar bone and then averaged the coefficients across all slices (weighted 
based on how many pixels were present in each slice) for a given participant to yield an overall mean value 
per subject. We used Dice similarity coefficients for this comparison since the semi-automated algorithm was 
repeated twice on the same images.

Validation—surface distance.  To further validate the semi-automatic segmentation algorithm, we quan-
tified the mean surface distance between bone models obtained using different segmentation techniques43. Spe-
cifically, we focused on analyzing the bone-cartilage interfaces, as this is critical for assessing changes in cartilage 
thickness8,39,40,44. We first assessed the repeatability of the semi-automatic segmentation of T1 VIBE MR images 
of human patellae by isolating the patella from: (1) the same image volume twice and (2) repeated T1 VIBE MR 
scans of the same human patellae acquired approximately 30 min apart on the same day (scan/re-scan repeat-
ability). We also compared bone models generated from: (1) the semi-automatic segmentation of T1 VIBE MR 
images of human patellae to the manual segmentation of DESS MR images of the same human patellae8–10,40,45 
and (2) the semi-automatic segmentation of T1 VIBE MR images of porcine patellae to the semi-automatic seg-
mentation of CT images of the same porcine patellae.

To assess the surface distance between pairs of bones, 3D point clouds of the patellae from each of the four 
human participants (MRI only) and the three porcine specimens (MRI & CT) were generated using the semi-
automatic bone segmentation algorithm just described (Fig. 5A). The four human patellae were also manually 
segmented from each DESS MR image using solid modeling software (Rhinoceros; Robert McNeel and Associ-
ates; Seattle, WA) to form 3D point clouds8,39,40,44. Next, the MRI and CT bone point clouds were imported into 
Geomagic Studio (Geomagic, Inc.; Cary, NC), and the porcine CT point clouds were registered to their respec-
tive MRI point clouds using an iterative closest point algorithm to ensure site-specific comparisons of the bone 
surfaces. A similar registration process was used to align the semi-automatic and manual point clouds of the 
human patellae, as well as the point clouds generated from the semi-automatic segmentation of the repeated 
(scan/re-scan) T1 VIBE MR acquisitions in the human participants.
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Figure 5.   (A) Lateral view of a 3D point cloud model generated from semi-automatic segmentations of a 
human patella. (B) Lateral view of a 3D surface mesh generated from the 3D point cloud in (A). (C) Posterior 
view of the 3D surface mesh in (B). The gray region depicts the area in which cartilage is located. A anterior, P 
posterior, S superior, I inferior, M medial, L lateral).
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Following registration, the bone models were converted into 3D surface meshes (Fig. 5B). The patellar bone 
surface directly in contact with patellar cartilage was also extracted from each 3D model (Fig. 5C).

To quantitatively compare the agreement between two bone surface meshes, pairs of surface meshes were 
evaluated using MATLAB (Fig. 6A,B). While the same process was performed for each pair of surface meshes 
to quantify the resulting surface distances, we will describe the semi-automatic vs. manual MRI segmentation 
(T1 VIBE and DESS MR images, respectively) evaluation below.

The semi-automatic segmentation bone model (from T1 VIBE MR images), the manual segmentation bone 
model (from DESS MR images), and the bone model mesh faces located adjacent to articular cartilage in both 
models were imported into MATLAB, and the volume centroids of the semi-automatic segmentation bone model 
were subtracted from all three models to center them about the origin while maintaining their registration. Next, 
a search algorithm was employed to find all mesh nodes on the manual segmentation bone model located within 
a 2.5 mm radius of each mesh node on the semi-automatic segmentation bone model. These mesh node coordi-
nates were averaged to yield a single vertex. This yielded a set of matched vertices on the two bone models from 
which to directly compute the surface distance. Surface distance was defined as the difference in the x-coordinates 
between the two bone models, as the x-direction is perpendicular to the articular surface of the patella (Fig. 6). 
Positive surface distances were indicative of regions where the semi-automatic segmentation model was larger 
than the manual segmentation model, whereas negative surface distances were indicative of regions where the 
manual segmentation model was larger than the semi-automatic segmentation model.

While we are generating whole-bone models, it is important to note that we are primarily concerned with the 
agreement between the regions adjacent to the articular surfaces of the bone models since these regions are the 
areas that will influence cartilage thickness measurements8,39,40,44. Thus, the surface distance calculations were 
further refined by extracting only bone mesh nodes within the confines of the patellar cartilage model. Specifi-
cally, only bone mesh nodes located adjacent to patellar cartilage after a 25% perimeter reduction of the cartilage 
boundary were considered (Fig. 6C). A similar perimeter reduction was implemented previously to avoid edge 
effects when quantifying running-induced patellar cartilage strains continuously across the articular surface39. 
All other surface distance comparisons (repeated segmentations of the same T1 VIBE MRI scans, scan/re-scan 
repeatability of T1 VIBE MRI segmentations of the same participants, and T1 VIBE MRI vs. CT segmentations 
of the same porcine specimens) were performed using the same methodology.

Results
A single experienced investigator required approximately 15 min to segment the patella bone from T1 VIBE MR 
images using the semi-automatic bone segmentation algorithm and approximately 1 h to manually segment the 
patella bone from the DESS MR images, yielding a time savings of about 75%. The mean (± standard deviation) 
Dice similarity coefficient and surface distance of our repeated semi-automatic segmentations on the same T1 
VIBE MRI scans were 0.988 ± 0.002 and − 0.01 ± 0.001 mm, respectively, indicating a high level of repeatability 
in isolating the patellar bone from T1 VIBE MR images (Table 2). The negative mean surface distance indicates 
that the second segmentation of the patella was slightly larger than the first, on average. The semi-automatic T1 
VIBE MRI segmentation algorithm yielded a mean (± standard deviation) surface distance of − 0.02 ± 0.08 mm 
as compared to manual DESS MRI segmentations in the human participants, indicating the DESS MRI seg-
mentations were larger than the semi-automatic MRI segmentations (Table 2). Similarly, when segmenting the 
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Figure 6.   Posterior views of representative 3D bone models of a human patella generated using (A) semi-
automatic segmentation of sagittal T1 VIBE MR images and (B) manual segmentation of sagittal DESS MR 
images. The same post-processing and smoothing operators were applied to both models. The DESS images 
had a larger slice thickness as compared to the T1 VIBE images (1 mm vs. 0.7 mm), which may contribute 
to differences in smoothness between the models. (C) The surface distances map shows strong agreement 
between the 3D models. Blue indicates regions where the semi-automatic segmentation model was larger than 
the manual segmentation model, whereas red indicates regions where the manual segmentation model was 
larger than the semi-automatic segmentation model. The black dashed line represents the bone region analyzed 
after the 25% perimeter reduction of the cartilage boundary, which was implemented to minimize edge effects. 
Surface distance was defined as the difference between the x-coordinates of the two bone models. T1 VIBE 
T1-weighted Volume-Interpolated Breathhold Examination with Water Excitation, DESS Double Echo Steady-
State, MR magnetic resonance, S superior, I inferior, M medial, L lateral).
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same individual’s patella twice (scan/re-scan on the same day), the semi-automatic T1 VIBE MRI segmentation 
algorithm generated segmentations with a mean surface distance of − 0.02 ± 0.03 mm, indicating the second 
segmentation was, on average, 0.02 mm larger than the first (Table 2). Finally, the semi-automatic T1 VIBE MRI 
and CT segmentations of the porcine patellae resulted in a mean surface distance of − 0.02 ± 0.06, indicating 
the semi-automatic CT segmentations were larger than the semi-automatic T1 VIBE segmentations (Table 2).

Discussion
We have developed a semi-automatic segmentation algorithm to isolate bone from T1 VIBE MR images using 
gradients in signal intensity. T1 VIBE MR images were chosen for this application because they provide excellent 
contrast between bone and the adjacent articular cartilage. The algorithm developed is repeatable in its ability to 
detect patellar bone boundaries from the same MR scan twice and from scan/re-scan acquisitions of the same 
participants. It also performs favorably in comparison to manual segmentation of MR images, and it produces 
comparable results between MR and CT images. Furthermore, this semi-automatic segmentation technique 
generates complete 3D point clouds in a fraction of the time it takes to manually segment the same images. These 
results indicate that the semi-automatic segmentation algorithm outlined in the present work may be a viable 
alternative for manual segmentation.

The semi-automatic segmentation algorithm developed in the present work was repeatable in isolating the 
patellar bone from T1 VIBE MR images. We quantified a mean Dice similarity coefficient of 0.988 and a mean 
surface distance of − 0.01 mm when comparing the segmentation results from the same MR scan twice. We fur-
ther demonstrated that segmentations generated from two separate T1 VIBE MR scans of the same participant 
differed by a mean surface distance of − 0.02 mm. The semi-automatic segmentation algorithm also compared 
well with manual segmentation of MR images, resulting in a mean surface distance of − 0.02 mm. These values 
agreed with previous repeatability studies which have demonstrated that manual segmentation of bone cortices 
and cartilage surfaces from DESS MR images is repeatable to within approximately 0.03 mm44. Additionally, 
while manual segmentation of the patellar bone from MR images takes about an hour to complete, our semi-
automatic segmentation algorithm takes approximately 15 min per patella. Thus, the present findings suggest 
the semi-automatic segmentation algorithm described can produce comparable results to those obtained via 
manual segmentation in a fraction of the time.

Furthermore, the semi-automatic segmentation algorithm yielded sub-millimeter mean surface distances 
when comparing the T1 VIBE MRI and CT bone models (− 0.02 mm). Previous work by Neubert et al.38 dem-
onstrated that the T1 VIBE MR pulse sequence had sub-millimeter absolute differences between T1 VIBE and 
CT bone models of the femur, tibia, fibula, and patella. While zero echo time (ZTE) MRI mimics the visual 
appearance of CT images23–29, a previous study comparing ZTE MRI and CT scans of the glenoid bone showed 
the scans also differed by sub-millimeter values29. Thus, we believe T1 VIBE-based semi-automatic segmentation 
is a viable option for bone segmentation from MR images.

While we were able to reduce segmentation time by approximately 75%, further work may seek to reduce this 
processing time even further. Advances in deep learning algorithms may be one approach. However, deep learn-
ing techniques traditionally require relatively large datasets to train the resulting algorithms46–48, and the algo-
rithm is limited by the quality of the training data. Since the semi-automatic segmentation technique described 
in the present work was shown to be comparable to manual segmentation, this method can potentially be used 
to generate training data for future deep learning algorithms.

Although the present work only validated the semi-automatic segmentation of a relatively small group of 
patellae, the algorithm described herein can likely be implemented in T1 VIBE images of other bones. This is 
in part because of the gradient-based segmentation approach used, which may be applicable to new situations. 
This is potentially a strength of this technique compared to some deep learning techniques that are designed to 
perform feature identification or pattern recognition in a specific training set49. Image artifacts, due to things 
such as patient motion or the presence of metallic objects, may alter the efficacy of the present algorithm. Future 
work will further assess the robustness of the current approach.

The utility of the semi-automatic segmentation algorithm developed in this work is currently limited to bone 
isolation. As such, manual segmentation of the articular cartilage may be needed to quantify exercise-induced 
cartilage deformations in vivo15,39,40. In previous studies, bone and cartilage have both been manually segmented 
from DESS MR images of the knee8,39,44, as the DESS sequence provides an excellent compromise regarding con-
trast between bone and cartilage as well as between cartilage and synovial fluid. It may be necessary to acquire 
both T1 VIBE and DESS MR images (for semi-automatic bone segmentation and manual cartilage segmentation, 
respectively) to assess cartilage deformations in future studies. While acquiring both sequences would increase 

Table 2.   Surface Distance Results for Each Validation Comparison. Data presented as mean ± standard 
deviation. T1 VIBE T1-weighted volume-interpolated breathhold examination with water excitation, DESS 
double echo steady-state, MRI magnetic resonance imaging, CT computed tomography.

Validation Comparison Species Sample Size x-Axis Surface Distance (mm)

Semi-automatic T1 VIBE MRI repeatability (same scan) Human 4 − 0.01 ± 0.001

Semi-automatic T1 VIBE MRI repeatability (scan/re-scan) Human 4 − 0.02 ± 0.03

Semi-automatic T1 VIBE MRI vs. manual DESS MRI Human 4 − 0.02 ± 0.08

Semi-automatic T1 VIBE MRI vs. semi-automatic CT Porcine 3 − 0.02 ± 0.06
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scan time (mm:ss; T1 VIBE = 4:28, DESS = 9:49, both = 14:17), the significant time savings during data analysis 
justify this added scan. While this study specifically utilized T1 VIBE MR images for the semi-automatic bone 
segmentation algorithm, any commercially available pulse sequence with a large contrast may be a viable option 
for gradient-based segmentation. Future investigations may seek to identify other suitable sequences for semi-
automatic bone segmentation that can also be used for manual cartilage segmentation.

In conclusion, we developed a gradient-based semi-automatic bone segmentation algorithm that was repeat-
able and produced results comparable to both manual MRI segmentation and semi-automatic CT segmentation. 
We used a T1 VIBE MR pulse sequence, which provided excellent contrast between bone and the adjacent articu-
lar cartilage, enabling us to overcome the low cortical bone signal inherent in most MR images23,24. This newly 
developed algorithm reduced analysis time by approximately 75%. Thus, the semi-automatic bone segmentation 
algorithm is a viable replacement for manual segmentation that will improve research efficiency.
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