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Design and validation

of a semi-automatic bone
segmentation algorithm from MRI
to improve research efficiency

Lauren N. Heckelman®?, Brian J. Soher?, Charles E. Spritzer?, Brian D. Lewis* &
Louis E. DeFrate%2*

Segmentation of medical images into different tissue types is essential for many advancements in
orthopaedic research; however, manual segmentation techniques can be time- and cost-prohibitive.
The purpose of this work was to develop a semi-automatic segmentation algorithm that leverages
gradients in spatial intensity to isolate the patella bone from magnetic resonance (MR) images of
the knee that does not require a training set. The developed algorithm was validated in a sample

of four human participants (in vivo) and three porcine stifle joints (ex vivo) using both magnetic
resonance imaging (MRI) and computed tomography (CT). We assessed the repeatability (expressed
as mean t standard deviation) of the semi-automatic segmentation technique on: (1) the same MRI
scan twice (Dice similarity coefficient=0.988 + 0.002; surface distance =-0.01+0.001 mm), (2) the
scan/re-scan repeatability of the segmentation technique (surface distance=-0.02 +0.03 mm), (3)
how the semi-automatic segmentation technique compared to manual MRI segmentation (surface
distance=-0.02 + 0.08 mm), and (4) how the semi-automatic segmentation technique compared
when applied to both MRI and CT images of the same specimens (surface distance=-0.02 +0.06 mm).
Mean surface distances perpendicular to the cartilage surface were computed between pairs of
patellar bone models. Critically, the semi-automatic segmentation algorithm developed in this work
reduced segmentation time by approximately 75%. This method is promising for improving research
throughput and potentially for use in generating training data for deep learning algorithms.

Recent advances in orthopaedic research have relied heavily on medical imaging to investigate in vivo
biomechanics'~’. In particular, previous studies have used magnetic resonance imaging (MRI)-based, three-
dimensional (3D) solid modeling techniques to investigate in vivo exercise-induced cartilage deformations®™!,
ligament/tendon elongations'>'?, and knee kinematics'*""7, to name a few. These techniques often require
researchers to manually segment bones from magnetic resonance (MR) images, which is a laborious process.
The automation of bone segmentation has the potential to greatly improve research efficiency and throughput.

Manual segmentation of bones from MR images takes many hours per MR scan. As a result, this process can
be cost- and time-prohibitive. Because there is a need for ways to reduce analysis time, some groups have used
semi-automated algorithms'®-?, specialized MRI pulse sequences with computed tomography (CT)-like bone
contrast>?*~%, statistical shape modeling %, interactive image segmentation®*’!, and deep learning®® to improve
the efficiency of the segmentation process.

Although MRI is regarded for its soft-tissue visualization, bone signal in most MR images is low as compared
to other imaging modalities such as radiography and CT. Most boundary detection algorithms rely on gradients
in signal intensity (including Prewitt*?, Marr-Hildreth®?, Canny®, and Sobel*). Therefore, contrast is a critical
feature for segmentation. Specifically, a high contrast (or a large intensity gradient) between bone and the sur-
rounding soft tissue is critical for boundary detection algorithms to be able to isolate bones. Contrast between
the bone and cartilage tissue can be quantified using the following Eq.*:
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Figure 1. Overview of comparisons made between segmentation techniques. In human participants, the semi-
automatic segmentations of T1 VIBE MRI scans were compared to: (1) repeated semi-automatic segmentations
of the same T1 VIBE MRI scans, (2) semi-automatic segmentations of second T1 VIBE MRI scans of the same
participants, and (3) manual segmentations of DESS MRI scans of the same participants. In porcine specimens,
the semi-automatic segmentations of T1 VIBE MRI scans were compared to the semi-automatic segmentations
of CT scans of the same specimens. T1 VIBE T1-weighted Volume-Interpolated Breathhold Examination

with Water Excitation, DESS Double Echo Steady-State, MRI Magnetic Resonance Imaging, CT Computed
Tomography.
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Larger contrast values indicate greater signal differences between these adjacent tissues.

The purpose of this investigation was to develop and validate a semi-automatic boundary detection algorithm
to isolate the bones from MR images. We hypothesized that our semi-automatic bone segmentation algorithm
would provide a comparable accuracy to both manual segmentation of MR images and the semi-automatic
segmentation of CT images, especially near bone regions adjacent to articular cartilage.

Methods

We performed four unique segmentation comparisons to validate our semi-automatic segmentation algorithm
(Fig. 1). First, we compared the repeatability of our proposed technique by applying the semi-automatic bone
segmentation algorithm to the same MRI scan twice. Second, we assessed how well our semi-automatic bone
segmentation algorithm could isolate the patella from two different MRI scans of the same human participants.
Third, we evaluated the differences between manual and semi-automatic segmentations of MRI scans of the
same human participants. Finally, we compared the semi-automatic segmentations of MRI and CT scans of the
same porcine specimens. We imaged porcine specimens to avoid subjecting our human volunteers to the ion-
izing radiation present during CT imaging. Additional information regarding the in vivo and ex vivo imaging
protocols and the segmentation validation methods will be described in more detail below.
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Pulse sequence T1 VIBE DESS

Flip angle 10° 25°

Repetition time, TR (ms) 12 17

Echo time, TE (ms) 4.9 6

Matrix size (pixels) ‘2;912 i g?g’ interpolated to 512 %512
Resolution (mm) 0.7 07 07, interpolated o o3, 031
Acquisition time (minutes:seconds) 4:28 9:49

Water excitation Yes No

Contrast 0.95 0.72

Rationale for testing Agreement with CT® Knee®¥, Ankle*!

Table 1. MRI parameters. T1 VIBE T1-weighted volume-interpolated breathhold examination with water
excitation, DESS double echo steady-state.

T1VIBE DESS

Figure 2. Sagittal (A) T1 VIBE and (B) DESS MR images were acquired of each human participant’s dominant
knee. While DESS images have been reliably used for knee joint bone and cartilage model generation in the
past, T1 VIBE had greater contrast between the bone and adjacent cartilage (0.95 vs. 0.72). DESS Double Echo
Steady-State, T1 VIBE T1-weighted Volume-Interpolated Breathhold Examination with Water Excitation.

Recruitment & in vivo imaging protocol. Four healthy participants (1 male, 3 females; mean age:
28 years, range 23-38 years; mean body mass index (BMI): 22.8 kg/m?, range 21.5-24.2 kg/m?) were recruited
and enrolled in this Duke University Institutional Review Board-approved study. All protocols adhered to the
approved guidelines, and informed consent was received from all subjects prior to participation in the inves-
tigation. Exclusion criteria included any history of lower-extremity injury, surgery, or pain prior to the study.
All individuals underwent MR imaging of their dominant knee (defined as the leg with which they would kick
a ball¥’) at 7AM in the Center for Advanced Magnetic Resonance Development within the Duke University
Hospital on a 3.0 T MR scanner (TIM Trio; Siemens Healthcare; Malvern, PA) with an 8-channel knee coil
(Invivo; Gainesville, FL). Due to previous work comparing bones segmented from CT images and various
pulse sequences®, sagittal T1-weighted volume-interpolated breathhold examination with water excitation (T1
VIBE) MR images were acquired (Table 1; Figs. 2A; 3A). Double echo steady-state (DESS) MR images were also
acquired for validation purposes, as these images have been used previously for manual segmentation of the
patella (Table 1; Figs. 2B, 3A)33%4,

Porcine stifle joint preparation & ex vivo imaging protocol. Three intact porcine stifles were
obtained from a local abattoir. The joints were stored in a cold room at 4 °C prior to CT imaging in the Duke
Cancer Center (Fig. 3B; scanner: Somatom Definition Flash, Siemens Healthcare; Malvern, PA; matrix: 512 x 512
pixels; resolution: 0.3x0.3 0.6 mm; voltage potential (peak): 120 kVp; tube current: 240 mA). Next, all joints
were stored overnight in the 4 °C cold room and then imaged the following day in the Duke Center for Advanced
Magnetic Resonance Development using the same T1 VIBE MRI sequence as was used for the human in vivo
scans (Table 1; Fig. 3B).

Semi-automatic bone segmentation algorithm. We developed an algorithm to semi-automatically
segment the bones from both MR and CT images in MATLAB (The MathWorks, Inc.; Natick, MA). The major
steps of this process are outlined in Fig. 4 and will be further explained in the subsequent sections.
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Figure 3. Imaging protocols for the in vivo and ex vivo arms of the experiment. (A) T1 VIBE and DESS MR
images were acquired of each human (in vivo) participant’s dominant knee. (B) The porcine (ex vivo) imaging
protocol consisted of CT imaging followed by the same T1 VIBE MRI sequence performed on the human
participants. T1 VIBE T1-weighted Volume-Interpolated Breathhold Examination with Water Excitation, DESS
Double Echo Steady-State, MR magnetic resonance, CT computed tomography.
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Figure 4. Semi-automatic segmentation steps for isolating bone from either MR or CT images. (1) A Canny
edge detection filter is used to identify all edges in each image. The edges are overlaid in yellow on each image.
(2) The image volume is cropped around the bone of interest (patella). (3) On a single starting image slice, the
user selects the edges of the patella previously identified by the Canny filter. The selected edges are highlighted
in cyan. (4) This starting slice is then used to determine the edges nearest these points in adjacent slices in the
image volume. The user can remove stray edge points in any slice before proceeding. (5) The identified bone
edges are converted into a three-dimensional point cloud.

A custom MATLAB graphical user interface (GUI) was designed to carry out the segmentation steps. To
use this program, T1 VIBE MR images (human and porcine) or sagittal CT images (porcine only) are imported
into MATLAB.

The edges in each image are identified using a Canny filter in MATLAB (Fig. 4, Step 1)**. The threshold and
standard deviation of the Canny filter are manually selected to maximize the identification of the bone edges,
while also limiting noise. The threshold of the Canny filter is defined using a value on a normalized scale from
0-1. All edges stronger than this threshold are preserved. We aimed to keep our threshold as low as possible (to
preserve as many edges as possible), while still removing some extraneous edges due to image noise. The selected
thresholds were approximately equal for all scans within a given modality (range 0.02-0.07 for MRI, 0.15-0.25
for CT), and the default standard deviation (0.10) was used for all scans. Next, the first and last slices contain-
ing the bone of interest are manually identified. The image stack is then manually cropped to isolate the bone
of interest (Fig. 4, Step 2). Next, the user selects slice(s) to initialize using a multi-step process (Fig. 4, Step 3):

1. Use drop-down menu to select a slice to initialize.
2. Remove points to break the 8-pixel connectivity (up, down, left, right, and four corners) of Canny edges that
are not along the bone boundary.
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Figure 5. (A) Lateral view of a 3D point cloud model generated from semi-automatic segmentations of a
human patella. (B) Lateral view of a 3D surface mesh generated from the 3D point cloud in (A). (C) Posterior
view of the 3D surface mesh in (B). The gray region depicts the area in which cartilage is located. A anterior, P
posterior, S superior, I inferior, M medial, L lateral).

3. Select edges around the bone boundary to keep.
4. Repeat steps 1-3 until all chosen slices are initialized.

The bone edges from each initialized slice are used as a starting point from which to extract the nearest Canny
edge pixels from the image immediately before and after the chosen slice. In this study, the edges were initial-
ized in approximately one out of every five images. Following slice initialization, the user can step through the
remaining images one at a time so corrections can be made before proceeding to the next image (Fig. 4, Step 4).
After all images are processed, the user can export the coordinates of a 3D point cloud of the designated bone
(Fig. 4, Step 5; Fig. 5A).

Validation—Dice similarity coefficient. To determine the repeatability of the semi-automatic segmen-
tation algorithm, we applied this technique to the T1 VIBE MR scans of the human patellae twice per scan. This
enabled us to determine the Dice similarity coefficient (DSC) of our segmentation outcomes**:

_2XNY]

DSC = ——
X1+ 1Y]

2)

where |X N Y| represents the number of elements the sets X and Y have in common, and |X|and |Y| represent
the number of elements in the sets X and Y, respectively. Dice similarity coefficients range from 0 to 1, where
0 indicates no agreement between datasets and 1 indicates full agreement between datasets. We computed the
DSC for each MR slice containing patellar bone and then averaged the coeflicients across all slices (weighted
based on how many pixels were present in each slice) for a given participant to yield an overall mean value
per subject. We used Dice similarity coeflicients for this comparison since the semi-automated algorithm was
repeated twice on the same images.

Validation—surface distance. To further validate the semi-automatic segmentation algorithm, we quan-
tified the mean surface distance between bone models obtained using different segmentation techniques®. Spe-
cifically, we focused on analyzing the bone-cartilage interfaces, as this is critical for assessing changes in cartilage
thickness®**#044 We first assessed the repeatability of the semi-automatic segmentation of T1 VIBE MR images
of human patellae by isolating the patella from: (1) the same image volume twice and (2) repeated T1 VIBE MR
scans of the same human patellae acquired approximately 30 min apart on the same day (scan/re-scan repeat-
ability). We also compared bone models generated from: (1) the semi-automatic segmentation of T1 VIBE MR
images of human patellae to the manual segmentation of DESS MR images of the same human patellae®-10:4045
and (2) the semi-automatic segmentation of T1 VIBE MR images of porcine patellae to the semi-automatic seg-
mentation of CT images of the same porcine patellae.

To assess the surface distance between pairs of bones, 3D point clouds of the patellae from each of the four
human participants (MRI only) and the three porcine specimens (MRI & CT) were generated using the semi-
automatic bone segmentation algorithm just described (Fig. 5A). The four human patellae were also manually
segmented from each DESS MR image using solid modeling software (Rhinoceros; Robert McNeel and Associ-
ates; Seattle, WA) to form 3D point clouds®*##4, Next, the MRI and CT bone point clouds were imported into
Geomagic Studio (Geomagic, Inc.; Cary, NC), and the porcine CT point clouds were registered to their respec-
tive MRI point clouds using an iterative closest point algorithm to ensure site-specific comparisons of the bone
surfaces. A similar registration process was used to align the semi-automatic and manual point clouds of the
human patellae, as well as the point clouds generated from the semi-automatic segmentation of the repeated
(scan/re-scan) T1 VIBE MR acquisitions in the human participants.

Scientific Reports |

(2022) 12:7825 | https://doi.org/10.1038/s41598-022-11785-6 nature portfolio



www.nature.com/scientificreports/

A Semi-Automatic B  Manual C Semi-Automatic y
Larger
o P i~
S 1.5' ~ 3 2<
] A \
7= ' gy x
AE," | :
o E \ i s
& . %
5 Te-—o -2 T L
7] -1.5
Manual
Larger I

Sur face Distance = Semi-Automatic, — Manual,

Figure 6. Posterior views of representative 3D bone models of a human patella generated using (A) semi-
automatic segmentation of sagittal T1 VIBE MR images and (B) manual segmentation of sagittal DESS MR
images. The same post-processing and smoothing operators were applied to both models. The DESS images
had a larger slice thickness as compared to the T1 VIBE images (1 mm vs. 0.7 mm), which may contribute

to differences in smoothness between the models. (C) The surface distances map shows strong agreement
between the 3D models. Blue indicates regions where the semi-automatic segmentation model was larger than
the manual segmentation model, whereas red indicates regions where the manual segmentation model was
larger than the semi-automatic segmentation model. The black dashed line represents the bone region analyzed
after the 25% perimeter reduction of the cartilage boundary, which was implemented to minimize edge effects.
Surface distance was defined as the difference between the x-coordinates of the two bone models. T1 VIBE
T1-weighted Volume-Interpolated Breathhold Examination with Water Excitation, DESS Double Echo Steady-
State, MR magnetic resonance, S superior, I inferior, M medial, L lateral).

Following registration, the bone models were converted into 3D surface meshes (Fig. 5B). The patellar bone
surface directly in contact with patellar cartilage was also extracted from each 3D model (Fig. 5C).

To quantitatively compare the agreement between two bone surface meshes, pairs of surface meshes were
evaluated using MATLAB (Fig. 6A,B). While the same process was performed for each pair of surface meshes
to quantify the resulting surface distances, we will describe the semi-automatic vs. manual MRI segmentation
(T1 VIBE and DESS MR images, respectively) evaluation below.

The semi-automatic segmentation bone model (from T1 VIBE MR images), the manual segmentation bone
model (from DESS MR images), and the bone model mesh faces located adjacent to articular cartilage in both
models were imported into MATLAB, and the volume centroids of the semi-automatic segmentation bone model
were subtracted from all three models to center them about the origin while maintaining their registration. Next,
a search algorithm was employed to find all mesh nodes on the manual segmentation bone model located within
a 2.5 mm radius of each mesh node on the semi-automatic segmentation bone model. These mesh node coordi-
nates were averaged to yield a single vertex. This yielded a set of matched vertices on the two bone models from
which to directly compute the surface distance. Surface distance was defined as the difference in the x-coordinates
between the two bone models, as the x-direction is perpendicular to the articular surface of the patella (Fig. 6).
Positive surface distances were indicative of regions where the semi-automatic segmentation model was larger
than the manual segmentation model, whereas negative surface distances were indicative of regions where the
manual segmentation model was larger than the semi-automatic segmentation model.

While we are generating whole-bone models, it is important to note that we are primarily concerned with the
agreement between the regions adjacent to the articular surfaces of the bone models since these regions are the
areas that will influence cartilage thickness measurements®***# Thus, the surface distance calculations were
further refined by extracting only bone mesh nodes within the confines of the patellar cartilage model. Specifi-
cally, only bone mesh nodes located adjacent to patellar cartilage after a 25% perimeter reduction of the cartilage
boundary were considered (Fig. 6C). A similar perimeter reduction was implemented previously to avoid edge
effects when quantifying running-induced patellar cartilage strains continuously across the articular surface®.
All other surface distance comparisons (repeated segmentations of the same T1 VIBE MRI scans, scan/re-scan
repeatability of T1 VIBE MRI segmentations of the same participants, and T1 VIBE MRI vs. CT segmentations
of the same porcine specimens) were performed using the same methodology.

Results

A single experienced investigator required approximately 15 min to segment the patella bone from T1 VIBE MR
images using the semi-automatic bone segmentation algorithm and approximately 1 h to manually segment the
patella bone from the DESS MR images, yielding a time savings of about 75%. The mean (+ standard deviation)
Dice similarity coefficient and surface distance of our repeated semi-automatic segmentations on the same T1
VIBE MRI scans were 0.988 +0.002 and —0.01 £0.001 mm, respectively, indicating a high level of repeatability
in isolating the patellar bone from T1 VIBE MR images (Table 2). The negative mean surface distance indicates
that the second segmentation of the patella was slightly larger than the first, on average. The semi-automatic T'1
VIBE MRI segmentation algorithm yielded a mean (+ standard deviation) surface distance of —0.02+0.08 mm
as compared to manual DESS MRI segmentations in the human participants, indicating the DESS MRI seg-
mentations were larger than the semi-automatic MRI segmentations (Table 2). Similarly, when segmenting the
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Validation Comparison Species | Sample Size | x-Axis Surface Distance (mm)
Semi-automatic T1 VIBE MRI repeatability (same scan) Human |4 —0.01+0.001

Semi-automatic T1 VIBE MRI repeatability (scan/re-scan) Human |4 —-0.02+0.03

Semi-automatic T1 VIBE MRI vs. manual DESS MRI Human |4 —-0.02+0.08

Semi-automatic T1 VIBE MRI vs. semi-automatic CT Porcine |3 -0.02£0.06

Table 2. Surface Distance Results for Each Validation Comparison. Data presented as mean + standard
deviation. T1 VIBE T1-weighted volume-interpolated breathhold examination with water excitation, DESS
double echo steady-state, MRI magnetic resonance imaging, CT computed tomography.

same individual’s patella twice (scan/re-scan on the same day), the semi-automatic T1 VIBE MRI segmentation
algorithm generated segmentations with a mean surface distance of —0.02 £0.03 mm, indicating the second
segmentation was, on average, 0.02 mm larger than the first (Table 2). Finally, the semi-automatic T1 VIBE MRI
and CT segmentations of the porcine patellae resulted in a mean surface distance of —0.02 +0.06, indicating
the semi-automatic CT segmentations were larger than the semi-automatic T1 VIBE segmentations (Table 2).

Discussion

We have developed a semi-automatic segmentation algorithm to isolate bone from T1 VIBE MR images using
gradients in signal intensity. T1 VIBE MR images were chosen for this application because they provide excellent
contrast between bone and the adjacent articular cartilage. The algorithm developed is repeatable in its ability to
detect patellar bone boundaries from the same MR scan twice and from scan/re-scan acquisitions of the same
participants. It also performs favorably in comparison to manual segmentation of MR images, and it produces
comparable results between MR and CT images. Furthermore, this semi-automatic segmentation technique
generates complete 3D point clouds in a fraction of the time it takes to manually segment the same images. These
results indicate that the semi-automatic segmentation algorithm outlined in the present work may be a viable
alternative for manual segmentation.

The semi-automatic segmentation algorithm developed in the present work was repeatable in isolating the
patellar bone from T1 VIBE MR images. We quantified a mean Dice similarity coefficient of 0.988 and a mean
surface distance of —0.01 mm when comparing the segmentation results from the same MR scan twice. We fur-
ther demonstrated that segmentations generated from two separate T1 VIBE MR scans of the same participant
differed by a mean surface distance of —0.02 mm. The semi-automatic segmentation algorithm also compared
well with manual segmentation of MR images, resulting in a mean surface distance of —0.02 mm. These values
agreed with previous repeatability studies which have demonstrated that manual segmentation of bone cortices
and cartilage surfaces from DESS MR images is repeatable to within approximately 0.03 mm®**. Additionally,
while manual segmentation of the patellar bone from MR images takes about an hour to complete, our semi-
automatic segmentation algorithm takes approximately 15 min per patella. Thus, the present findings suggest
the semi-automatic segmentation algorithm described can produce comparable results to those obtained via
manual segmentation in a fraction of the time.

Furthermore, the semi-automatic segmentation algorithm yielded sub-millimeter mean surface distances
when comparing the T1 VIBE MRI and CT bone models (- 0.02 mm). Previous work by Neubert et al.*® dem-
onstrated that the T1 VIBE MR pulse sequence had sub-millimeter absolute differences between T1 VIBE and
CT bone models of the femur, tibia, fibula, and patella. While zero echo time (ZTE) MRI mimics the visual
appearance of CT images®~%, a previous study comparing ZTE MRI and CT scans of the glenoid bone showed
the scans also differed by sub-millimeter values®. Thus, we believe T1 VIBE-based semi-automatic segmentation
is a viable option for bone segmentation from MR images.

While we were able to reduce segmentation time by approximately 75%, further work may seek to reduce this
processing time even further. Advances in deep learning algorithms may be one approach. However, deep learn-
ing techniques traditionally require relatively large datasets to train the resulting algorithms*~*%, and the algo-
rithm is limited by the quality of the training data. Since the semi-automatic segmentation technique described
in the present work was shown to be comparable to manual segmentation, this method can potentially be used
to generate training data for future deep learning algorithms.

Although the present work only validated the semi-automatic segmentation of a relatively small group of
patellae, the algorithm described herein can likely be implemented in T1 VIBE images of other bones. This is
in part because of the gradient-based segmentation approach used, which may be applicable to new situations.
This is potentially a strength of this technique compared to some deep learning techniques that are designed to
perform feature identification or pattern recognition in a specific training set*. Image artifacts, due to things
such as patient motion or the presence of metallic objects, may alter the efficacy of the present algorithm. Future
work will further assess the robustness of the current approach.

The utility of the semi-automatic segmentation algorithm developed in this work is currently limited to bone
isolation. As such, manual segmentation of the articular cartilage may be needed to quantify exercise-induced
cartilage deformations in vivo'>**%, In previous studies, bone and cartilage have both been manually segmented
from DESS MR images of the knee®*>*, as the DESS sequence provides an excellent compromise regarding con-
trast between bone and cartilage as well as between cartilage and synovial fluid. It may be necessary to acquire
both T1 VIBE and DESS MR images (for semi-automatic bone segmentation and manual cartilage segmentation,
respectively) to assess cartilage deformations in future studies. While acquiring both sequences would increase
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scan time (mm:ss; T1 VIBE=4:28, DESS =9:49, both = 14:17), the significant time savings during data analysis
justify this added scan. While this study specifically utilized T1 VIBE MR images for the semi-automatic bone
segmentation algorithm, any commercially available pulse sequence with a large contrast may be a viable option
for gradient-based segmentation. Future investigations may seek to identify other suitable sequences for semi-
automatic bone segmentation that can also be used for manual cartilage segmentation.

In conclusion, we developed a gradient-based semi-automatic bone segmentation algorithm that was repeat-
able and produced results comparable to both manual MRI segmentation and semi-automatic CT segmentation.
We used a T1 VIBE MR pulse sequence, which provided excellent contrast between bone and the adjacent articu-
lar cartilage, enabling us to overcome the low cortical bone signal inherent in most MR images®***. This newly
developed algorithm reduced analysis time by approximately 75%. Thus, the semi-automatic bone segmentation
algorithm is a viable replacement for manual segmentation that will improve research efficiency.
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