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Effects of temperature

and magnetization

on the Mott-Anderson physics
in one-dimensional disordered
systems

G. A. Canella?, K. Zawadzki?*3 & V. V. Fran¢a™*

We investigate the Mott-Anderson physics in interacting disordered one-dimensional chains through
the average single-site entanglement quantified by the linear entropy, which is obtained via density-
functional theory calculations. We show that the minimum disorder strength required to the so-called
full Anderson localization—characterized by the real-space localization of pairs—is strongly dependent
on the interaction regime. The degree of localization is found to be intrinsically related to the
interplay between the correlations and the disorder potential. In magnetized systems, the minimum
entanglement characteristic of the full Anderson localization is split into two, one for each of the

spin species. We show that although all types of localization eventually disappear with increasing
temperature, the full Anderson localization persists for higher temperatures than the Mott-like
localization.

The metal-to-insulator transition (MIT) in a nanostructure can be induced by the Coulomb interaction, as pro-
posed by Mott-Hubbard"? or by disorder, as proposed by Anderson’. In the presence of both correlations and
randomness one faces the interesting and far from be fully understood Mott-Anderson physics*™4.

Theoretical investigations of MIT in complex systems via exact methods are challenging and restricted to
small systems. Must of the studies applies instead dynamical mean-field theory (DMFT)'*, which properly
accounts for the electronic interaction and the disorder potential, but are still demanding and limited to simple
systems.

Recently we have proposed an alternative approach in which the quantum entanglement—quantified via
density-functional theory (DFT)'®!” calculations—is used to explore the MIT in interacting disordered chains'®.
This methodology has been proven to be reliable when compared to exact density-matrix renormalization group
(DMRG) data and has been also successfully applied to investigate the superfluid-to-insulator transition (SIT) in
disordered superfluids'®?. In both MIT and SIT cases entanglement was found to be a witness of (1) the so-called
full Anderson localization, associated to a real-space localization of pairs; (2) the Mott localization and (3) the
Mott-like localization, associated to an effective density phenomenon. However the MIT study'® was restricted
to a fixed interaction strength, non-magnetized systems and at zero temperature.

Here we apply the same methodology to explore the Mott—-Anderson physics in all the regimes of interaction
and to investigate the impact of the magnetization and of the temperature in the MIT. We find that the minimum
disorder strength necessary to the full Anderson localization is strongly dependent on the interaction regime.
We also find an intrinsic connection between the level of the localization and the interplay between interaction
and disorder. In magnetized systems, we find that the minimum entanglement characterizing the full Anderson
localization is split into two minima, one for each spin species. Although the temperature fades away all types
of localization, our results reveal that the full Anderson localization survives for higher temperatures than the
Mott-like localization.
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Theoretical model
We simulate the disordered interacting lattices via the one-dimensional Hubbard model,

H_—tZ(CmC]g +HC)+UZ”:T”1¢+ZV”W> (1)
io

with on-site disorder potential V; characterized by a certain concentration C = Ly /L of randomly distributed
impurities, where Ly is the number of impurity sites and L the chain size. The density operator is i, = cja Cio
the average density is n = N/L = n4 + n} and the magnetization is m = ny — n, where N = Ny 4+ N is the
total number of particles and & C; (Cis) is the creation (annihilation) operator, with z-spin component o =1, | at
site i. All the energies are in units of f and we set ¢ = L,

We consider the average single-site entanglement: a bipartite entanglement between each site with respect to
the remaining L — 1 sites averaged over the sites. This ground-state entanglement is quantified via the average
linear entropy,

1 1
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where ws ;, W, i, wa,; € w,; are the occupation probabilities for the four possible states of site i: single occupation
with spin up, single occupation with spin down, double occupation and empty, respectively. At finite temperature,
the probabilities are calculated with respect to a thermal state pg = 3, e PEn|n)(n|, where |n) is an eigenstate
of the Hamiltonian with energy E, and 8 = 1/kgT is the inverse temperature. Thus for small chains (L = 8) we
calculate Eq. (2) by diagonalizing the full Hamiltonian.

We also explore larger (L = 100) disordered chains at T = 0 via density-functional theory calculations. In
this case, instead of Eq. (2), we adopt an approximate density functional* for the linear entropy of homogene-
ous chains,

2
L£romm U > 0) ~ 2n — 3% +[(4n — 2)a(U) — 4a(U)?] x O[n — a(U) — 1/2], (3)

where © (x) is a step function, with ®(x) = 0 for x < 0 and ® (x) = 1for x > 0, and «(U) is given by

a(U) = 2/00 Jo(x)]1(x) exp [Ux/ZZ]
0 (1+exp[Ux/2])

(4)

where J (x) are Bessel functions of order k. This density functional, Eq. (3), was specially designed to be used in
LDA approximations for calculating the linear entropy of inhomogeneous systems via DFT calculations. Thus
the entanglement in our large disordered chains are approximately obtained via LDA:

1
LA ELDA = Z Z Ehom(n, U > 0)|n—>ni> ®)

i

where the density profile {n;} is calculated via standard (Kohm-Sham iterative scheme) DFT calculations within
LDA for the energy, in which the exact Lieb-Wu?! energy is used as the homogeneous input.

For each set of parameters (C, V; U, n, m), L is obtained through an average over 100 samples of random
disorder samples to ensure that the results are not dependent on specific configurations of impurities. Notice that
this huge amount of data would be impracticable via exact methods such as DMRG (for a comparison between
our DFT approach and DMRG calculations, see Supplementary Material of Ref.'®).

Results and discussion

We start by exploring the Mott-Anderson physics at zero temperature via the entanglement as a function of
interaction. In Fig. 1a we consider several concentrations of impurities with a fixed strength V' = —20¢, thus
ranging from strong (|V| >> U) to moderate (|V| = U) disorder. As disorder becomes more relevant, i.e. for
U — 0, entanglement decreases and saturates for any concentration C > 0. This saturation characterizes the
localization: the disorder potential freezes the electronic degrees of freedom such that £ — constant.

Figure 1a also shows the non-monotonic behavior of entanglement with C, whose minimum occurs at the
critical concentration Cc = 100n/2 = 40% for V < 0 (for V > 0, C¢c = 100(1 — n/2)), observed previously in
the MIT"® and in the SIT*®?. This minimum entanglement has been associated—in both MIT and SIT cases—to
a fully localized state, marked by £ — 0for|V| — oo due to real-space localization of pairs (as also confirmed by
the average occupation probabilities, see Fig. 2). While for the MIT the full localization was found to appear for
|V| > Viin = 3t for U = 5t, for the SIT the same minimum Vy,;,, = 3t was found for any interaction®’. However
we observe now a distinct feature: Fig. 1a reveals that depending on the interaction strength (U > 10t) even a
strong disorder potential as V' = —20t¢ is not enough to fully localize the system, i.e. £ # 0at Cc = 40%. In other
words, Vi, in the MIT case is strongly affected by the interaction.

To further analyze this interplay between U and V, in Fig. 1b we focus on the critical concentration Cc and
vary instead the potential strength V. We find that for | V| < U the degree of entanglement is essentially inde-
pendent on V, suggesting that the system presents the same degree of localization for a given U and that this
is a weak localization, since the degree of entanglement is very close to the clean V = 0 case. In contrast, for
|V| = U the degree of entanglement decreases with U decreasing and is smaller for higher | V|, reaching the full
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Figure 1. Entanglement of disordered nanostructures as a function of the particle interaction: (a) for several
concentrations C of impurities with strength V.= —20¢ and (b) for several disorder strengths V at the critical
concentration Cc = 100n/2 = 40%.

localization when |V| — oo. As U increases, a stronger V is required for having £ — 0, confirming thus that the
full localization in the MIT requires a minimum disorder strength V,,;, which is dependent on the interaction.
For the particular case of V' = —1t, such that Uis always U 2 | V|, we don't find the characteristic decreasing of
entanglement when U — 0, indicating that the full localization does not occur in this case.

Next we analyze the impact of the impurities’ concentration on the entanglement for several attractive, Fig. 2a,
and repulsive, Fig. 2b, disorder strengths. In both cases we see the signature of the full Anderson localization for
|V| 2 U: minimum entanglement at the critical concentration C¢c = 100n/2 for V. < 0and Cc = (1 — n/2)100
forV > 0, with £ — 0for|V| — oo. For|V| < U the minimum at C¢, disappears, so the system does not fully
localize.

We also see the extra minimum at C% = 100n for V < 0 (Fig. 2a) and at Cc+ = (1 — n)100 for V > 0 (Fig. 2b)
associated to a Mott-like localization'®, in which the effective density is equal to 1 either at the impurity sites
(for V' < 0) or at the non-impurity sites (for V > 0). For attractive disorder this means that the average double
occupancy in the impurity sites (w} ) tends to zero due to the repulsion U, while the single-particle probability
(V_VX) tends to a maximum, as confirmed by Fig. 2¢,d (for repulsive disorder, the same holds for the non-impurity
sites: Wy =0 — 0, W) ~° — maximum). Notice however that the Mott-like MIT requires a minimum amount of
disorder to occur. Thus the two entanglement minima—full Anderson and Mott-like localizations—are intrinsi-
cally connected through the interplay between interaction and disorder. In Fig. 2e one can see that if the interac-
tion is too small compared to the disorder strength (U < |V|/2) only the minimum related to the full Anderson
localization persists, while if U is strong compared to V (U 2 | V) only the minimum related to the Mott-like
localization holds, the two minima appearing only for U > 10¢,|V| = U.

In Fig. 3a,b we show the impact of the temperature on both the full Anderson and the Mott-like localization.
As the temperature increases the two minima—at C = 100n/2 = 37.5% (full Anderson) and atC = 100n = 75%
(Mott-like)—are attenuated. Our results reveal that the full Anderson localization survives for higher tempera-
tures than the Mott-like localization, however for T = 20 there remains no localization in the system, since
entanglement is high and maximum for any concentration.

Finally, while all the above calculations were performed with non-magnetized chains, i.e. forny = n, = n/2,
in Fig. 3¢ we analyze the impact of the magnetization m = ny — n| # 0on the entanglement minimum related
to the full Anderson localization. We find that the minimum at C¢ = 100n/2 = 50% for m = 0 is now split into
two minima: one at Cc = 10074 and the other at Cc = 100n,. Our results thus reveal that the localization occurs
separately for each species, thus with two critical densitiesnc 4 = Ly and ng,, = Ly. Figure 3d shows however
that the magnetized systems never reach the full localization: there remain spin degrees of freedom due to the
unpaired majority species such that £ saturates finite values.

Conclusion

In summary, we have explored the Mott-Anderson physics by analyzing the entanglement of interacting dis-
ordered chains. We find that the interplay between interaction (U) and disorder strength (V) defines the type
and the degree of localization. For weak interactions, U < |V|/2, there only appears the full Anderson localiza-
tion, marked by entanglement approaching zero when |V| — oc. In contrast, for weak disorder, |V| < U, only
the Mott-like localization holds, associated to an effective density equal to 1. The two types of localization, full
Anderson and Mott-like, occurring only when both U and V are strong enough: U 2 10¢,|V| 2 U. For suf-
ficiently strong interaction, U 2 |V, the entanglement is independent on the disorder potential and very close
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Figure 2. Entanglement of disordered nanostructures as a function of the impurities’ concentration for several
attractive (a) and repulsive (b) disorder strengths at a fixed U, and for several interaction strengths at a fixed V'
(). (d, e) average occupation probabilities as a function of the impurities concentration: double occupancies (d)
and single-occupation probabilities (e) at impurity (V_VX R V_VX ) and non-impurity sites (V'V¥ =0 v'v¥ =0). In all cases
L =100andn = 0.8.
to the clean (non-disordered) case, suggesting thus that the localization is weak in this case. Our results also
show that the temperature fades the localization phenomena, but that the full Anderson localization minimum
survives for higher temperatures (T ~ 2) than the Mott-like localization. Finally we have shown that that the
entanglement minimum related to the full Anderson localization is split into two when there is a magnetization
in the system, one for each spin species, but in this case the localization is weaker due to remaining spin degrees
of freedom, with entanglement saturating at finite values.
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Figure 3. (a) Entanglement as a function of the concentration of impurities for several temperatures for

n = 0.75. (b) Entanglement as a function of the temperature for several concentrations for n = 0.75. (c)
Entanglement as a function of concentration for several magnetizationsm = n4y — n forn = 1.0. In all cases
L=8U=5tandV = —10¢t.
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