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Coevolution of diagenetic fronts
and fluid-fracture pathways

Ardiansyah Koeshidayatullah'*, Nawwar Al-Sinawi?, Peter K. Swart?, Adrian Boyce*,
Jonathan Redfern? & Cathy Hollis?™*

Diagenetic boundaries are paleo-reaction fronts, which have the potential to archive the termination
of metasomatic processes in sedimentary rocks. They have not been extensively studied, perhaps
because they appear simple in outcrop. Recent work has demonstrated the significance of paleo-
reaction fronts to decipher multiphase recrystallization processes and provide high porosity zones.
This paper provides a detailed documentation of reaction front evolution in a tectonically active

salt basin and reveals a high level of complexity, associated with multiple fluid flow and tectonic
events. Here, consistent patterns of increasing dolomite stoichiometry and ordering, along with a
change from seawater-derived, fabric-retentive dolomite to fracture-controlled, fabric-destructive
hydrothermal dolomite are observed vertically across the stratabound dolomite bodies. These
patterns, coupled with a decrease in porosity, increase in A,; temperature and §'20,,,.., values indicate
multiphase recrystallization and stabilization by warm, Mg-rich fluids. The stratabound dolomite
bodies apparently terminated at a fracture-bound contact, but the presence of dolomite fragments
within the fracture corridor suggests that fracturing post-dated the first dolomitization event.

The termination of dolomite formation is therefore interpreted to be associated with a decrease in
the capacity of the magnesium-rich fluids to dolomitize the rock, as indicated by the presence of
non-stoichiometric and poorly ordered dolomite at the reaction fronts. The fracture corridors are
interpreted to exploit dolostone-limestone boundaries, forming prior to a later, higher temperature,
hydrothermal dolomitization event, which coincided with the formation and growth of the anticline.
Karstification subsequently exploited these fracture corridors, widening fractures and leading to
localized collapse and brecciation. The results demonstrate that an apparently simple reaction front
can have a complex history, governed by the inheritance of prior diagenetic events. These events
modified rock properties in such a way that fluid flow was repeatedly focused along the original
dolomite-limestone boundary, overprinting much of its original signature. These findings have
implications to the prediction of structurally controlled diagenetic processes and the exploration of
naturally fractured carbonate reservoirs for energy exploration globally.

Dolomitization is the most common metasomatic process in the carbonate rock record and has been widely
studied"?. It occurs by the transformation of calcite (CaCOs) to stoichiometric dolomite (CaMg(CO;),) and is
regarded as a porosity-enhancing process based on either negative volume change (i.e. replacement of larger
calcite crystal with smaller dolomite crystal) or mole per mole replacement following reaction (1)*

2CaCO03(s) + Mg?* (aq) — CaMg (CO3),(s) + Ca>t(aq) (1)

Dolomitization can lead to the formation of distinct dolomite bodies which can influence the storage capacity
and heterogeneity of hydrocarbon, ore and CO, storage reservoirs. These bodies can have distinct dolomite-lime-
stone reaction fronts?™. Previous studies have demonstrated that these reaction fronts can control the spatial
variability of porosity™® and the accumulation of ore minerals”®. Nevertheless, the controls on their occurrence
and position have received remarkably little attention. This study is based on a Lower Jurassic carbonate platform
that outcrops in part in the salt-cored Amsittene Anticline, Essaouira-Agadir Basin (EAB), Western Morocco
(Fig. 1A). It provides a unique opportunity to map dolomite body geometries and their associated dolomitiza-
tion fronts in a single location in order to: (1) decipher the controls on the position of dolomitization fronts;
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Figure 1. (A) Geological map of the Western High Atlas showing the Essaouira-Agadir basin (EAB) onshore
and its extension offshore!*?. The study location is highlighted with a red star (Amsittene Anticline). The lower
image depicts the cross section from A-B which shows the overall basin structure and influence of salt diapir

as well as deep transfer fault to the formation of Amsittene anticlinal structure (Hafid, 2000). (B) Generalized
stratigraphy of the Essaouira-Agadir basin (EAB) and the corresponding tectonic events'-*. The numbered
black rectangles represent: 1. Arich Ouzla Formation, 2. Amsittene Formation, and 3. Im-n-Tanout Formation.

(2) understand the potential control of salt-related deformation to dolomitization; (3) explore the relationship
between reaction fronts, mechanical deformation and diagenesis in a partially dolomitized carbonate platform.

Geological framework

The Essaouira—Agadir Basin (EAB) is located in south-western Morocco (Fig. 1). During the Early to Late Juras-
sic, the western margin of Morocco was a passive margin, and carbonate deposition in the basin took place in a
subtropical to arid climate®!?. Carbonate sedimentation was interrupted periodically by the incursion of clastic
sediments from the hinterland to the east, leading to a stacked succession of carbonate platforms separated by
sandstone and mudrock!! (Fig. 1B). The first carbonate platform occurs in the Arich Ouzla Formation which
outcrops solely in the Amsittene Anticline'>" (Fig. 1A, B). The Amsittene Anticline is situated in the northern
part of the EAB (Fig. 1A) and cored by a diapir of Triassic salt, which is interpreted to be associated with an E-W
trending Late Triassic-Early Jurassic Tarzhout-Ihchech transfer fault'* (Fig. 1A). The Arich Ouzla Formation
is dated as Upper Sinemurian to Lower Pliensbachian based on the abundant presence of Spiriferina'>'¢. This
formation is unconformably overlain by conglomeratic, red, fluvial sandstones of the Amsittene Formation'!
(Fig. 1B). The maximum burial depth of the Lower Jurassic strata in the northern part of the EAB, particularly
in the Amsittene Anticline was very shallow (< 1.5 km)'! and the geothermal gradient in this basin is around
25-30 °C/km'"8,

The development and evolution of the EAB was influenced by various stress regimes, from Mesozoic rifting
and salt tectonism to Cenozoic orogenic deformation'*'*?°. Faults with a N-S orientation formed during the
opening of the Atlantic Ocean in the Late Triassic while E-W and NE-SW anticlines formed by Triassic salt tec-
tonic movements during the Jurassic to Cretaceous'*? (Fig. 1A, B). A later NE-SW fault trend, possibly re-acti-
vating older Variscan structures, reflects a compressional fault system established during the Alpine Orogeny?*'.

Methods

A total of 37 carbonate samples were collected from two logged stratigraphic sections and other selected positions
within the dolomite bodies. Fracture density was measured using several perpendicular scan lines. Samples were
described petrographically using transmitted light microscope and a CITL Mk5 Cold cathodoluminescence stage.
Computer-based thin section porosity analysis was conducted on five images for each thin section. Dolomite
stoichiometry and ordering were calculated from the X-ray diffraction (XRD) pattern by using Bruker D8Ad-
vance Diffractometer following this equation NCaCO; =333.33d-911.00%* and ratio between 015/0110 peaks®,
respectively. For stable carbon (§'°C), oxygen (8'%0) and clumped isotopes (A,;) analyses, thin section coun-
terparts were micro-drilled under a binocular microscope to extract different diagenetic phases and limestone
matrix. The §"°C and §'%0 analysis were conducted at the Scottish Environmental University Research Centre
(SUERC), Glasgow by using a VG OPTIMA mass spectrometer (Isoprime Limited, Manchester, UK). The value
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Figure 2. (A) Panoramic photos of the studied Early Jurassic outcrop in the Amsittene Anticline. Note the
sketch displays several fracture corridors associated with dolomite-limestone contact. The right panel shows a
measured sedimentary section of the Lower Jurassic carbonate. (B) Left panel: variation of filling material within
fracture corridor, including calcite cement, rock fragments (carbonate and siliciclastic) and red sediment infill.

Middle panel: dolomite (Dol)-limestone (Lst) bounded by wide deformation zone in contact 2.

highly fractured dolomite (Dol) and deformation bands within fracture corridors.

Right panel:

for oxygen was corrected by applying a carbonate-phosphoric acid fractionation factor of 1.0008 for both calcite
and dolomite?, as indicated from previous works?>?®. All values are reported as delta values with respect to the
Vienna PeeDee Belemnite (VPDB) and standardized to Carrara marble and NBS-19. Average analytical precision

was + 0.2%o for both 8'®*Oyppg and 83Cyppp.

For the clumped isotopes, the samples were analysed using a dual inlet Thermo Fisher Scientific 253 and
253 + ultra-high-resolution isotope ratio mass spectrometers following the methodology proposed by earlier
work?*?’. To ensure accuracy, three replicate measurements were made (see supplementary material). All data
are reported using the Carbon Dioxide Equilibrated Scale (CDES)?. The temperature of formation was calculated
from A,; values using an equation derived from 11 carbonates precpitated at temperatures ranging between 5

and 75 °C and reacted at 90 °C, with no application of an acid fractionation factor°.

A_47%0 = 0.0392(0.0017) % 10"6/T"2 + 0.158(0.018)

All the clumped isotopes results are reported as %o and with their mean + Standard Deviation (SD). Differ-
ent fractionation calibration equations were used to calculate the parent fluid 'O composition of (1) calcite?,
(2) high temperature dolomite®’, and low temperature dolomite®'. The results are reported relative to Standard

Mean Ocean Water (8" Ogyow)-

Results
Dolomite, reaction fronts and fractures.

The study area is a laterally continuous carbonate section up

to 32.5 m in thickness, with a series of stratabound terminations to a more extensive dolomite body that can be

sub-divided into five intervals that become wider and thicker up-section (Fig. 2A, B):

(i) Lowermost interval (6 m thick, up to 95-120 m wide) of fabric-preserving (FP) dolomite within well-

bedded ooidal grainstone facies,

(ii) Lower to middle interval of FP dolomite (7.6 m thick, up to 120 m wide) within a massive bed of ooidal-

oncoidal grainstone to packstone,
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(iii) Middle interval of fabric-destructive (FD), bed-parallel, tabular dolomite (5.2 m thick, 152 m wide) within
bioclastic wackestone to packstone beds,

(iv) Middle to upper interval (6.6 m thick, 178 m wide) of FD dolomite within bioclastic wackestone,

(v)  Upper interval (7.1 m thick, 214 m wide) body of FD dolomite within thinly bedded bioclastic mudstone.

Overall, the two lowermost FP dolomite bodies show horizontal and vertical diffuse diagenetic contacts.
Thick zones (up to 10 m wide) of partially replaced limestone occur at the transition from dolomite to limestone
and are hereafter referred to as halo zones. The absence of a distinct colour contrast between the dolomite and
limestone makes it difficult to precisely map the reaction front size and geometry in outcrop. The FP dolomite
comprises euhedral to subhedral crystal textures with unimodal crystal sizes (30-100 pm) and a higher poros-
ity (m=8.9+3.2%) than the adjacent limestone (m=1.6 +0.9%; Fig. 3A). The middle to upper intervals of the
section exhibit a distinct colour contrast between grey limestone and dark brown dolomite, with three separate
bed-perpendicular terminations bounded by fracture corridors (Fig. 2B). The latter exhibit thin halo zones
(5-100 cm wide) (Fig. 2B). The FD dolomite has interlocking, subhedral to anhedral fabrics with a bimodal
crystal size distribution (60-420 pm) (Fig. 3A). Overall, porosity of the FD dolomite is lower than FP dolomite
and decreases upwards in the succession, from m=7.8+£2.9% to m=2.9+3.4% (Fig. 3A). Dolomite cement
patchily occurs within the fracture corridors and less porous dolomite occurs in proximity to the fracture zone,
m=1.9+0.5% near the fracture corridor and m=7.4+1.5% 40 m away from it.

In outcrop, two main fracture sets were observed: 335°-355°, n=45 and 90° to 105°, n=11, perpendicular
and parallel, respectively, to the axis of the anticline (ENE-WSW) (Fig. 2A). Fracture density is higher in the
dolomite (8-14 fractures/m) compared to the limestone (5-9 fractures/m) (Fig. 2B). Three spatially distinct
NNW-SSE trending fracture corridors occur, varying from 2 to 10 m in width and approximately 25 m in length
(Fig. 2B). They contain poorly sorted (0.4-6 cm), angular to sub-rounded fragments of dolomite and limestone
with minor, inter-clast sandstone and calcite cement. The fracture filling calcite is characterized by blocky crystals
with unimodal size distribution (200-300 pum) (Fig. 4A).

Downward tapering fissures, up to 5 m deep, with a maximum width of 10 m, penetrate downwards from
the uppermost layer, localising at the intersection of the two main fracture sets. These fissures contain poorly
sorted clasts (ranging from <1 cm to>10 cm in diameter). The largest clasts are angular, and form a mosaic
breccia, whilst the smaller clasts are sub-spherical, rounded and chaotic (Fig. 2B). The clasts are all supported by
a matrix of red, very fine-grained sandstone to siltstone, and cemented by calcite. The fissures pass downwards
into irregularly shaped vertical pipes, <1 m wide, filled by a sandstone-supported carbonate breccia. At the
microscopic scale, the dolomite-limestone transitions appear have two different types of termination: (1) diffuse,
when terminated into a fine-grained mudstone to wackestone limestone (Fig. 4B) and (2) sharp, when bounded
by fractures filled by sediments (Fig. 4C, D). This is common when the adjacent host rock is grain-dominated
or crystalline limestone. (Fig. 4C, D).

Mineralogy and isotopic composition. The dolomite in the lowermost and lower to middle intervals
is non-stoichiometric and poorly ordered, with average stoichiometry and cation ordering of 52.9+ 1.1 mol%
CaCO; and 0.72+0.03, respectively (Fig. 3A). The average stoichiometry of dolomite in the middle to upper
intervals is 50.5+ 1.8 mol% CaCO; and the average cation ordering is 0.82+0.09 (Fig. 3A; see supplementary
material). As well as an upward-increase in stoichiometry and ordering, a lateral trend of decreasing dolomite
stoichiometry (more calcium-rich) is observed beyond the fracture corridor and into the partially dolomitized
halos of the middle to uppermost bodies (Fig. 3B). The cation ordering, however, does not show any systematic
lateral trend.

In the limestone, the range and average values of both §*°C (m=1.4+0.3%o0) and 8'0 (m=-3.7 +0.4%o)
values are slightly more enriched in 80 than the dolomite (Fig. 5A; see supplementary material). Two differ-
ent calcite cements, one white and one black, exhibit a comparable range of §'30 values, from — 5.2 to —4.2%o
(m=-4.7%o) and 8"*C values, from — 10.1 to —8.6%o (m =—9.3%o). Although there is no obvious differentiation
between 8'*C values in FP and FD dolomite, §'%0 jg;omie Values are slightly higher (m=-3.5+0.5%o) in FP com-
pared to FD dolomite (m=-4.3+0.5%o) (Fig. 5A; see supplementary material). The average clumped isotope
(A4;) derived, temperatures and 8'%0,,,, values can be divided into three groups: (1) 0.501%o, 66 °C+3.9 °C and
3.1%£0.71%0 SMOW for the middle FD dolomite; (2) 0.456%o, 90.0 °C+ 1.4 °C and 7.5+ 0.28%0 SMOW for the
FD dolomite in the uppermost interval; and (3) 0.493%o, 69 °C £8.5 °C and 6.5+ 1.2%0 SMOW for the limestone
(Fig. 5B; see supplementary material).

Discussion

Fracture system. In the studied succession, open-mode fractures are principally oriented perpendicular to
subparallel (NW-SE) and parallel (E-W) to the anticlinal axis. Extensional fractures commonly form parallel to
the axis of anticlines, around anticlinal hinges, during flexure’-**, suggesting a genetic relationship between the
formation of the Amsittene Anticline and fracturing. The Amsittene Anticline is interpreted to have grown from
the Middle Jurassic, initiated by salt diapirism'#**. It continued to form during basin inversion and exhumation
in the Late Jurassic to Cretaceous with further growth and tightening during the Cenozoic (Eocene to Recent)
Alpine Orogeny*. It is not possible from the current study to assess with confidence whether salt diapirism or
compression controlled the formation of the fracture corridors, but their orientation brackets the timing of their
formation to post middle Jurassic.

Genesis of dolomite. The stratabound geometry and euhedral to subhedral, zoned dolomite crystals that
characterize FP dolomite are indicative of a low temperature dolomite formed from seawater">*”-*¢, The poor sto-
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Figure 3. (A) Thin section images showing apparent changes in dolomite fabrics from FP (lower interval) to
FD (upper interval). Overall, porosity decreases and dolomite stoichiometry-ordering increase upward. (B) A
consistent pattern of less stoichiometric dolomite towards the dolomitization fronts and halos.

ichiometry and ordering of the dolomite are also suggestive of early-formed, low temperature dolomitization®.
No clumped isotope data were available for these beds, but assuming a slightly elevated sea surface temperature
(at least 30 °C) and elevated seawater temperature at shallow depths in this basin associated with post-rift ther-
mal subsidence®*, as it has been reported in the adjacent high Atlas basin***!, then the calculated §'80,,., is
within the range of Jurassic seawater*? (Fig. 5B and see supplementary material). Under these conditions, pre-
cipitation of dolomite at temperatures of up to 40 °C could have been achieved by reflux of seawater to depths
of up to 500 m beneath the surface or near-surface thermal anomaly due to salt diapirism. In both scenarios,
the calculated 880, still fall within the expected range of Jurassic seawater (Fig. 5B and see supplementary
material). It is also possible that there was a thermal anomaly within the Arich Ouzla Formation caused by the
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Figure 4. Petrographic images of different microscopic textures and fabrics observed in the Lower Jurassic
carbonate, EAB. (A) Fracture cross cuts ooid packstone-grainstone facies, filled by blocky calcite cement (black
arrow). Note the ooids were pervasively replaced by dolomite (red arrow) (B) Termination of dolomite fronts
to mud-dominated limestone. Note the presence of isolated dolomite rhombs in the host limestone (yellow
arrow). (C) Fracture-bounded dolomite fronts (yellow arrows) with sharp termination. The fracture is filled by
fine-grained sediments (blue arrow). Blocky calcite cement indicated by a black arrow. (D) A close-up view of
the sediment infill reveals the occurrence of dolomite rhombs and fragments within the fracture zone (yellow
arrows).

high thermal conductivity of the underlying salt, which would have increased formational temperatures and
facilitated dolomitization.

The FD dolomite in the middle to upper beds is characterized by (1) subhedral to anhedral, stoichiomet-
ric and well-ordered crystals; (2) depleted 80 ggomiee values; (3) moderately high crystallization temperatures
(65.5-90.1 °C) and heavy 8804, (3.5-7.1%0 SMOW) (Fig. 5B) compared to the FP dolomite. The typically
unzoned, stoichiometric and ordered dolomite, with non-planar crystal textures, implies recrystallization and
stabilization of earlier formed FP dolomite®**. The upward-increase in stoichiometry and cation ordering, and
associated decrease in porosity implies fluids flowed up the corridors and outwards, perhaps beneath a now-
eroded low permeability layer of Amsittene Formation. With a maximum burial depth of 1.5 km!! and a maxi-
mum geothermal gradient of 30 °C/km"’, then the maximum burial temperature of the succession would be 65 °C
(assuming a seawater temperature of 20 °C). Since the highest measured temperature (90 °C) would require burial
of the formation to up to 3 km depth, it is highly likely that fluids were hydrothermal. The depleted 80 values
of the FD dolomites when compared to other dolomite fabrics can therefore be explained by recrystallization by
warm dolomitizing fluids*4, consistent with other dolomite bodies formed in Jurassic carbonates elsewhere in
the Agadir-Essaouira Basin and the neighbouring basins that are interpreted to be hydrothermal**+-¢ (Fig. 5A).
The fluid source cannot be fully constrained, but could be explained by deep convection of seawater along faults
and fractures with some degree of modification through interactions with the underlying Triassic sandstone,
salt and the CAMP basalt*%. The presence of thick salt unit could also have facilitated fluid convection because
of the temperature gradient created by its high thermal conductivity; such a process has been invoked in several
salt-dominated basins*’~*.

Termination of dolomite. The transition between FP dolomite and limestone, in the lower to middle
stratigraphic interval, is gradual and diffuse and within beds. Given this, and the poor stoichiometry and order-
ing of the dolomite at the reaction fronts, the first phase of dolomitization is interpreted to have terminated as a
result of a decrease in the dolomitization potential or capacity of the dolomitizing fluid>® rather than as a result
of a change in rock properties or stratal architecture (Fig. 6A). This is evident from the Mg/Ca ratio profile which
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Figure 5. (A, B) Cross plots between §'%0 and §°C, and 8'30,,, and A,;-derived temperature. Overall, the
isotopic values of FP and FD dolomites are comparable and lighter than limestone, respectively’®#%. A clear trend
of more evolved fluid and hotter temperature towards the upper interval.

decreases across the dolostone bodies into the limestone (Figs. 3A, B, 6A). Previous studies have also indicated
gradual, diffuse termination is commonly associated with changes in the fluid properties*°.

The location of fracture corridors at the apparent contact between FP dolomite and limestone could be inter-
preted to record a failure of dolomitizing fluids to migrate across the fracture corridors (i.e. the corridors acted
as lateral barriers to fluid flow). However, the fractures within the corridors are open and FP dolomite is found
in small volumes beyond the fracture corridor, whereas FD dolomite is not. In such a case, the hydrothermal
dolomitizing fluids were vented upwards along these fracture corridors***1->4, This is further corroborated by
the presence of (1) fragments of FP dolomite within fracture corridors and (2) non-stoichiometric and poorly
ordered dolomite in the adjacent limestone and halo zones, beyond the fracture corridors (Fig. 4A, D). These
suggest that FP dolomitization predated fracturing and the fracture corridors formed after dolomitization because
of the mechanical contrast between dolomite (high bulk and Young’s modulus) and limestone (low to interme-
diate bulk and Young’ modulus) (Fig. 6B). It is not possible from the current study to assess with confidence
whether salt diapirism or compression controlled the formation of the fracture corridors, but previous work
shows the salt diapirism occurred in the late Triassic and continued during the Jurassic®*. These salt diapirs cre-
ated localized topography that allowed enhanced fluid flow and created the FP dolomite. Further progression of
this salt diapir could have a pronounced control on the formation of FD dolomite through fracture-controlled
hydrothermal dolomitization.

Either way, fracturing led to the mosaic brecciation of the precursor dolomite and created a network of open
fractures which could have later acted as vertical fluid pathways for warm, magnesium-rich fluids, forming FD
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Figure 6. Conceptual model on the evolution of dolomitization, fracture system and karstification in the study
area. (A) Early, seawater-derived dolomitization which predated fracturing. (B) Formation of fracture corridors,
preferentially along the dolomite-limestone boundary. This provides vertical fluid pathways for upward flux of
warm, Mg-rich fluids. (C) The last stage represents the development of solution collapse during the interaction
between groundwater/meteoric water and carbonate rocks associated with the formation of Cenozoic Alpine
Orogeny.

dolomite. The uppermost FD dolomite appears to be crosscut by two fracture corridors (Fig. 2B), suggesting
either that fracturing post-dated formation of the FD dolomite or that fluids flowed upwards and away from
the fracture corridor to recrystallize the FP dolomite to form stoichiometric and ordered FD dolomite (Fig. 2).
Rapid and continuous fluid flux led to recrystallization of the precursor FP dolomite in proximity to the fracture
corridor in the middle and upper beds, perhaps because fluids were channelled laterally when the fractures ter-
minated beneath the now-eroded, low permeability strata. Dolomitization took place quickly, so that thermal
re-equilibration did not occur and the FD records evidence of hydrothermal fluid flow. The presence of dolomite
cement and less porous dolomite in proximity to the fracture zone, with an increase in porosity away from the
fracture corridors, suggests that overdolomitization subsequently took place in the vicinity of the fractures, limit-
ing the outward flux of dolomitizing fluids, forming a retreating dolomitization front® (Fig. 6A, B).

Karstification. In outcrop, the fracture corridors are overprinted by fissures filled by fragments of carbonate
and siliciclastic rocks. These downward-tapering fissures have irregular margins, typical of dissolution, par-
ticularly at their base, suggesting that they formed by dissolution. Their downward-tapering morphology is
consistent with downward fluid-flux, such as would occur during karstification by groundwater percolation
and soil processes. Their occurrence along fracture corridors indicates that the fractures provided a permeable
pathway for the ingress of the fluids; the locus of the fissures at the intersection of fracture corridors suggests
that these zones were exploited as they had the highest vertical permeability (Fig. 6C). The largest, fitted clasts
are probably remnants of the mosaic breccia with the fracture corridor, whilst the smaller clasts are interpreted
to have formed by the dissolution and collapse of this mosaic breccia (Fig. 6C). The fissures were then filled by
sandstone and siltstone. Although it is not possible to more precisely date the sediments, the red colour of the
siltstone implies subaerial conditions, whilst the preservation of lamination is indicative of aqueous flow. This
information brackets the timing of these fissures to, at the latest, the Oligo-Miocene, and the sediments them-
selves resemble Late Eocene-aged siliciclastic sediments of Im-n-Tanout Formation'!. The potential for near
surface fissures to remain open’> means that they could have been long-lived features. This argument is further
supported by the presence of calcite cements with typically low §'%0 values (up to —5%0 VPDB) and §"°C values
(up to — 10%o VPDB), characteristic of meteoric diagenesis (Fig. 5B) whilst REE analysis** has measured a Y/Ho
ratio of 27.5-39.9 (m = 33.7)*¢, which is typical of meteoric fluids (seawater Y/Ho =48-78)°.

Implications and conclusions

Dolomitization fronts inform our understanding of how metasomatic reactions proceed in time and space
since the termination of replacement and formation of the reaction front indicates a change in physio-chemical
conditions. Although transitions might appear sharp in outcrop, detailed petrographic and geochemical analy-
sis reveals that they are not simple, but the result of multiple, potentially related events. Poorly ordered, non-
stoichiometric dolomite that forms in near surface settings is recrystallized®, either downwards in refluxing
systems®’ or laterally, from faults. This can result in a back-stepping of the reaction front in which the reaction
fronts retreating closer to the fluid source or fracture corridors as porosity is progressively occluded through
subsequent dolomitization®.

This study shows that the mechanical contrast created at the reaction front led to preferential fracturing
during anticlinal growth. This fracture pathway subsequently facilitated an upward-flux of fluids that over-
printed the early-formed dolomite, promoted by an increased heat flow above the underlying Triassic salt. As
dolomitization proceeded, dolomite cement was precipitated within the fracture corridors and fluid flux was
terminated—another example of the back-stepping of the reaction front. With further flexure, uplift and erosion,
the fracture corridors then acted as a conduit for groundwater or meteoric water, creating karstic fissures that
became infilled by collapsed carbonate and sediment. Overall, therefore, it can be shown that the inheritance
of prior metasomatic processes governed rock deformation and then, subsequently fluid flow and enhanced
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rock-fluid interaction. In the near surface, such patterns of inheritance have implications to the prediction of
geohazards, such as sink-holes. In the subsurface, such contacts might create significant perturbations to the flow
of water, gas or hydrocarbons. It has been shown that even an apparently simple natural reaction front records
a complex, multiphase, history of recrystallization and deformation.

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request. Some datasets analysed during this study are included in this published article and its supplementary
information file.
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