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Random walk diffusion simulations 
in semi‑permeable layered media 
with varying diffusivity
Ignasi Alemany1,2,6*, Jan N. Rose1,6*, Jérôme Garnier‑Brun1,4,5, Andrew D. Scott2,3,7 & 
Denis J. Doorly1,7

In this paper we present random walk based solutions to diffusion in semi-permeable layered media 
with varying diffusivity. We propose a novel transit model for solving the interaction of random 
walkers with a membrane. This hybrid model is based on treating the membrane permeability and 
the step change in diffusion coefficient as two interactions separated by an infinitesimally small 
layer. By conducting an extensive analytical flux analysis, the performance of our hybrid model is 
compared with a commonly used membrane transit model (reference model). Numerical simulations 
demonstrate the limitations of the reference model in dealing with step changes in diffusivity and 
show the capability of the hybrid model to overcome this limitation and to offer substantial gains in 
computational efficiency. The suitability of both random walk transit models for the application to 
simulations of diffusion tensor cardiovascular magnetic resonance (DT-CMR) imaging is assessed in a 
histology-based domain relevant to DT-CMR. In order to demonstrate the usefulness of the new hybrid 
model for other possible applications, we also consider a larger range of permeabilities beyond those 
commonly found in biological tissues.

Diffusion of fluid particles within a material consisting of multiple compartments separated by semi-permeable 
barriers or membranes is important in a vast number of areas such as heat transfer problems1,2, mathematical 
modelling in finance3 or social dynamics4, astrophysics5, the study of porous media6,7, and magnetic resonance 
imaging based diffusion-weighted imaging (DWI). Magnetic resonance imaging has been a significant spur 
for the development of both analytical methods8,9 to treat diffusion in permeable layered media, as well as for 
the development of Monte Carlo random walk methods10–12 to model the process. Random walk methods are 
computationally attractive for the solution of diffusion in large, complex configurations and play an important 
role in understanding magnetic resonance–based diffusion measurements. However simulating DWI is compu-
tationally demanding and the existing random walk methods are subject to limitations in their capacity to treat 
semi-permeable membranes interposed between regions of different diffusion coefficients. The purpose of this 
work is firstly to describe an improved transit model capable of overcoming such restrictions, secondly to validate 
with a semi-analytical model9, and thirdly to investigate the resulting improvement gained in modelling DWI of 
biological tissue. In the remainder of the introduction, we briefly explain the relation between DWI and diffusion 
simulations, referring to both analytical and Monte Carlo methods, before outlining the structure of the paper.

DWI is a unique magnetic resonance imaging technique that provides measures relating to the average micro-
scopic structure within a macroscopic imaging voxel by measuring the displacement of water molecules due to 
self-diffusion over a given time (the diffusion time,  �)13,14. DWI-based methods are widely used in neuroscience 
for determining white matter pathways, for example via the primary eigenvector of the 3× 3 diffusion tensor15,16 
which aligns with the long axis of the neurons. More recently, DWI techniques have gained popularity for cardiac 
imaging, where they can be used to investigate the unique variations in the arrangement of heart muscle cells in 
space and in time as the heart contracts17–19.

Monte Carlo simulations are a well-established method for investigating the relationship between the proper-
ties of the microscopic structure of biological tissues and the apparent diffusivity which would be measured in 
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DWI methods12. These computational simulations are becoming increasingly more realistic in terms of geometric 
fidelity20–22. Compartment models, which assume the tissue consists of a number or distribution of compart-
ment sizes and consider the DWI signal contribution of each compartment separately, have reached a point of 
maturity, but are limited to tissues with no/low membrane permeability or short diffusion times. In cardiac tissue, 
however, diffusion times are of the order of 1 s when employing the commonly used stimulated echo acquisition 
mode23 technique due the synchronisation with the cardiac period. As a result, the mean distance displaced by a 
molecule during an experiment covers multiple compartment lengths and the membranes of the typically well-
mixed myocardial cells24 may no longer be considered impermeable.

Exchange of walkers through barriers is commonly modelled via a transit probability, where an attempt 
to cross the barrier is either rejected or permitted randomly based on a threshold probability. This threshold 
probability is dependent on some (or all) of the tissue properties so as to ensure the membrane permeability is 
accurately represented. Powles et al.10 derived a formula for the transit probability of walkers on a lattice with 
constant step size. Szafer et al.11 considered a grid of 3D rectangular cells on a regular grid, allowing for different 
intra- and extra-cellular diffusivities. A recent model25,26, which we consider the reference model for this work, 
attempts to improve and extend the performance of a previous published transit model10. This reference model 
requires a strict limit on the maximum time step permitted in the random walk, which may pose numerical 
challenges when long diffusion times are considered or a large parameter space is to be investigated.

A number of analytical approaches to the problem of diffusion also exist. Data fitting models attempt to com-
pose the observed DWI signal as a linear combination of analytical shapes like spheres or ellipsoids for which 
the individual signal contribution is known27. This allows for the inference of cell sizes from the measured data. 
Originally developed for impermeable membranes, this approach was extended by Kärger et al.28 to account for 
exchange between compartments. While these models offer an easy way to explain macroscopic observations 
through integral quantities like the diffusion signal, they do not allow for deeper insights into the diffusion 
processes themselves. By reducing the problem to 1D, analytical solutions for the diffusion propagator can be 
found. This was first suggested by Tanner et al.8 to estimate the DWI signal in a system of equi-spaced parallel 
plates. Very recently, Moutal et al.9 presented a semi-analytical method to obtain the particle density distribution 
anywhere in a domain with arbitrary barriers.

In this work, we study 1D diffusion through semi-permeable membranes and show the numerical limitations 
of the previously mentioned reference transit model25,26. We propose a new model (hybrid model) based on treat-
ing the membrane interface and the discontinuity in diffusion coefficient as two separate probabilities. We analyse 
the behaviour of both transit models by comparing the fluxes through the membrane with those obtained by a 
semi-analytical solution. A parameter study reveals the errors in the numerical results and demonstrates that the 
limitations of the hybrid model are numerically less restrictive. Finally, we quantify the impact of our findings by 
calculating the difference in DWI signal obtained for both transit models on a realistic histology-based domain 
featuring a wide range of permeability values. This allows us to assess and compare the suitability of both models 
for simulating diffusion tensor cardiovascular magnetic resonance (DT-CMR) and other potential applications.

Methods
Histology images provide information on and properties of the biological tissue required for realistic DWI 
computational simulations. Considering that the diffusion in the vertical/longitudinal direction (parallel to the 
cardiomyocytes) is much less restricted than in the perpendicular direction, the 3D problem may be reduced to 
2D and even 1D for many applications. Figure 1 provides an example of a histology image obtained via confocal 
microscopy and one simplified 1D arbitrary domain. We consider 1D domains as arrays of m fixed length com-
partments [L1, L2, .., Li , ..Lm] each with constant diffusion coefficient Di separated by semi-permeable barriers with 
permeability coefficients κi . This membrane permeability κi , with units of distance over time, effectively defines 
the rate of exchange through the membrane between compartments i and i + 1 . Note that compartment i + 1 
is that immediately adjacent to i on the right, in the conventional left-to-right x-axis direction as illustrated in 
Fig. 1. We consider impermeable membranes at the ends of the domain, i.e. κ0 = 0 = κm , as walkers do not vanish 
in the biological tissue. The 1D diffusion equation for continuously variable diffusion coefficient is expressed as

where D(x) is the diffusion coefficient and U(x, t) the particle density/probability at a position in time and 
space. Setting the diffusion coefficient Di as constant throughout a given compartment i simplifies the diffusion 
equation (2) to

for compartments 1 ≤ i ≤ m . This allows us to model different compartments as intra-cellular (ICS) or extra-
cellular space (ECS, which may be interstitial or intravascular) by applying different reduced diffusion coefficients 
compared to the free diffusivity of water. At the internal interfaces 1 ≤ i ≤ m− 1 between compartments, where 
∂D/∂x  = 0 , the solution is defined by the boundary condition8,10

It relates the continuous diffusive fluxes D∂U/∂x infinitesimally to the left (subscript L) and right (R) of the 
interface to the jump in concentration U |R − U |L across the membrane with the permeability κi.
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Random walk transit models for permeable membranes.  The solution to the compartment diffu-
sion equation (2) may be obtained by considering an ensemble of massless, non-interacting particles perform-
ing a random walk. Below, we describe this process for a single particle/walker, which is repeated Np times per 
experiment.

A single random walker.  We consider a walker with subscript p. The position of the walker xp inside the domain 
is updated during each time step δt through a series of sub-steps δxn that depend on the diffusivity of the local 
environment:

At the beginning of a time step, a random step vector δx is drawn with equal probability of moving in direction +x 
or −x . For diffusion away from barriers, a single step δx = ±

√
2Diδt  is performed. Interaction with barriers 

introduces additional sub-steps, however in this work we consider a maximum of a single barrier crossing per 
time step. This imposes a limit on the possible time steps, namely δt < δtmax , where δtmax = min(L2i /(2Di)).

Transit probability.  In Fig.  1 we illustrate the reflection and transmission of a particular walker through a 
barrier located at xb . When the updated walker position xp + δx would lead to a crossing of a membrane, the 
interaction is resolved by computing a probability of transit pt and dividing the step into δxi and δxj , see Fig. 1. 
Note that if Di  = Dj the transit probability pt is specific to each direction (i → j or j → i ) and must satisfy the 
interface reflection11,29. The interaction is resolved by drawing a random number U ∈ [0, 1) and comparing it to 
the deterministic value of pt . Transit only occurs if U < pt , otherwise the walker is reflected elastically by δxj . If 
it enters a new compartment with different diffusivity Dj  = Di , the distance moved δx′j in the remaining fraction 
of the time step needs to be adjusted to maintain a constant fractional time step11,29.

Hybrid model.  A number of “transit models” have been proposed to calculate the probability of transit pt based 
on properties of the membrane and tissue. The aim of any such model is to accurately represent the boundary 
condition8,10 in Eq. (3) that relates the diffusive flux to the jump in particle density U across the semi-permeable 
membrane. The case of a finite membrane permeability with equal diffusivity on either side  (i.e. Di = Dj ) is 

(4)xp(t + δt) = xp(t)+
∑

n

δxn.

Figure 1.   (a) Left: Confocal fluorescence microscopy image of cardiomyocytes running vertically. The mean 
diffusion distance �x ≈ 30µm over 100ms is indicated as the radius of the yellow circle. Right: Schematic 
of an example domain with m = 4 compartments with indices i. Each compartment has two barriers with 
their corresponding locations xb = bi , xb = bi+1 = bj with permeabilities κi and κj . Note that the domain 
ends enforce the zero-flux boundary conditions (κ0 = κm = 0 ). (b) Illustration of the behaviour of a single 
walker at xp performing a random step δx towards a barrier at xb . Initially, the step is divided into δxi and δxj . 
Depending on the transit decision, the walker is either reflected elastically (x = xp + δxi − δxj ) or enters the 
new compartment with Dj < Di . In the latter case, the remaining step after transit is modified to δx′j to preserve 
a constant net step size. Note that |δx′j | < |δxj| when entering a region of lower diffusion coefficient (and 
conversely for Dj < Di).
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well-studied on a discrete lattice of equidistant points10. In the reference model25,26 this approach is extended to 
particles located at arbitrary positions xp in the vicinity of a membrane separating regions of equal diffusivity:

Here δxi is the distance from the walker position xp to the barrier xb = bi . It can be shown (Appendix A) that 
a step change in diffusion coefficient (Di  = Dj ) leads to an error in the model proposed by Fieremans et al.25. 
This error reduces with the time step and it is thus recommended by the authors to keep δt < δtmax ref  such that 
ptref ≪ 1 , i.e. ptref (δtmax ref) < 0.01 , for the transit probability

Unfortunately, in the limiting case of infinite permeability, the reference model is inconsistent with the condi-
tion derived by Maruyama et al.29 for particle transit across a step change in diffusion coefficient. Thus with the 
motivation to create a consistent treatment and to lift the step restriction when Di  = Dj , we propose a hybrid 
transit model based on treating the step change in diffusion coefficient and the membrane permeability as two 
independent processes during the transit of a walker.

The hybrid model considers an infinitesimal space δs between the membrane position xb and the diffusivity 
change xd . The overall transit probability pthyb is derived by calculating the probability of a particle overcom-
ing the two barriers in sequence. As illustrated in Fig. 2, there are two possible configurations depending on 
the location of the membrane interface xb . The first and second configuration place the interface membrane in 
the low ( xb < xd ) and high diffusivity ( xb > xd ) region respectively. We notice that positioning the membrane 
interface in the high diffusivity region (configuration 2) results in multiple/infinite reflections in the infinitesimal 
gap δs between the membrane and the diffusivity jump. In Appendix B we deduce the transit probabilities for 
both possible configurations and prove that configurations 1 and 2 lead to the same overall transit probability 
pthyb . We observe that configuration 1 ( xb < xd ) is the preferred arrangement as it simplifies the multiple/infinite 
reflections observed in configuration 2 and reduces the transit probability pthyb to the following simple expression

where pb is the membrane transit probability and pd the probability of a particle when transitioning between 
two media of different diffusivity. Originally29, pd is presented as an elegant interpretation of the behaviour of 
random walkers when transitioning between media of different diffusivity, whilst pb is given by Eq. (5). Note 
that, as illustrated in Fig. 2 where the left compartment has a Di less than the Dj of its right hand neighbour 
and for the interfaces in configuration 1 ( xb < xd ), the probability of an attempted transit from i to j is simply 

(5)ptref ,(i→j) =
2κiδxi

Di + 2κiδxi
.

(6)pthyb ,(i→j) = pb,(i→j) · pd,(i→j) where pd,(i→j) = min

(

1,

√

Dj

Di

)

Figure 2.   Illustration of the different possible sequences of events when a particle attempts a transit between 
compartments with low ( Di , left) and high ( Dj , right) diffusivity. Configuration 1 places the membrane in the 
low diffusivity region ( xb < xd ), while configuration 2 places the membrane in the high diffusivity region, 
( xb > xd ). We illustrate cases A and B, where A refers to an attempted transit from i → j and B from j → i . 
Note that particles can freely cross the diffusivity interface xd from low (light blue) to high (dark blue) diffusivity 
regions, but may be reflected in attempting to cross from high to low diffusivity regions. For case 2, this results 
in multiple/infinite reflections in the infinitesimal gap δs between the membrane and the diffusivity jump.
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pthyb = pb whereas for an attempted transit in reverse, from j to i, the probability is pthyb = pbpd . In general, for 
Di ≤ Dj , pthyb = pb whilst for Di > Dj , pthyb = pbpd

The analytical solution for 1D semi‑permeable layered media.  In order to compare the perfor-
mance of both transit models we employ an analytical solution as benchmark. Moutal et al.9 presented an elegant 
transcendental equation F(�) := 0 that is to be solved in order to obtain the eigenvalues � of the diffusion opera-
tor. The eigenvalues are the roots of F(�⋆) where �⋆ is an auxiliary variable considered when F is evaluated on 
a continuous range. The solution assumes the time and space variables in Eq.  (1) are separable reducing the 
eigenvalue problem to the Helmholtz equation.

Using the general solution to this ODE, which is a function of the eigenvalues, one can construct a transcendental 
equation ensuring that all boundary conditions are satisfied simultaneously. This is achieved through a series of 
matrix multiplications that link compartments together9. The problem of finding eigenvalues is therefore reduced 
to that of finding the roots of that transcendental equation

where Ri(�) and Mi,i+1(�) are specific matrices that depend on the properties of each compartment9. For a 
sensible choice of permeabilities for internal barriers (0 < κi < ∞ , i.e. no trivial cases), there exist a countably 
infinite number of real eigenvalues, all of which are non-negative, ordered, and simple9:

The eigenvalues of higher order have diminishing importance with increasing solution time t. For the domains 
in this work, we use a truncation point of the order of  N ≤ O (103) as it has been observed to be enough for 
an accurate and smooth solution. The solution is computed by evaluating and summing the eigenmodes νn(x) 
throughout the domain at several linearly-spaced points xq ∈ [0, bm]

for an initial condition of a Dirac delta function at xq,0.

As described above, the eigenvalues (roots of Eq. (8)) are found numerically up to to �N where N = 1000 . The 
solution U(xq, t) is, therefore, semi-analytical. As a consequence, numerical errors introduced by the root finding 
procedure manifest themselves as errors in the solution. Due to the linearity of the diffusion equation, a uniform 
initial condition in a certain region can be solved by adding and normalising all the solutions obtained by several 
delta Dirac functions within the interval of interest.

The diffusion problem applied to DWI in the heart.  Although the diffusion problem is general, we 
illustrate the performance of both models using biological parameters pertaining to cardiomyocytes. In order to 
investigate the applicability of our new hybrid model mentioned in “Hybrid model”, we investigate the transient 
and steady state behaviour of U(x, t; x0) in a two compartment domain. We compare the diffusion flux and 
numerical results with a semi-analytical solution and a reference transit model25,26. A more complex example is 
provided comparing the performing of both models in the measurement of diffusion in the heart using diffusion 
weighted imaging (DWI).

Transient and steady state analysis of diffusion flux in a two compartment domain.  We analyse the flux of parti-
cles crossing the membranes that is represented by the flux boundary condition in Eq. (3). This equation relates 
the flux  J to the permeability and the difference in concentrations across the barrier. The units of  J are con-
centration (fraction of walkers) per unit time and area, but we omit the latter such that [J] = 1/ms . This flux 
boundary condition, allows us to compute the instantaneous analytical flux evaluating U on either side of the 
discontinuity and the instantaneous numerical flux by measuring the fraction of particles that cross the barrier 
for each specific time step. The net instantaneous flux is obtained each time step by subtracting the fluxes from 
either side (left/right) and the cumulative flux (flux integral) throughout the simulation. Based on the analytical 
and numerical flux comparison, we perform two different types of analysis to evaluate the efficacy of the transit 
models. We implement a steady and transient state analysis by considering a total and partial uniform distribu-
tion. We determine the relative error ǫglobal for both transit models using the cumulative flux  J (t) =

∫ t
0 J(τ )dτ 

which represents the net concentration of walkers that has crossed the membrane up until t and approaches 0.5 
as t → ∞ to match the steady state solution. This global relative error ǫglobal measures the area in between the 
analytical and numerical solution during the entire simulation. We utilise this global relative error to investigate 
the time step dependence and compare the performances of our new hybrid model and the reference model25 
under the influence of different permeability and diffusivity values.

(7)Di u
′′ + �u = 0 ∀x ∈ [bi , bi+1].

(8)F(�) :=
[

κm/
√
�Dm 1

]
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∏
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)

[

1
κ0/

√
�D1

]

= 0

(9)0 ≤ �1 < �2 < . . . �N < . . . �∞

(10)U(xq, t) ≈
N
∑

n=1

e−�ntνn(xq)νn(xq,0)

(11)U(xq, 0) = δ(xq − xq,0)



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10759  | https://doi.org/10.1038/s41598-022-14541-y

www.nature.com/scientificreports/

The diffusion problem applied to a synthesised histology‑based domain.  The domain has been obtained from sec-
tions of swine myocardium, cut perpendicular to the long axis of the cardiomyocytes. We have used automatic 
segmentation developed in previous work30 to obtain a distribution of cell sizes. We have utilised this previ-
ous work to find statistics parameters (mean cross-sectional area, standard deviation) to recreate a synthesised 
histology-based domain assuming a circular cross-sections for cardiomyocytes31. The cell areas are converted 
to diameters which we use as intra-cellular compartment lengths in the 1D domain. The extracellular space is 
recreated considering a uniform distribution.

Few estimates exist in literature for the free diffusivity in the myocardium and/or the permeability of the 
cardiomyocyte membrane. A recent study32 observed diffusivity values of 1.2µm2/ms and 3µm2/ms in the 
intra- and extra-cellular space of heart rat cells. In general it should be expected that the compartment-specific 
bulk diffusivity are lower than the free diffusivity of water and DICS < DECS due to the concentration of sub-
cellular structures. For the numerical simulations, we have considered DICS = 0.5µm2/ms ,  DECS = 2µm2/ms 
and κ = 0.05µm/ms . The cell membrane permeability has been estimated from measurements of apparent 
exchange rate ( 1/τex ). Exchange rates are commonly reported in a range of 6 to 30Hz32,33, but have been found 
as high as 50Hz for healthy leg muscles of rats34.

We perform the random walk simulations with Np = 106 walkers and a time step of δt = 1.5ms . This time 
step intentionally exceeds δtmax ref  required for an accurate handling of transit using the reference model in 
Eq. (5), while still limiting walkers to a single barrier interaction per step δt = 1.5ms < δtmax domain . Random 
walk simulations are run for t = 1000ms and the analytical solution is evaluated for the same space and time 
parameters. We use the semi-analytical solution described in “The analytical solution for 1D semi-permeable 
layered media” to obtain 1000 eigenvalues with �⋆ ∈ [0, 500] . Conversely to “Flux diffusion analysis: transient 
state”, the transient solution U(x, t; x0) is obtained by seeding all the walkers at the centre of the domain, while 
the steady-state solution is initialised by seeding the walkers uniformly.

Measurement of diffusion: diffusion weighted imaging (DWI) signal.  There are many comprehensive reviews of 
DWI and the measurement of diffusion using MRI35. Briefly, Diffusion Weighted Imaging (DWI) is a method 
of contrast generation based on the self-diffusion (Brownian motion) of water molecules (hydrogen spins) pre-
sent in the biological tissue. In DWI, the magnetisation of the hydrogen spins align with the magnetic field B0 
and precess at a frequency w = −γB0 according to their gyromagnetic ratio  γ = 267.5× 106 rad/(s T) . Radio-
frequency pulses are used to rotate the spin magnetisation away from their initial direction and spatial gradients 
in the magnetic fields G(t) modify the precessional frequency and therefore phase according to Eq. (12).

In DWI the imaged sample is subjected to a sequence of two symmetric and effectively opposite polarity gra-
dients of strength Gmax and duration δ separated by a diffusion time � to encode the distances diffused into the 
received signal. The accumulated precessional phase of the magnetisation vector of each spin at the end of the 
DWI sequence is directly related to the distance that each spin has diffused during � . The signal S obtained after 
diffusion encoding is determined by the sum of the incoherent spin magnetisation vectors. The signal attenu-
ation is the ratio between the signal recovery S and the initial signal S0 that we would obtain if the spins were 
static. By means of the narrow pulse approximation (NPA)35,36 it is possible to estimate the DWI signal directly. 
This assumes that the gradients are applied instantaneously, i.e. δ → 0 as the wave number q(t) = γ

∫ t
0 G(τ )dτ 

remains finite ( = γGδ ). In DWI, the strength and timing of the gradients is described by the b-value. In the 
case of NPA, the b-value is calculated as b = q2� . Through the Bloch–Torrey equations37, it is possible to prove 
an exponential relationship ( S/S0 = exp(−bADC) ) between the signal attenuation and the apparent diffusion 
coefficient (ADC) (which is affected by both the compartmental diffusivities, barrier density and permeability).

The analytical and random walk methods presented previously allow us to solve for the diffusion propaga-
tor. For the random walk simulations, we seed the walkers uniformly in the histology-based domain and we let 
them diffuse for a period of 1 s. The numerical simulations compute the accumulated precessional phase of each 
walker/spin at the end of the sequence and the narrow pulse approximation allows the precessional phase to 
be calculated based on the displacement during the diffusion time. The signal attenuation can then be directly 
computed using the following equations

where ı denotes the imaginary unit 
√
−1 . The analytical attenuation signal is calculated using an expression 

derived for uniform initial seeding9. We approximate the integrals numerically using trapezoidal integration over 
a finely-discretised domain. We analyse and compare the signal attenuation and apparent diffusion coefficient 
(ADC) with analytical results for a large time step of δt = 1.5ms and a small time step δt = 0.01ms . In order to 
provide insights in other potential applications, we consider a wide range of permeabilities (0 to 1µm/ms ) apart 
from the biological ambit. We have considered a b-value of 1ms/µm2 for all the simulations.

(12)φp(t) = γ
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0
G(τ )xp(τ )dτ
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1
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Results
Convergence.  In this work histograms are used to illustrate the random walk solution, density-normalised 
such that ρbin = cbin/Np/wbin where cbin and wbin are the bin count and width respectively. In Appendix D, we 
study the convergence of the random walk simulations for a simple two-compartment domain with varying 
numbers of walkers and time steps38. We set DL = 0.5µm2/ms , DR = 2.5µm2/ms , and κ = 0.05µm/ms as 
these are feasible parameters in cardiac tissue and comparable to the values used for the remaining analyses. We 
conclude that Np = 106 walkers is sufficient to obtain an accurate solution.

Analysis of the steady state.  We investigate the time step dependence of the membrane transit model 
for a two-compartment domain. Figure 3 shows random walk solutions using the new hybrid model and the 
reference transit model25. We examine different time steps δt  (20, 10, 5, 2, 0.5, and 0.05ms ) and two solution 
times 20 and 1000ms . In the steady state U(x, t) = const . As a result the expected particle density for each bin 
irrespective of time step δt should be ρexpected = 1/

∑

L = 0.025 . For the short time solution T = 20ms , the 
reference transit model fails to preserve the initial steady-state solution near the internal barrier at x = 20ms . 
As the time increases, a concentration imbalance develops across the interface.

We observe that the difference in compartment density �U across the membrane increases with δt and appears 
to stabilise at some value as t → ∞ : For δt = 0.05ms , the reference model shows an excess of concentration in 
the left compartment of 0.88% , for δt = 20ms this increases to 10.2% . In Appendix C, we mathematically prove 
the limitations of the reference model. On the other hand, the new hybrid model produces the expected solu-
tion with a constant U with a maximum of �U = 0.18% for all values of t and δt , thus suggesting that there is 
no accumulation of walkers for any time step. This variation in the density between bins for the hybrid model is 
attributed to randomness of the simulation as the maximum deviation is ±0.437% relative to ρexpected consider-
ing a 95% confidence interval.

Flux diffusion analysis: transient state.  We perform two different transient-state analyses to indepen-
dently investigate the influence of the step size and the influence of several values for the permeability and dif-
fusion coefficients.
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Figure 3.   Histograms of walker positions after random walk simulations of the steady state. Initial positions 
were sampled from a uniform distribution to seed walkers with a constant density throughout the domain. We 
have performed the simulations with Np = 106 . We applied the reference membrane model (top) described in 
Eq. (5), with permeability κ = 0.05µm/ms , and the new hybrid model (bottom) from Eq. (6). Simulations were 
performed with varying step sizes δt for a short and a long simulation time T. We consider DL = 0.5µm2/ms , 
DR = 2.5µm2/ms and L = 20µm.
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The influence of step size.  Considering the same parameters introduced in the previous section “Analysis of the 
steady state”, we perform simulations up to t = 1000ms using the largest and a small time step δt : 20 and 0.5ms . 
Figure 4 shows the instantaneous and cumulative fluxes obtained from the random walk simulation at every 
time step alongside the analytical solution. For the random walk solution, we also plot a time-averaged flux over 
fixed intervals of �t = 20ms to allow for comparison between both plots. Note that the time-average flux and 
instantaneous flux coincide for the largest time step as δt = �t = 20ms.

The (analytical) flux J rapidly increases early in the simulation and peaks at t = 58.53ms . As t increases, 
walkers continue to cross the membrane towards the initially empty compartment (J > 0 always). We observe 
that for a large time step δt = 20ms , the time-averaged/instantaneous flux for both transit models over-estimate 
the initial peak in magnitude. However, if we compare the cumulative fluxes at the final end-point of the simula-
tion (t = 1000ms ), the reference model underestimates the tail with a relative error of −10.27% compared to an 
error of −1.87% for the hybrid model. We observe that reducing the time step increases the number of walkers 
crossing the membrane increasing the overall convergence. For δt = 0.5ms , the relative error at the end of the 
simulation is reduced to −2.6% and to −0.46% for the reference and hybrid model respectively. This is consistent 
with the results observed in Fig. 3 for the steady-state analysis.

The influence of permeability and diffusivity.  In order to study the effects of permeability and diffusivity, we con-
sider the simple domain varying the ratio (DR/DL ) between diffusivities in either side. We consider a constant 
left diffusivity of DL = 2µm2/ms and a range of ratios ( 0.05 < DR/DL < 2.5 ). We consider two permeability 
values (0.05 and 0.5µm/ms ) that correspond to exchange times of the order of 50Hz and 500Hz respectively. The 
first permeability (0.05µm/ms ) is linked to exchange times that are closer to what we would observe in human 
cells32 and the second permeability value covers higher exchange rates that might be useful for other applica-
tions. We perform simulations up to t = 1000ms for seven different time steps δt : 40,8,4,2,0.5,0.1, and 0.05ms 
and nine different varying diffusivity ratios 2.5, 1.8, 1.6, 1, 0.4, 0.2, 0.1, and 0.05. Note that the largest δt = 40ms 
considered for the simulations coincides with the most restrictive δtmax domain given by DR/DL = 0.05 amongst 
all diffusivity ratios.

Figure 5 shows the global relative errors that have been computed by evaluating the integral difference 
between the numerical and analytical cumulative flux. The top plots and the bottom plots illustrate the global 
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Figure 4.   Top figures: instantaneous (numerical/analytical) and time-averaged (plotted as the average over 
intervals of �t = 20ms ) fluxes J(t) through the membrane as a function of simulation time. Bottom figure: 
Analytical and numerical net cumulative flux. We show results for two different step sizes δt : 20 and 0.5ms . 
Domain and simulation parameters are DL = 0.5µm2/ms , DR = 2.5µm2/ms , κ = 0.05µm/ms , L = 20µm , 
Np = 106.
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errors for the reference model and hybrid model respectively. As mentioned in “Transient and steady state analy-
sis of diffusion flux in a two compartment domain”, each simulation has been performed initialising the walkers 
in a partial uniform region within the left compartment. For a constant permeability, we observe that the global 
errors escalate as we increase the difference between diffusivities. These increments are consistently lower for 
the hybrid model as it includes the probability when transitioning between two different media through Eq. (6). 
Similarly to Fig. 4, lowering the step size increases the number of walker collisions with the membrane resulting 
in an overall faster convergence and accuracy. As it can be observed in Eq. (6), the hybrid model incorporates 
the reference model to solve the membrane/interface probability. In Appendix C, we show that the reference 
model does not preserve the interface reflection and leads to a permeability-related error. As a result, both models 
show a permeability error dependency, however, the hybrid model relative errors are consistently lower due to 
the initial error reduction in the diffusion media. The dependencies of the accuracy ( ǫglobal ) on the time step 
( δt ) shows that the improvement in simulation efficiency provided by the hybrid model is greatest for highly 
permeable membranes and large diffusivity gradients. As an example, for κ = 0.5µm/ms and (i) DR : DL = 0.05 , 
(ii) DR : DL = 2.5 similar accuracies (i) ǫglobal ≈ 16% and (ii) ǫglobal ≈ 2.8% are obtained with δt = 40ms and 
δt = 0.05ms using the reference and hybrid model respectively. As a consequence, for a similar accuracy the 
hybrid model reduces the simulation time by a factor of 190 from ≈ 950 s to ≈ 5 s . For the low permeability case 
κ = 0.05µm/ms and highest diffusivity ratio DR : DL = 0.05 accuracies of ≈ 3.5% are obtained with δt = 2ms 
using the hybrid model while the reference model requires a lower time step δt = 0.1ms . In this case the com-
putational time is a factor of 5 lower, which although reduced from 190, is still substantial.

Transient and steady‑state diffusion solutions in the histology‑based domain.  Figure 6 illus-
trates the distribution of cell sizes for the manual and automatic segmentation30. As explained in  ”The diffu-
sion problem applied to a synthesised histology-based domain”, we recreate a histology-based domain by con-
sidering circular cross-sections for cardiomyocytes. The segmentation data shows a mean cross-sectional area 
of µ = 120µm2 and a standard deviation of σ = 40µm2 . We utilise these parameters to create a synthesised 
histology-based domain using a normal distribution (µ± 2σ ) for the intra-cellular space and a uniform dis-
tribution  (3–5µm ) for the extra-cellular compartments. The resulting domain is recreated by drawing both 
intra-cellular and extra-cellular distributions until reaching a total length of 49.5µm . Figure 7 shows the final 
steady state and three different transient states for the histology-based domain. The transient states are analysed 
at three different diffusion times T = 50, 100, and 1000ms considering that all the particles are initialised in 
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Figure 5.   Global errors using the reference (upper row) and hybrid transit model (lower row) for different time 
steps δt , distinct diffusivity ratios DL : DR and two different permeabilities κ . The global error measures the 
accuracy of the numerical simulation by calculating the area between the analytical and numerical cumulative 
flux during the entire simulation. Simulations were run until t = 1000ms with Np = 106 walkers seeding the 
walkers in a partial uniform region in the left compartment x0 ∈ [6, 14µm].
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the middle of the domain x0 = 24.75µm . We observe good agreement between the hybrid model and the ana-
lytical solutions. We notice that the reference model tends to overestimate the flux through the barriers in the 
initial transient states leading to higher concentrations in the ECS. This accumulation of walkers is present and 
is carried during the entire simulation until reaching the steady-state. This excess of walkers in the ECS persists 

Figure 6.   Illustration of the process of synthesising a 1D domain from histology data. Left figure: An example 
of a region of histology from a wide-field microscopy image. This is part of a large stack of histology slices 
obtained from the mesocardium of swine. Cardiomyocytes (red–purple) are cut perpendicular to their long axis. 
Extra-cellular space is white, while collagen is stained blue. Right figure: Distribution of cell sizes from automatic 
segmentation for the entire stack of images as well as manual labelling of a small representative region.

Figure 7.   Analytical and random walk solutions using Np = 106 walkers and a time step of δt = 1.5ms . Top: 
Transient solution U(x, t; x0) for initial concentration at x0 located in the centre of the domain considering 
three simulation times 50, 100 and 1000ms . Bottom: Steady-state solution obtained after uniformly seeding the 
walkers in the domain. The simulation time is set to T = 1000ms . The reference model results in accumulation 
of walkers in ECS compartments. Note that this effect is visually amplified by the choice of axis data range.
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throughout the simulation and is consistent with the findings in “Analysis of the steady state” and “Flux diffusion 
analysis: transient state”.

DWI results.  We analyse how the diffusion errors observed in  “Transient and steady-state diffusion solu-
tions in the histology-based domain” affect the DWI signal and apparent diffusion coefficient (ADC). We com-
pare the signal attenuation and ADC with the theoretical analytical results. As mentioned in “Measurement of 
diffusion: diffusion weighted imaging (DWI) signal”, we seed the walkers uniformly and consider the narrow 
pulse approximation (NPA). Figure 8 shows the ADC and the absolute signal relative error for a large interval 
of membrane permeabilities and two different step sizes. Equation (13) shows the relation between the numeri-
cal signal error and the displacement of the walkers. Similar to the flux analysis, we notice a strong depend-
ency between the permeability and the accuracy of both transit models. If we compare the errors for increasing 
permeability values, we observe that the reference model progressively becomes less accurate. As illustrated 
in Fig. 8, we observe low relative errors (≈ 0.3% ) for δt = 1.5ms that scale up to 0.8% for the reference model. 
These signal and ADC errors can be reduced when decreasing δt due to the greater number of particle collisions 
with the membranes. In the application that we are interested in, the cardiomyocytes have low permeability val-
ues (κ < 0.05µm/ms)34 where both transit models perform similarly with low relative errors.

Discussion
Simulating the transit of particles through a semi-permeable membrane separating media with differing dif-
fusivities can be achieved using analytical or numerical techniques. In this work, we present novel methods for 
determining the particle density in a 1D domain and the flux through a membrane.

Monte Carlo random walk based method are frequently used to solve the diffusion equation (1) in a range 
of applications. When a walker encounters a barrier such as a semi-permeable membrane, the probability of 
transit needs to be accurately computed and the walker step size must be adjusted when transiting between 
compartments of differing diffusivities11. One of these so-called transit models is the popular method described 
in Eq. (5)25. As described in the original paper, this reference transit model25 requires a highly resolved time 
step. For this reason, it is suggested that the maximum time step ( δtmax ref  ) is limited by a maximum possible 
transmission probability of 0.0125. This can be a computational challenge for long and even short diffusion time 
simulations when other Monte Carlo parameters such as the number of walkers Np or the number of unique 
experiments need to be considered. In this work we propose a new hybrid transit model with the motivation 
of lifting this restriction. The new model that we present is based on treating the membrane as an infinitesimal 
space such that the diffusivity gradient and the membrane permeability can be considered as two independent 
factors. It is important to note that the hybrid model is built on top of the reference model as it is used to solve 
the membrane probability. Using an analytical solution as a gold standard, we have studied the accuracy of the 
hybrid and reference transit model25 when exceeding the maximum step size ( δtmax ). We have assessed both 
models by analysing the membrane flux varying several parameters in a simple domain.

We have found that the reference model leads to errors in the net migration of walkers and results in con-
centration imbalances for steady-state solutions. Further analysis in Appendix C.3 demonstrated that the transit 
model inherently tends to accumulate walkers when the membrane divides two compartments of different 
diffusivities. In Appendix C we also note that the interface reflection condition11 is not respected as κ → ∞ 
and this is consistent with the findings observed for both transit models in Fig. 5 and with the relation between 
diffusivity/permeability to fit within the maximum time step ( δtmax).

Figure 8.   Absolute relative signal error and ADC values for a wide range of permeability values considering 
a very small (δt = 0.01ms ) and large (δt = 1.5ms ) time step. All the simulations consider Np = 106 walkers, 
DECS = 2µm2/ms and DICS = 0.5µm2/ms.
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The numerical simulations performed in this study consider a fixed step size. In “Flux diffusion analysis: 
transient state”, we have considered a partial uniform distribution of walkers in the left compartment to avoid 
sampling error for large step sizes due to the unique number of possible walker positions. From the numerical 
simulations in the simple domain, we numerically prove the limitations of the reference model for varying dif-
fusivities. From our steady-state and transient findings, we conclude that these imbalances increase for higher 
step sizes and longer diffusion times. Further numerical analysis shows that the hybrid model substantially 
reduces the diffusivity and permeability-related errors present in the reference model and imply that our model 
is computationally more efficient as similar accuracies using the reference model are linked to lower step sizes δt 
and larger computational runtimes. Simulations show the computational time depends on both permeability and 
diffusivity. Moreover simulations reveal that the hybrid model offers substantial gains in computational efficiency, 
reducing run times by a factor of 5 for simulations in tissue to a factor of ∼ 200 in other applications. It is impor-
tant to note that when there is no diffusivity discontinuity the hybrid model is identical to the reference model.

One important application of the methods presented in this work is in the simulation of diffusion weighted 
imaging (DWI). Previous numerical simulations of diffusion tensor imaging (a variant of DWI) in the heart 
were based on impermeable membranes22 and resulted in more anisotropic diffusion than commonly found in 
imaging studies39. Initial work using finite volume methods40 has suggested that this overestimation of anisotropy 
is likely due, at least in part, to the failure to include permeability within the model.

The simulations in “Transient and steady-state diffusion solutions in the histology-based domain” use a 
domain constructed based on microscopy images of histology sections. Using a previously developed method30 
to automatically segment cells, we have extracted characteristic cell sizes to generate a representative one-dimen-
sional domain. A mean cell area of 120µm , which corresponds to a diameter of 12.4µm assuming circular cells 
was obtained from segmentation of the data. This value is slightly lower than the reported range of 17 to 25µm 
in31. However, tissue is known to shrink during histological preparation and this may be compensated for during 
image processing by morphing the domain22.

The cardiomyocyte membrane permeability ( κ = 0.05µm/ms ) and the diffusivity values ( DECS = 2µm2/ms , 
DICS = 0.5µm2/ms ) in the histology-based simulations limit the δtmax ref to extremely low values δt ≈ 0.002ms . 
Similarly to the simple domain analysis, our histology-based results for the reference model show accumulation 
of particles in the ECV and these errors are carried into the DWI signal computation. We have observed that both 
models have very small and similar errors for low permeability in the range of cardiomyocytes. We have shown 
increasing errors in the results of the reference model with larger permeability values. The findings regarding 
the limitations of the reference model at high κ and larger ratios of D between compartments are particularly 
important for applications beyond biological tissue such as heat transfer where different sets of parameters may 
be required. For example, a thin layer of material in heat conduction problems can be modelled as a membrane 
with permeability D/L.

In this work, we have reduced the complexity of the simulations to a one dimensional histology-based domain. 
Analytical techniques have been used to compare the performance of our new transit model with a previously 
random walk transit model. We have extended and validated these findings by performing 2D simulations on 
a representative domain of the cardiac microstructure. An accurate finite volume solution has been used as a 
gold-standard to assess the performance of our new transit model. We have observed low relative error values 
extending the application of our transit model to higher dimensions.

Conclusions
Modelling diffusion within non-simple layered media requires a correct treatment of the particle transit at 
membranes when numerical solutions are employed.

We investigate the accuracy of a previously proposed transit model for varying diffusion coefficients in 
the presence of permeable barriers. We compared the numerical results to an analytical method and show the 
limitation of this reference transit model. We propose an alternative to this problem by considering a hybrid 
transit model that treats the transitioning between different media and the permeable membrane as two sepa-
rate probabilities. By comparing numerical and analytical simulations, we conclude that the new transit model 
performs with lower errors and successfully lifts the step restriction saving overall simulation time and reducing 
the accumulation of walkers observed in the reference model. While random walk methods for the solution of 
the diffusion equation in layered media have a number of potential applications, we have considered simulating 
diffusion-weighted imaging in cardiac tissue.

For the given range of extracellular compartment lengths we find that the time step is already very restricted 
by the domain itself as the walkers cannot cross multiple compartments. We conclude that in application to 
cardiac tissue, both transit models present very small and similar errors in the apparent diffusion coefficient, an 
important integral quantity for diffusion-weighted imaging. However, in other applications where the compart-
ments are larger and both permeabilities and diffusivites are higher, the potential of this new hybrid model can 
be fully realised. In these cases, the hybrid model becomes a computationally more efficient and more accurate 
alternative for solving the diffusion equation than existing models.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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