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Next‑generation 2D optical strain 
mapping with strain‑sensing smart 
skin compared to digital image 
correlation
Wei Meng1, Ashish Pal1, Sergei M. Bachilo2, R. Bruce Weisman2,3 & Satish Nagarajaiah1,3,4*

This study reports next generation optical strain measurement with “strain-sensing smart skin” (S4) 
and a comparison of its performance against the established digital image correlation (DIC) method. 
S4 measures strain-induced shifts in the emission wavelengths of single-wall carbon nanotubes 
embedded in a thin film on the specimen. The new S4 film improves spectral uniformity of the 
nanotube sensors, avoids the need for annealing at elevated temperatures, and allows for parallel 
DIC measurements. Noncontact strain maps measured with the S4 films and point-wise scanning were 
directly compared to those from DIC on acrylic, concrete, and aluminum test specimens, including 
one with subsurface damage. Strain features were more clearly revealed with S4 than with DIC. Finite 
element method simulations also showed closer agreement with S4 than with DIC results. These 
findings highlight the potential of S4 strain measurement technology as a promising alternative or 
complement to existing technologies, especially when accumulated strains must be detected in 
structures that are not under constant observation.

A stress concentration is a location at which the mechanical stress is significantly higher than in the surrounding 
area. It can occur when there are irregularities in the geometry or material of a structural component. Brittle 
materials will typically fail at such high stress locations due to fracture and cracking. For ductile materials, stress 
concentration might instead cause localized plastic deformation and yielding. Moreover, fatigue and fracture 
cracks due to low level but high-frequency loads would also grow in stress concentration regions and cause dam-
age. Many cases of structural failure in buildings, bridges, ships, and aircraft are closely related to stress–strain 
concentration. As a direct indicator of the effects of stress concentration, strain measurement plays an impor-
tant role in structural health monitoring (SHM) and non-destructive testing. For this reason, many analytical, 
numerical1–3, and experimental studies have been conducted over the past decades to investigate structural strain 
and damage induced by various loading conditions.

Experimental strain measurement methods can be divided into two major categories: contact-based and 
non-contact techniques. In contact-based strain sensing, piezoresistive and fiber Bragg grating (FBG) sensors 
are the most widely used. Piezoresistive strain sensors include the foil strain gauge and other sensors fabricated 
from materials with piezoresistive properties, such as carbon nanotubes (CNTs)4–6 and metal compounds 7–9. 
In piezoresistive materials, the conductivity changes with strain in a linear relationship10. By contrast, FBG sen-
sors are optical, offering the advantages of insensitivity to electromagnetic interference, small dimensions, and 
resistance to corrosion11–13. However, for both piezoresistive and FBG sensors, the strain is measured pointwise 
in an individual direction, which leads to high cost and low spatial resolution when full-field strain mapping is 
needed. These sensors are most useful when users have prior knowledge of the locations of stress concentration 
and can deploy them accordingly.

Optical non-contact strain sensing techniques have two main advantages. One is avoiding the need for elec-
trical or fiber optic connections between the sensors and the measuring device. The other is showing the strain 
distribution over a two-dimensional region of interest, which is important for damage detection and studies of 
fracture behavior. Currently, the full-field optical non-contact strain sensing techniques can be classified as: (1) 
interferometric14–23, (2) image-based, or (3) spectroscopic. Interferometric techniques measure the micrometer 
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scale displacements of a material based on optical interference patterns. They can be highly sensitive to strain 
field variation, but are only suitable for small-scale model structure measurement in laboratory environments.

The most widely accepted and commonly used image-based method is digital image correlation (DIC), which 
provides full-field displacement and strain maps by comparing digital images of natural or applied patterns on 
the specimen surface in undeformed and deformed states24. Compared to interferometric techniques, DIC can 
be used in a wider range of measurement environments and for different spatial scales, strain sensitivities, and 
spatial resolutions. However, DIC is an indirect method that relies on complex numerical image processing. 
The virtual strain gauge (VSG) is a common and key element in the DIC method. VSG is a small region of the 
image over which average strain is calculated, analogous to the physical area covered by a resistive strain gauge. 
The choice of VSG size therefore determines the spatial resolution and accuracy in a DIC strain measurement. 
A small size generates strain maps with less smoothing at the cost of noisier strain data, while a large VSG size 
reduces noise but may fail to detect sharp spatial strain gradients indicative of structural damage. In practical 
applications, a sensitivity study on the VSG size is therefore always important for interpreting DIC results. This 
is usually done by comparing the results with readings from attached strain gauges used as references. Moreover, 
the accuracy of DIC results depends strongly on the quality of the imaging optics and camera.

In a more direct optical approach to strain measurement, spectroscopy-based methods have been developed to 
overcome some limitations of image-based and interferometric techniques. The leading work in this area involves 
single-walled carbon nanotubes (SWCNTs), which show systematic shifts in their vibrational and electronic 
spectra in response to mechanical deformation. SWCNTs that are attached to a surface can therefore be used as 
tiny, optically interrogated strain sensors. Several studies have demonstrated SWCNT-based strain sensing using 
shifts in the nanotubes’ vibrational Raman scattering frequencies25–28 in comparison with contact based approach. 
However, such Raman methods are hampered by intrinsically weak scattering signals and long measurement 
times, making them impractical for most applications. Much stronger optical signals, faster data acquisition, and 
higher strain sensitivity have been obtained by using SWCNT near-IR fluorescence spectra to deduce strain29. In 
this “strain-sensing smart skin” or S4 method, emission from SWCNTs embedded in a thin polymer film on the 
specimen surface is captured and spectrally analyzed to find the local strain magnitude at the desired locations 
and directions. Because the nanotube sensors are distributed across the entire coated surface, strain values can be 
measured at arbitrary locations and directions, and combined to give full-field strain maps30–33. We report here 
the latest developments in the S4 method and a detailed comparison of S4 strain mapping with results from DIC.

New strain‑sensing smart skin (S4) formulation
The strain sensors in our S4 method are single-wall carbon nanotubes. These are artificial nanomaterials with 
tubular structures formed from carbon atoms that are covalently bonded into specific forms with long-range 
crystalline order34. Each structural form, or species, has a distinct electronic structure and is labeled by a pair of 
integers, (n,m). Most SWCNT species are semiconducting and emit near-infrared fluorescence at well-defined 
wavelengths corresponding to their specific band baps35. The systematic changes in these emission wavelengths 
induced by SWCNT axial strain36 form the basis for S4 optical strain sensing.

In the S4 films, nanotubes are individually coated with the organic polymer PFO (poly(9, 9-di-n-octylflu-
orenyl-2,7-diyl)) and applied as a toluene suspension to the specimen surface. Evaporation of the solvent leaves 
a submicron-thick sensing layer. Subsequent deformation of the specimen results in load transfer through the 
adhering polymer to the embedded SWCNTs, transmitting strain that is revealed by non-contact spectroscopic 
measurements of SWCNT fluorescence shifts. We have found that the wavelength separation between the (7,6) 
and (7,5) emission peaks, illustrated in Fig. 1a, is a reliable monitor of strain. Using the standard pre-determined 
spectral gauge factor that relates these peak shifts to strains, we can measure the strain magnitude and principal 
axis at any location on the specimen surface by positioning the fluorescence excitation beam and orienting its 
polarization plane.

Some substrates may be damaged by the toluene solvent or may generate luminescence that interferes with the 
S4 measurement. In such cases it is necessary to apply a base coating, such as a layer of opaque paint, to block the 
substrate emission and/or protect the surface. Onto this blocking base layer we apply an isolation primer layer 
of high gloss polyurethane to protect the blocking paint from toluene damage and to provide a microscopically 
smooth base for the very thin sensing layer, which is sprayed onto it after the isolation primer dries. This three-
layer structure provides a consistent environment for the SWCNTs, thereby reducing variations in their initial 
strain states and giving good spectral uniformity without the need for annealing the film at elevated temperatures. 
The three-layer coating scheme also lets us paint a speckle pattern onto the blocking layer to allow parallel meas-
urements of DIC and S4 strain maps on the same specimen. Figure 1b illustrates the three-layer coating structure.

To fabricate the coating, the specimen surface is first cleaned to ensure good bonding and load transfer. After 
that, the base coating layer is applied by spray-painting. If it is necessary to block intrinsic emission from the 
substrate, black paint is appropriate; otherwise, white paint is preferred to enhance the intensity of fluorescence 
from SWCNTs in the film. The color of speckle patterns for DIC is chosen to contrast with the base color. The 
speckles and primer must give matte finishes to avoid specular reflections. Other fabrication requirements such as 
size, density, variation, and thickness can follow the practical guidance for DIC37. Then the polyurethane isolation 
layer is sprayed over the DIC patterns. We have found good results using Minwax fast-drying clear gloss aerosol 
polyurethane. This layer should be approximately 2 μm thick, which is enough to smooth surface irregularities 
but thin enough for efficient load transfer. After the polyurethane is fully cured, which takes about 24 h at room 
temperature, the SWCNT sensing layer is applied using the protocol described previously32.

Before using the new S4 coating for strain measurements, we performed a simple calibration to correlate the 
spectral peak shifts with readings from a conventional resistive foil gauge. The change in separation between the 
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(7,6) and (7,5) peak wavelengths is proportional to the specimen strain, with a “spectral gauge factor” defined 
by the slope:

Here γ(7,6) and γ(7,5) are the peak wavelengths of emission from (7,6) and (7,5) SWCNTs in the sensing film 
and ε is the specimen strain. The value of γ should be consistent for different specimens prepared with the same 
base coating material and film application protocol.

Figure 1c illustrates the procedure used to measure strain maps using S4. First, before loading, a reference 
strain map of the specimen is obtained by point-wise raster scanning of the optical strain reader over the region 
of interest (ROI). At each point, the peak wavelengths of (7,6) and (7,5) SWCNT emission are determined and the 
wavelength difference is recorded as an element of a reference spectral array. After the specimen has been stress 
tested, it is scanned again with the same raster pattern to generate the final spectral array. We then subtract the 
reference array elements from the final array elements and divide by γ to obtain the array of net induced strain 
values. To allow comparison with a DIC strain map, we take high resolution photographs of the speckle pattern 
in the specimen’s ROI before and after deformation. For this, the camera position relative to the specimen needs 
to be precisely controlled and reproduced for the two photographs.

(1)γ = −

d
(

�(7,6) − �(7,5)

)

dε

Figure 1.   (a) Emission spectrum from an S4 film on a specimen with substrate strain of 0 (black points) and 
4.5 mε (red points) [adapted from reference30]; (b) layer-structured S4 film; (c) scheme for measuring 2D strain 
maps in the S4 method. The specimen is raster-scanned before (left top) and after (left bottom) stress testing to 
find the spectral peak separation at each grid point. Those separations are then pointwise subtracted and divided 
by the spectral gauge factor to obtain the specimen’s strain map (right).
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Calibration procedure
The test specimen used for calibration was a 1.4 mm thick ‘I’-shaped acrylic bar. We applied the three-layer S4 
coating to the center of its top surface and mounted a conventional foil strain gauge to the center of its bottom 
surface. Figure 2 shows the specimen and the experimental setup. The bar was axially stressed to induce tensile 
strains from 0 to 1500 με using a motorized jig. Because the specimen did not undergo out-of-plane deformation 
or bending during this testing, we assume that strains were equal on its top and bottom surfaces. To assess the 
stability of our S4 measurements, we loaded and unloaded the specimen through multiple cycles while comparing 
S4 spectral data with the strains reported by the foil gauge.

The scanned ROI on this specimen was a 10 × 10 mm2 square area, as marked in Fig. 2. We initially adjusted 
the vertical read head position to give the best laser focus at the surface and then performed a horizontal raster-
scan with steps of 0.5 mm, giving a total of 441 data points on a 21 × 21 point grid in the ROI. The dwell time for 
spectral measurement at each point was 1 s. For each measured spectrum, a custom data analysis program fit the 
emission features from (7,5) and (7,6) SWCNTs to Gaussian functions and precisely determined the wavelength 
difference between their two centers while the next spectrum was being acquired. We averaged those values over 
all 441 points to obtain the mean peak separation for each of several loading levels reported by the foil gauge.

The top frame of Fig. 3 shows the foil strain gauge readings with the corresponding wavelength separations 
between (7,6) and (7,5) peaks measured during the cyclic loading. The wavelength separations for cycles 2 and 
above are plotted as a function of strain in the bottom frame. These data show a nearly linear response with 
a γ value (slope) of − 1.5 nm/mε, which is very close to the value found in prior S4 studies with no base layer 
beneath the sensing layer32. We found a γ value (slope) of − 1.5 nm/mε as “standard gauge factor” in all cases 
in this paper. These results also indicate efficient and reproducible load transfer from the test specimen to the 
nanotube strain sensors.

Full‑field strain mapping comparisons between S4 and DIC
We performed the following three case studies to compare strain maps measured using scanned S4 and DIC 
methods. The specimens represent different materials with shapes designed to generate distinct patterns of stress/
strain concentration during testing.

Case 1: Acrylic bar.  The first comparison specimens were two ‘I’-shaped acrylic bars with the same dimen-
sions as described above. For the first specimen, a square notch was cut into the side to concentrate stress under 
axial loading and thereby generate a characteristic strain pattern. For the second specimen, a circular hole was 
drilled at the center. The central section of the specimen’s top surface was again coated by an S4 film with a DIC 
speckle pattern applied to the base layer. We attached a conventional foil strain gauge to the bottom surface near 
the structural irregularities. The size of the square notch, circular hole, and position of strain gauge are shown in 
Fig. S1. The yielding strain of the acrylic specimen was found to be near 20 mε38. To keep the deformation test 
well within the elastic range, we limited strain to 1.7 mε.

For the notched specimen, the S4 scanned region on this specimen was a 20 × 16 mm2 rectangular area. To 
increase spatial resolution, the S4 read head position was scanned in steps of 0.2 mm, giving a total of 8181 points 

Figure 2.   Photographs of (a) front face of the acrylic specimen with S4 coating; (b) back face of the acrylic 
specimen with attached strain gauge; (c) experimental setup for specimen loading and S4 data acquisition.
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over the whole ROI. For the holed specimen, the S4 scanned region was a 7 × 7 mm2 square area with steps of 
0.1 mm in each direction, giving a total of 5041 points over the ROI. We performed two scans of the specimen, 
one before and one after loading, and subtracted the first from the second to account for background spatial 
irregularities resulting from minor strains induced in the SWCNT sensors during film curing. Figure 4 shows 
the resulting net strain pattern as a color-coded map.

To allow direct comparison with the S4 results, we also measured a DIC strain map of the specimen in 
parallel under the same conditions. Because no out-of-plane deformation was observed in this test, we used a 
2D-DIC technique with a single camera (Logitech BRIO Ultra HD). The camera had been calibrated before use 
in DIC measurements. For the notched specimen, the section corresponding to our ROI contained approximately 
2300 × 1200 pixels. Image post-processing was performed with the Digital Image Correlation Engine (DICe), 
using a subset size of 31 pixels (0.4 mm) and a step size of 15 pixels (0.2 mm). Following a sensitivity study, 
the VSG size was selected as 120 pixels (0.15 × 0.15 mm2). For the holed specimen, the section corresponding 
to our ROI contained about 850 × 850 pixels. Image post-processing was performed using a subset of 25 pixels 
(0.2 mm) and a step size of 12 pixels (0.1 mm). The VSG size was determined as 90 pixels (0.08 × 0.08 mm2). 
More information on the DIC measurement can be found in Table S1.

In order to compare the experimental strain maps with a computational simulation, we built a finite element 
method (FEM) model using ANSYS 2021 R1. The material model assumed isotropic elastic with a Young’s 
modulus of 3.0 GPa, and a Poisson ratio of 0.37. To match the experimental DIC and S4 step size, the minimum 
element length near the notch and the hole was set to 0.2 mm and 0.1 mm. Figure S2 shows the FEM mesh grid 
used to compute the strain map.

In Fig. 4 we compare color-coded strain maps obtained by S4, DIC, and FEM. Both the S4 and DIC maps give 
strains with magnitudes similar to the FEM simulation result, but with significantly different spatial details. In 
particular, the strain map from S4 shows finer spatial detail and agrees more closely with the simulation results. 
This is evident from the two strong strain concentrations located at the inner corners of the notch (points marked 
A and B). S4 reveals highly localized strain maxima indicated by the red spots, accurately capturing the large 
strain gradients. These strongly resemble the localized maxima in the FEM simulation. By contrast, those maxima 
appear diffuse and somewhat displaced in the DIC strain map. For the specimen with the hole, S4 map reports 
much more accurate strains than DIC, particularly at the high strain gradients near the hole.

Figure 5a shows strain profiles of the notched specimen along the vertical line connecting points A and B, 
and Fig. 5b shows strain profiles along the horizontal line passing through the bottom of the notch at point B. 
Comparing to the FEM profile, both S4 and DIC successfully capture the first peak at point A. However, the DIC 

Figure 3.   Top frame: recorded strain gauge readings (red) and averaged peak wavelength separations (black) 
under cyclic tensile loading; Bottom frame: peak wavelength separations vs. specimen strain for the final 1½ 
loading cycles (slope is − 1.5 nm/mε).
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peak at point B is excessively broadened, too low in magnitude, and inconsistent with the specimen’s symmetry. 
In Fig. 5b, DIC underestimates the peak strain at point B by nearly 2 mε.

To compare results for the holed specimen in the lower frames Figs. 4, 5c shows strain profiles along the 
vertical line through point C and Fig. 5d shows profiles along the horizontal line through point D. We find that 
S4 captures the magnitudes and symmetric positions of peak strain in good agreement with the FEM simula-
tions, whereas DIC errs in position in 5c and in magnitude by nearly 2 mε in 5d. The discrepancies result from 
numerical errors and VSG spatial smoothing in DIC image processing.

We conclude that because it does not trade spatial resolution for strain resolution, the S4 method more 
accurately detects highly localized regions of large/peak strains (with steep strain gradients). Such strain con-
centrations and steep strain gradients at edges, corners and crack tips are in general not captured by DIC, yet 
they must be detected in structural maintenance and health inspections because they may lead to material and 
structural failures.

Case 2: Concrete block.  The second case study specimen was a small concrete block that had been cast 
with a round hole through its center to concentrate stress during compression testing. The specimen contained 
type I/II Portland cement with a water/cement ratio of 0.5 and a cement/aggregates ratio of 0.5 (see Fig. S3 for 
details). It was cured in water for 7 days before testing. We coated the central section of the specimen’s top surface 
with an opaque base layer to block the intrinsic near-infrared emission from cement39, which would otherwise 
interfere with S4 measurements. Then a DIC speckle pattern was applied, followed by an isolation layer and the S4 
sensing layer. We also attached a conventional foil strain gauge on the side of the specimen, as shown in Fig. S3c. 
The specimen was then uniaxially compressed until the foil gauge gave a strain reading of 650 με.

A 20 × 20 mm2 region of the coated face was scanned by the S4 read head in steps of 0.25 mm, giving a total of 
8181 points over the ROI. Emission spectra were measured at these points with laser polarization both parallel 
and perpendicular to the compression axis to probe strain along those directions. Following the same procedure 
illustrated in Fig. 1c, we performed full scans of the specimen before and after loading, and subtracted the first 
from the second to account for minor spatial variations in initial SWCNT strain states caused by film curing and 
computed strain map with − 1.5 nm/mε standard gauge factor.

DIC data on the same specimen were collected using two cameras and the 3D-DIC technique to account 
for possible out-of-plane motion during loading. The cameras were identical and the same type as used in the 
Case 1 study. Image post-processing was performed with the DICe software, using a subset size of 30 pixels 
(0.54 mm) and a step size of 15 pixels (0.27 mm). The virtual strain gauge size was finally selected as 120 pixels 
(about 0.2 × 0.2 mm2) after a sensitivity study.

Figure 4.   Color-coded strain maps of the acrylic specimens measured with S4 and DIC, and the corresponding 
FEM simulations, upper row: specimen with a notch on the right, lower row: specimen with a hole at the center.
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For our FEM simulation, the material was defined as normal (Portland cement) concrete in the ANSYS Granta 
Design database. The material model assumed a Young’s modulus of 19.4 GPa and a Poisson ratio of 0.14. The 
FEM mesh grid used to compute the strain map is illustrated in Fig. S4.

Figure 6 compares maps of strain near the hole along the perpendicular (x) and parallel (y) axes relative to the 
loading direction, as measured by S4 and DIC methods and computed by FEM. The FEM results show that the 
areas on both sides of the hole along the perpendicular (x) axis are (1) weakly compressed (or near zero strain) 
at the left and right edges of the hole, and (2) in tension at the top and bottom of the hole. The FEM results near 
the hole along the parallel (y) axis clearly show (1) compression at the left and right edges of the hole, and (2) 
tension at the top and bottom of the hole. The tensile and compressive strain concentrations found by S4 and DIC 
measurements agree qualitatively with the FEM maps but vary significantly in detail. The S4 strain map is more 
accurate and more precise, if we examine the x- and y-axis strain maps for quantitative details and sharply defined 
features. However, in the DIC map many strain features are completely absent, such as the fine compression 
features at about 45° in the x-axis map. We note that because concrete is an inhomogeneous material for which 
fracture behavior is complex and difficult to predict, our FEM model cannot accurately capture all the features 
evident in S4 strain map. The vertical stripes in our measured S4 maps showing high tension strain concentrations 
near the hole indicate formation of microcracks during early stage material failure.

Both measurements reveal such localized strain anomalies, but DIC strain maps fail to reveal many finer 
details. For example, fine tension features in the vertical direction appear in the x-axis DIC map but are totally 
missing from the y-axis DIC map, a result inconsistent from a mechanics standpoint. By comparison, the S4 
maps more precisely show the strain distribution in both directions that may result in the development of the 
microcracks, as is beneficial for fracture studies and damage detection.

Case 3: Aluminum plates.  The final case studies were performed on two 6.4 mm thick, 25.4 mm wide 
aluminum plates with subsurface defects. As illustrated in Fig. S5, in one, a 3.8 mm hole was drilled through the 
entire specimen width along the y-axis to create the defect; in the other, the hole extended only through one-
third of the width. These studies were intended to test whether the internal structural damage represented by the 
holes could be detected from surface strain measurements after tensile loading along the x-axis. To account for 
possible out-of-plane motion during loading, we applied the 3D version of DIC for both specimens.

Figure 7 compares the results for the first specimen (with a through hole). We controlled the tensile load 
on the specimen to just exceed the yielding point before releasing, so that a small residual strain remained in 
the plate. A single band of compressive strain (blue region) sandwiched between two bands of tensile strain 
concentration (yellow/red regions) can clearly be identified in the S4 map and the FEM simulation. As shown 

Figure 5.   Strain profiles along (a) the line connecting points A and B in the top row of Fig. 4; (b) the horizontal 
line through point B in the top row of Fig. 4; (c) the vertical line through point C in the bottom row of Fig. 4; (d) 
the horizontal line through point D in the bottom row of Fig. 4.
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by the strain profiles plotted in Fig. 7d, S4 and FEM agree well near the center, with both showing similar posi-
tive–negative–positive strain patterns, negative-going peaks at x = 0 mm, and amplitudes matching within 0.2 
mε. Discrepancies can be seen at locations more than 5 mm from the center, where the S4 map suggests increased 
strain whereas FEM predicts strain falling to zero. The symmetric pattern in the S4 map suggests that this mis-
match may represent a real physical effect that was not properly captured in the FEM simulation. The DIC strain 
map has a higher noise level than S4 and is much less successful in locating the main negative feature or revealing 

Figure 6.   Strain maps of a concrete specimen with a central hole that was compressed along the y-axis. Rows 
from top to bottom show strain measured with S4, DIC, and simulated by FEM computations. The left panels 
show strain components perpendicular to the stress axis and right panels show components parallel to the stress 
axis.
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the overall strain pattern. This test therefore shows that the S4 method is more effective than DIC in detecting 
hidden damage in specimens with surface strains below 1 mε.

The final test specimen had larger strains that were induced by tensile loading after a 3.8 mm hole had been 
drilled through one-third of its width to represent internal (sub-surface) damage. The measurement results are 
shown in Fig. 8. In this case, comparison with FEM simulation was not possible because of uncertainties in the 
specimen’s post-yield material parameters and eccentricity in loading. The latter is evident in the S4 asymmetric 
strain map in Fig. 8. Here, there is a clear difference between right and left peak magnitudes even though they 
would be expected to match by symmetry. The S4 and the DIC strain maps agree qualitatively in showing two 
strips of strain concentration that are greatest at the drilled edge of the plate and gradually dissipate near the end 
of the drilled hole. This strain pattern reflects the subsurface structural defect. Comparing to the results shown 
in Fig. 7, one can see that the DIC map quality is improved for this higher strain (up to 2 mε) case. To more 
quantitatively display results from S4 and DIC, we plot strain profiles at y = − 9.0 mm and y = − 9.5 mm in the 
lower panels of Fig. 8. There is a considerable discrepancy of about 0.4 mε in the maximum strain values found 
by the two methods. The S4 profiles show lower noise, sharper features, and a more consistent difference between 
the amplitudes of the peaks at positive and negative x-coordinates, which we attribute to eccentric loading. The 
DIC profiles show compressive strain at certain locations, which is incorrect. This final test case suggests that S4 
mapping qualitatively remains superior to DIC in this higher strain regime of up to 2 mε.

Discussion
S4 strain mapping performance has been significantly enhanced by the current developments, in which the 
sensing film containing carbon nanotubes is separated from a blocking or primer layer by a smooth isolation 
layer. This design reduces initial strain variations among the nanotube sensors without the need for annealing 
the coating at elevated temperatures, providing a major advantage for large or heat-sensitive structures. It also 
permits the application of DIC speckle patterns so that S4 and DIC strain maps can be measured in parallel on 
the same specimen for validation or for a novel combined hybrid S4 and DIC mapping approach (currently in 

Figure 7.   Color-coded strain maps of the subsurface drilled and stressed aluminum specimen as found from 
(a) S4 measurements; (b) DIC measurements; (c) FEM simulation. Frame (d) shows strain profiles from the 
three methods along the x direction at y = 0.
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development). In such a hybrid approach, large DIC maps could be complemented by local S4 mapping of regions 
with steep strain gradients.

In the DIC method, strain is computed from node displacement using a shape function defined over the image 
elements and then further spatially averaged to reduce noise. To properly choose DIC image analysis parameters, 
a sensitivity study is required involving readings from a reference strain gauge. By contrast, the S4 method meas-
ures strain directly from the spectral response of many independent sub-micrometer carbon nanotube strain 
sensors. The standard gauge factor of − 1.5 nm/mε is used to compute the strain map. Reference gauges are not 
needed, and there is no trade-off between strain resolution and spatial resolution.

Additional important point is that DIC does not provide the strain values at edges; the values in our DICe 
strain maps are points close to but not exactly at the edges (excluding edge VSG due to missing speckles close 
to the edges).

A great advantage of S4 is that each local strain value is independently determined and does not depend on 
nearby measurements. So S4 is able to properly measure strain values at edges with steep strain gradients.

Conclusions
We have developed a next-generation multilayer film for non-contact spectroscopic strain mapping using the S4 
method. In this three-layer design, the substrate is coated first with an opaque primer layer, then with a smooth 
polymeric isolation layer, and finally with a thin film containing single-wall carbon nanotube strain sensors. A 
clear topcoat layer may also be added if needed for environmental protection. Using these next-generation S4 
films, we performed both scanned S4 and DIC measurements in parallel on acrylic, concrete, and aluminum test 
specimens that were shaped and stressed to induce systematic patterns of residual strain. Comparisons among 
the S4 maps, DIC maps, and FEM simulations show that strain patterns are more faithfully revealed by S4 than 
DIC maps, particularly for large or peak strains with steep gradients. More importantly, S4 is a direct method that 
measures strain independently at each measured point, whereas DIC is an indirect method that relies on high 
resolution images and image processing wherein the strain is computed by averaging over a region representing 
a virtual strain gauge. Such filtering can obscure important features with high strain gradients.

Figure 8.   Strain maps of the aluminum specimen that had an 8 mm long hole drilled underneath the x–y 
surface along the y-direction and was then stressed in tension along the x-axis. Top left and top right frames 
show color-coded strain maps measured with S4 and DIC, respectively. Bottom left and bottom right graphs 
show strain profiles from the two methods along the x direction at y = − 9.0 mm and y = − 9.5 mm, respectively.
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In addition to these benefits, S4 has the advantage compared to DIC of measuring accumulated strain without 
the need for constant observation or highly precise registration of pre- and post-stress specimen images. This 
feature makes it well suited to many field applications for which DIC may be impractical. Taken together, our 
findings point to the value of S4 strain measurements as a very promising alternative or complement to existing 
technologies for non-destructive evaluation and structural health maintenance40.

Data availability
Data described in this paper are available on request.
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