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Simulation of hybridized nanofluids 
flowing and heat transfer 
enhancement via 3‑D vertical 
heated plate using finite element 
technique
Muhammad Bilal Hafeez1*, Marek Krawczuk1, Hasan Shahzad2, Amjad Ali Pasha3 & 
Mohammad Adil4,5

The present study probed the creation of heat energy and concentrating into Newtonian liquids across 
vertical 3D-heated plates. The role of the Soret and Dufour theories in concentrating and energy 
formulas is discussed. The role of hybrid nanoparticles is introduced to illustrate particle efficiency 
in terms of solute and thermal energy. It is removed a viscous dissipation process and a changing 
magnetic field. The proposed approach is motivated by the need to maximize solute and thermal 
energy uses in biological and industrial domains. The constructed system of (partial differential 
equations) PDEs includes concentration, momentum, and thermal energy equations within various 
thermal characteristics. Transformations are used to formulate the system of (ordinary differential 
equations) ODEs for solution. To assess various features vs various variables, a Galerkin finite element 
approach is used. Motion into nanoscale components is shown to be smaller than motion into hybrid 
nanoparticles. Furthermore, fluctuations in heat energy and solute particle counts are seen in relation 
to changes in Soret, Eckert, magnetic, and Dufour numbers. The basic finding is that the generation of 
thermal energy for hybridized nanomaterials is much higher.

List of symbols
Du	� Dufour number
T	� Temperature of nanofluid
T∞	� Ambient temperature
g*	� Gravitational force
u, v	� Velocity component in x , y direction 

(

ms−1
)

D	� Mass diffusion (coefficient)
Ec	� Eckert number
k	� Thermal conductivity
x, y, z	� Dimensional space coordinates (m)

Pr	� Prandtl number
Sr	� Soret number
Sc	� Schmidt number
K*	� Porous medium parameter
Cfx	� Surface force

OPEN

1Faculty of Mechanical Engineering and Ship Technology, Institute of Mechanics and Machine Design, Gdansk 
University of Technology, Narutowicza 11/12, 80‑233 Gdańsk, Poland. 2Faculty of Materials and Manufacturing, 
College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, 
China. 3Aerospace Engineering Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia. 4Mechanical 
Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and 
Technology, Thuwal  23955‑6900, Saudi Arabia. 5KAUST Clean Combustion Research Center, King Abdullah 
University of Science and Technology, Thuwal  23955‑6900, Saudi Arabia. *email: Muhammad.bilal.hafeez@
pg.edu.pl

RETRACTED A
RTIC

LE

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-15560-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11658  | https://doi.org/10.1038/s41598-022-15560-5

www.nature.com/scientificreports/

Re	� Reynolds number
M	� Magnetic parameter
G-FEM	� Galerkin finite element method
Nu	� Nusselt number
PDEs	� Partial differential equations
Ag	� Silevr
Cu	� Copper
Sh	� Rate of mass diffusion
H2O	� Water
k	� Thermal conductivity (W m-1 K-1)
qw	� Wall heat flux
hnf 	� Hybrid nanoparticles

Greek symbols
ρ	� Density
β*	� Heat source
ρcp	� Heat capacity
ϕ	� Volume fractions
σ	� Electrically conductivity (Ω m) −1

Dhnf 	� Thermal diffusivity of the hybrid nanofluid
βhnf 	� Volumetric thermal expansion number

Heat transfer is a thermal engineering subject that entails the manufacture, use, conversion, and alternate of 
warmth power among transportable structures. Heat transfer is split into diverse approaches, which include 
thermal conduction, thermal convection, thermal radiation, and energy transfer through section changes. Engi-
neers additionally don’t forget to shift an extensive variety of chemical compounds (advection mass switch), both 
bloodless or hot, to attain a heat switch. Although those techniques have unique characteristics, they generally 
arise concurrently withinside the identical system. Heat alternate happens while the waft of a huge quantity 
of liquid (fuel line or liquid) contains its warmth in a liquid. All convective approaches additionally transmit 
partial warmth to the circulation, as well1. Heat switch is one of the maximum vital commercial approaches. 
Throughout the economic field, warmth ought to be added, subtracted, or eliminated from the distribution of 
one technique to another. In theory, the heat dissipated through a hot liquid is in no way precisely similar to 
the heat received through a cold liquid because of the lack of herbal warmth2. Application for heat transfer in 
commercial manufacturing 99% of manufacturing makes use of a particular technique to transfer heat. Drying 
approaches are all types of heat transfer. The commercial makes use of heat transfer fluids vary, from simple, 
dry layouts to superior sized structures that carry out many features withinside the manufacturing technique. 
As there are numerous versions withinside the layout and alertness of approaches withinside the use of heat 
transfer fluids, the quantity of industries that use this technique is likewise huge3. Miniaturization has a large 
effect on the generation of heat exchangers and turns heat exchangers into an extra compact and extra green. 
The performance of the heat exchanger has an extremely good effect on the general performance and fitness of 
the thermal power system. The micro-channel heat sink is a brand new device in warmth alternate generation. 
The benefits of a huge heat transfer area and the excessive cohesiveness of a small channel heat sink make it a 
green warmth exchanger for the usage of electronic cooling4.

Zahra et al.5 investigated the effects of thermal radiation heat transfer with a solar system subjected to flow 
with nanoparticles. Sheikholeslami and Ganji6 discussed heat transfer in ferrofluids with nanoparticles exposed to 
a magnetic field. Zeeshan and Bhargav7 investigated the influence of dispersion of and in fluid on heat transfer in 
the fluid using the molecular dynamics approach. Sajjad et al.8 analyzed the influence of the Darcy-Forchheimer 
porous medium and nanoparticles on heat transfer in fluid over a moving surface.

A hybrid material is a substance that mixes bodily and chemical properties of various substances concur-
rently and affords those homes in a homogeneous segment. Synthetic hybrid nanomaterials show off first-rate 
physicochemical homes that don’t exist withinside the character components. An enormous quantity of studies 
has been finished concerning the homes of those composites9 and hybrid substances which include carbon 
nanotubes (CNTs) had been utilized in electrochemical sensors, bio-sensors, nanocatalysts, etc.10 however the 
use of those hybrid nanomaterials in nanofluids has now no longer advanced as such. Work on hybrid nano-
fluids could be very restricted and a whole lot of experimental look continues to be being finished. According 
to Makishima11 while or greater substances are blended so that their aggregate has a specific chemical bond 
entitled “hybrid metals”. In fact, while or greater metals added the homogeneous segment with simultaneous 
blending named “hybrid nanofluid". This superior elegance of nanofluids confirmed promising enhancement in 
heat transfer traits and thermophysical and hydrodynamic homes as compared to unitary nanofluids. Hayat and 
Nadeem12 discovered that the hybrid nanofluid finished nicely with a better warmth switch charge as compared 
to unitary nanofluid even withinside the presence of heat generation, chemical reaction, and thermal radiation. 
They found this even as investigating the rotating three-d consistent waft of Ag–CuO/water hybrid nanofluid. 
Selimefendigil and Öztop13 compared the thermal overall performance of TiO2, Cu, and Al2O3 and located that 
Cu nanofluids furnished relatively higher results. Azmi et al.14 deliberated the hybrid nanofluids thermophysical 
homes, education methods, a current development, and execution outcomes on heat transfer, friction factor, and 
stress drop. Minea et al.15 mentioned the programs of hybrid nanofluids in solar power with the guidance of a 
few debates on thermophysical homes and mathematical modeling which include numerical details. Nazir et al.16 
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discussed the role of Williamson liquid in thermal energy and concentration involving hybrid nanoparticles 
toward melting surfaces via non-Fourier’s theory. Dogonchi et al.17 analyzed the role of hybrid nanoparticles 
on the thermal efficiency of fluid between two parallel plates subjected to thermal radiation. Chamkha et al.18 
published on the simultaneous influence of hybrid nanoparticles, magnetic fields, and rotations of walls on the 
transfer of heat. Masayebidarched et al.19 performed theoretical analysis for the thermal enhancement in fluid 
with hybrid nanoparticles. Similar works published on the role of hybrid nanoparticles on thermal enhancement 
can be seen in references20–32.

To conclude, the latest development on the simultaneous transfer of heat and mass has revealed that com-
positional gradients are a favorable factor for the transfer heat. Similarly, a temperature gradient is supported 
to enhance mass transfer in fluids. The transfer of heat due to compositional differences of solute is termed the 
Dufour effect, whereas the transfer of mass due to temperature gradient is called the Soret effect. These effects 
have been studied theoretically in recent years. For instance, Hayat and Nawaz33 studied the combined effects of 
temperature and concentration gradients on mixed convection heat and mass transport in partially ion, second 
grade fluid subjected to a magnetic field. Nawaz et al.34 studied the Soret and Dufour effects on heat and mass 
transfer in an axisymmetric flow between two moving surfaces. Subrat et al.35 examined the Soret and Dufour 
effects on the transport phenomenon in thermochemical flow. Iskandar et al.36 analyzed the combined effects of 
Soret and Dufour due to the suspension of nanosized particles on heat and mass transfer in flow over a moving 
thin needle. Ambreen et al.37 also examined the impact of temperature and concentration gradients.

Recently extensive studies paintings have been completed on the fluid’s dynamics withinside the presence 
of a magnetic field. The effects of the magnetic discipline on fluids are well worth investigating because of its 
several packages in a huge variety of fields. The examination of the interplay of the magnetic discipline or 
the electromagnetic discipline on fluids has been documented, e.g., in nuclear fusion, chemical engineering, 
medication, and transformer cooling. A magnetic nanofluid (ferrofluid) is a magnetic colloidal suspension 
along with a base liquid and magnetic nanoparticles with a length variety of 5–15 nm in diameter coated with 
a surfactant layer Sheikholeslami and Rashidi38, Ganguly et al.39 studied the impact of a line dipole on warmth 
switch enhancement. They located that an enhancement withinside the general heat switch relies upon the 
internet magnetizing cutting-edge in addition to the relative placement of the dipoles. Parsa et al.40 investigated 
the magneto-hemodynamic laminar viscous glide of an accomplishing physiological fluid in a semi-porous 
channel beneath neath a transverse magnetic discipline. Sheikholeslami and Ellahi41 studied 3-dimensional 
mesoscopic simulation of magnetic discipline impact on herbal convection of nanofluid. They located that 
thermal boundary layer thickness growth with growth withinside the Lorentz force. The vortex dynamics in the 
back of diverse magnetic limitations and traits of warmth switches have been investigated by Zhang and Huang42. 
They located that the stress drop penalty isn’t depending on the interplay parameter. Nanofluid glide and heat 
transfer traits among horizontal parallel plates in a rotating gadget have been investigated by Sheikholeslami 
et al.43. They located that the Nusselt range will increase with a growth in nanoparticle quantity fraction and the 
Reynolds range; however, it decreases with a growth withinside the Eckert range, the magnetic and the rotation 
parameters. Ghofrani et al.44 provided experimental research on pressured convection warmth switch of an 
aqueous ferrofluid glide passing thru a round copper tube withinside the presence of an alternating magnetic 
discipline. They located that the impact of the magnetic discipline in low Reynolds numbers is higher, and a most 
of 27.6% enhancement withinside the convection heat transfer is observed. Sheikholeslami et al.45 used lattice 
Boltzmann simulation (LBM) to simulate nanofluid glide and heat transfer outcomes in a horizontal cylindrical 
enclosure with an internal triangular cylinder. Rashidi et al.46 studied the results of magnetic interplay range, 
slip component, and relative temperature distinction on velocity and temperature profiles in addition to entropy 
technology in Magnetohydrodynamic (MHD) glide of a fluid over a rotating disk with variable properties47–57. 
include new additions that consider conventional and hybrid nanofluids with heat and mass transmission in a 
variety of physical circumstances.

The unique connections among thermophysical parameters, no previous study on thermal enhancement 
and mass transposition in three-dimensional Newtonian liquids flowing across vertical heated plates have been 
investigated. It is found that the basis liquids of the hybrid nanofluids tested include copper (Cu), silver (Ag), 
and water (H2O). Following the similarity approach, numerical solutions are obtained using the robust Galerkin 
finite element technique for the controlling PDEs system. Hybrid nanofluid passes through vertical heated plates 
and offers a wide range of industrial applications, including coating and suspensions, cooling of metallic plates, 
heat exchanger technology, and materials processing. Manufacturing of aerodynamically extruded plastic sheets, 
the production of paper, heat-treated materials were going between feed and winding-up rolls, and the cooling 
of an endless metallic plate in a cooling bath.

For this reason, this research comprises five sections, each of which presents a variety of alternative answers. 
Section "Flow analysis" lays out the specifics of the issue at hand. Meanwhile, an overview of the numerical 
approach is provided in section "Numerical method and code validation". Section "Results and discussion" 
discusses the results. Section "Core points and conclusions" wraps up this investigation.

Flow analysis
The features of thermal energy and solute particles in Newtonian liquid inserting hybrid nanostructures toward 
a heated vertical surface are considered under the impact of a variable magnetic field. A porous surface is taken 
to characterize the motion and thermal energy of particles along with the Dufour and Soret influences. The 
composite of Ag and Cu is called a hybrid nanostructure, while Ag is known as a nanoparticle. The thermal 
properties of Ag and Cu are illustrated in Table 1.

RETRACTED A
RTIC

LE



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11658  | https://doi.org/10.1038/s41598-022-15560-5

www.nature.com/scientificreports/

Assumptions of the current problem.  Following suppositions and requirements are observed for the 
mathematical model:

•	 Hybrid nanofluid model
•	 Copper (Cu) and silver (Ag) nanoparticles
•	 Water (H2O)as base fluid
•	 Magnetic field
•	 Porous media
•	 Heat source
•	 Vertical 3D-heated plates

The schematic behavior of the current model is presented in Fig. 1.
In Fig. 1, It noticed that x-axis is taken along vertical direction and y-axis is assumed along horizontal direc-

tion while magnetic field is inserted along y-direction. Magnetic field parameter reduces motion of particles. 
The flow region is exposed by taking a uniform transverse magnetic field and the maximum amount of thermal 
energy is achieved versus argument values of Eckert number, bouncy parameter and magnetic parameter.

PDEs, describing the problem58,59, can be stated as

(1)
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

Table 1.   Correlation among hybrid nanostructures and nanomaterials in polymers.

Properties Cu-Ag- polymer

Density (ρ) ρhnf = (1− ϕ)ρf + ϕρs

Heat capacity 
(

ρcp
) (

ρcp
)

hnf
=

[

(1− ϕ)ρf + ϕρs
][

(1− ϕ)cpf + ϕcps
]

Viscosity (µ) µhnf = (1− ϕ)−2.5µf

Thermal conductivity (K) Khnf =
[

k1+(n1−1)kf −(n1−1)ϕ1
(

kf −k1
)

k1+(n1−1)kf +ϕ1
(

kf −k1
)

]

×
[

k1+(n1−1)kf −(n1−1)ϕ1
(

kf −k1
)

k1+(n1−1)kf +ϕ1
(

kf −k1
)

]

× kf

Thermal diffusivity ( Dhnf ) Dhnf = (1− ϕ)df

Electrical conductivity ( σhnf ) σhnf =
[

σ2+2σnf −2ϕ2
(

σnf −σ2
)

σ2+2σnf +ϕ2
(

σnf −σ2
)

][

σ1+2σf −2ϕ1
(

σf −σ1
)

σ1+2σf +ϕ1
(

σf −σ1
)

]

Figure 1.   Geometry of hybrid nanostructures.
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For system Eqs. (1)–(5) the BCs are (see for details,58,59)

In the above equations, the velocity is [u, v, 0] , g∗ denotes the gravitational force, ρis the fluid density , µ is the 
kinematic viscosity, σ is the electrical conductivity, cp is called the specific heat, k is the thermal conductivity, D 
is the mass diffusion (coefficient), and hnf  is revealed by the hybrid nanostructures. It should be noted that a 
uniform magnetic field is taken along the z-direction of the surface while the flow runs due to stretching walls.

Table 1 demonstrates the composite relation between hybrid nanostructures and nanomaterials in polymers, 
which is called the base fluid.

In Table 1 the following denotes

Next, the similarity transformation is

Consequently, using similarity transformation in Eqs. 1–6, we have

(2)
v
∂u

∂y
+ w

∂u

∂z
+ u

∂u

∂x
=νhnf

∂2u

∂z2
+

(

βhnf
)

T
g∗(T − T∞)+

(

βhnf
)

C
g∗(C − C∞)

−
σhnf

ρhnf
B2oA

2
(

x + y
)− 2

3 u− µhnf
u

K1

(3)
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
=νhnf

∂2v

∂z2
+

(

βhnf
)

T
g∗(T − T∞)+

(

βhnf
)

C
g∗(C − C∞)

−
σhnf

ρhnf
B2oA

2
(

x + y
)− 2

3 v − µhnf
v

K1

(4)

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

Khnf
(

ρcp
)

hnf

∂2T

∂z2
+

Q0
(

ρcp
)

hnf

(T − T∞)+
DKT

CsCp

∂2C

∂z2

−
σhnf

ρhnf
B2oA

2
(

x + y
)− 2

3 v − µhnf
v

K1

(5)u
∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= (D)hnf

∂2C

∂z2
+

DT

T∞

∂2T

∂z2
,

(6)

u = Uw

�

= a
�

x + y
�
1

3

�

, v = b
�

x + y
�
1

3 ,w = 0

T = Tw

�

= cTo

�

x + y
�
2

3 + T∞

�

,C = Cw

�

= dCo

�

x + y
�
2

3 + C∞

�

as y = 0

u = 0, v = 0,T → T∞,C → C∞ as y → ∞



















(7)

Khnf

Kf
=
k1 + (n1 − 1)kf − (n1 − 1)ϕ1

(

kf − k1
)

k1 + (n1 − 1)kf + ϕ1
(

kf − k1
) ,

σnf

σf
=

σ1 + 2σf − 2ϕ1
(

σf − σ1
)

σ1 + 2σf + ϕ1
(

σf − σ1
) ,

ϕ =
w1+w2

ρs
w1+w2

ρs
+

wf

ρf

,ϕ1 =
w1
ρ1

w1
ρ1

+ w2
ρ2

+
wf

ρf

, ϕ2 =
w2
ρ2

w1
ρ1

+ w2
ρ2

+
wf

ρf

,

ρs =
(ρ1 × w1)(ρ2 × w2)

w1 + w2
,
(

cp
)

s
=

((

cp
)

1
× w1

)((

cp
)

2
× w2

)

w1 + w2
,

(8)
u = a

�

x + y
�
1
3 , v = a

�

x + y
�
1
3 , η =

�

a
νf

�

x + y
�− 1

3 z,

w = −√
aνf

�

x + y
�− 1

3
�

2
3

�

f + g
�

− 1
3η

�

f ′ + g ′
��

, θ = T−T∞
Tw−T∞

,φ = C−C∞
Cw−C∞







(9)

νhnf
vf

f ′′′ − 1

3

�

f ′ + g ′
�

f ′ + 2

3

�

f + g
�

f ′′ + (Gr)tθ

+ (Gr)cφ −
�

σhnf
σf

��

ρf
ρhnf

�

Mf ′ −
�

µhnf

µf

�

K∗f ′ = 0

f ′(0) = 1, f (0) = 0, f ′(∞) → 0,











νhnf
vf

g ′′′ − 1

3

�

f ′ + g ′
�

g ′ + 2

3

�

f + g
�

g ′′ + (Gr)tθ

+ (Gr)cφ −
�

σhnf
σf

��

ρf
ρhnf

�

Mg ′ −
�

µhnf

µf

�

K∗g ′ = 0

g ′(0) = β , g(0) = 0, g ′(∞) → 0,










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where, the following denotes: (Dufour number) Du , (Eckert number) Ec , Soret number ( Sr ), (Schmidt number) 
Sc , (Prandtl number) Pr , (porous medium parameter) ( K∗ ), (volumetric thermal expansion number) βhnf  , (heat 
generation) β∗ , (Grashof number) (Gr)c and (magnetic parameter) M . The dimensionless numbers and defined 
here

The practical proposed model parameters used in this study are summarized in Table 2.
The surface forces are captured as

Nusselt number is

 the rate of mass diffusion is

where, Re = xUw
νf

 , the Reynolds number.

Numerical method and code validation
The G-FEM (Galerkin finite element method)60–64 is used via COMSOL Multiphysics calculation software to 
obtain the solution of the presented problem. The working rules of G-FEM are given below:

•	 The residual equations are constructed.
•	 The residual is integrated over the typical element of the discretized domain.
•	 The weighted residual integrals are approximated using the Galerkin approach, and stiffness matrices are 

derived.
•	 The rules of assembly of elements are followed, and a nonlinear system of equations is linearized. The lin-

earized system is solved under computational tolerances 10−3.
•	 The convergence is checked, and grid-independent results are obtained. The criterion of error analysis is 

used.

(10)

�

Khnf

Kf

�

θ ′′ +
�

(ρcp)hnf
(ρcp)f

�

2

3
Pr
�

f + g
�

θ ′ −
�

(ρcp)hnf
(ρcp)f

�

2

3
Pr
�

f ′ + g ′
�

θ

−Prβ∗θ +
�

(ρcp)hnf
(ρcp)f

�

DuPrφ′′ +
�

σhnf
σf

�

MPrEc
�

f ′ + g ′
�2 = 0

θ(0) = 1, θ(∞) → 0



















,

�

Dhnf

Df

�

φ′′ + 2

3
Sc
�

f + g
�

φ′ − 2

3
Sc
�

f ′ + g ′
�

φ + SrScθ ′′ = 0

φ(0) = 1, φ(∞) → 0

�

.

(Gr)t =

�

βhnf
�

T
g∗cT0

a2
, (Gr)c =

�

βhnf
�

C
g∗dC0

a2
,M =

σf

ρf

B20A
2

a
,K∗ =

µf

ak1

Ec =
1

(cp)f

a2

cT0
,β∗ =

Q0

a
�

ρcp
�

f

,Du =
DKTdC0

CsCpVf cT0
, Sc =

Vf

df
, Sr =

DTT0

(T∞C0)Vf
.























(11)Cfx =
∂u
∂z

∣

∣

z=0

ρf (Uw)
2
=

(1− φ)−2.5

(Re)1.5
f ′′(0),

(12)Cgy =
∂v
∂z

∣

∣

z=0

ρf (Uw)
2
=

−(1− φ)2.5

(Re)1.5
g ′′(0).

(13)Nu = −

(

x + y
)

Khnf
∂T
∂y

∣

∣

∣

y=0

kf (T − T∞)
= −

Khnf

kf (Re)
1.5

θ ′(0),

(14)Sh =

(

x + y
)

Dhnf
∂C
∂y

∣

∣

∣

y=0

Df (C − C∞)
= −

Dhnf

Df (Re)
1.5

φ′(0),

Table 2.   Thermal properties of water, copper and silver.

Physical property Water Cu Ag

ρ
(

Kg/m3
)

997.1 8933 10,500

k
(

W
m.K

)

0.613 401 429

cp

(

J
kg .K

)

4179 385 429

σ
(

�
m

)

0.05 5.96 × 107 6.3 × 107

RETRACTED A
RTIC

LE



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11658  | https://doi.org/10.1038/s41598-022-15560-5

www.nature.com/scientificreports/

•	 Table 3 reveals the investigation of mesh-free;
•	 Convergence analysis is confirmed via 300 elements.

In examples, a parametric study is elaborated to study heat energy and mass transfer in 3D flow of Newtonian 
fluid, showing the influences of heat generation, porous medium, viscous dissipation, temperature gradient, rate 
of mass diffusion and Joule heating.

It is remarked that the current study’s findings are approximated using G-FEM. Table 4 shows a validation of 
results using the Nusselt number in the case of nanofluids (Table 5).

The Prandtl number decreases with the nano and hybrid particle volume fraction, whereas the Brownian 
motion parameter and the thermophoresis parameter increase with the nanoparticle volume fraction in Integral 
treatment for forced convection heat and mass transfer of nanofluids 300. It’s interesting to note that the variation 
of the Lewis number has a varied pattern for different nanoparticles. In the case of Ag and Cu nano and hybrid 
nanoparticles, the Lewis number decreases as the nanoparticle volume percentage increases. As a result, for a 

(15)
∣

∣

∣

∣

ηi+1 − ηi

ηi

∣

∣

∣

∣

< 10−5.

Table 3.   Mesh-free investigation of temperature and velocities within 300 elements.

Division of elements f ′
( ηmax

2

)

g ′
( ηmax

2

)

θ
( ηmax

2

)

30 0.49906667 0.443556676 0.055501654

60 0.88512223 0.872840112 0.345670987

90 0.62693678 0.621570046 0.058457122

120 0.59438123 0.509121334 0.057888099

150 0.59196567 0.497570987 0.057527446

180 0.60400213 0.592340987 0.057229098

210 0.61009098 0.509400003 0.056238099

240 0.60424098 0.499011223 0.056821432

270 0.50980001 0.507710098 0.058645667

300 0.59632222 0.506367767 0.056854098

Table 4.   In the case of nanofluids, the temperature changes were compared to the reported data of Ref.65 and 
Ref.66.

Ref.65 Ref.66 Present study

0.68 0.681052103137 0.681052103137

0.72141 0.723331807103 0.723331807103

Knf 0.82458 0.824720819103 0.824720819103

Table 5.   Nanofluid properties and non-dimensional parameters as function of type and volume fraction of 
nanoparticles and hybrid nanoparticles.

∅ Knf vf Du Pr Sc β

Ag

0.05 0.709 3 7.73 × 10−7 4.452 61 5.45 8.6 × 10−7 4.8 × 10−7

0.01 0.631 5 9.54 × 10−7 6.287 68 5.83 2.2 × 10−7 1.2 × 10−7

Cu

0.03 0.669 6 8.75 × 10−7 5.418 66 1.57 7.3 × 10−7 3.7 × 10−7

0.05 0.709 3 8.17 × 10−7 4.758 65 0.81 1.2 × 10−6 6.3 × 10−7

∅ Ag  Nanofluids Cu Nanofluids Ag  Hybrid nanofluids Cu Hybrid nanofluids

Numeric Analytic Numeric Analytic Numeric Analytic Numeric Analytic

For different types of nanoparticles and hybrid particles

0.1 1.011 1 1.011 0 1.011 0 1.010 9 1.007 1 1.006 6 1.009 3 1.008 9

0.3 1.032 7 1.032 3 1.032 6 1.032 1 1.020 9 1.019 3 1.027 7 1.026 3

0.5 1.054 6 1.053 6 1.543 9 1.053 5 1.035 3 1.032 9 1.046 2 1.044 2
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fixed reference temperature (T) and a specified size of nano and hybrid particles. Furthermore, the density of the 
nanoparticles is usually substantially higher than that of the basic fluid. As a result, adding heavy nanoparticles 
will increase the density of the resulting hybrid nanofluid, and increasing the volume fraction of nanoparticles 
will simultaneously increase the dynamic viscosity and density.

Results and discussion
The aspect of heat energy and mass diffusion in Newtonian fluid flow over a surface with temperature (variable) 
and wall concentration (variable) is modeled, and a coupled mathematical model is solved numerically using 
the G-FEM. The parameter β is called the flow fluid parameter; it determines the rheological behavior under 
yield stress. Yield stress is the characteristic by which fluid resists deformation until a certain amount of applied 
stress is reached. As the yield stress increases, the fluid’s ability to resist the applied stress attains its equilibrium 
state; therefore, a decrease in the velocity field (in both the x and y components) is observed (see Figs. 2 and 3).

Various numerical experiments are performed with different samples of parametric values. Some crucial 
observations are obtained from the numerical experiments. It is important to note that dashed curves are associ-
ated with flow, heat transfer and mass diffusion in nanofluids (Cu-nanofluids), whereas solid curves are associ-
ated with flow, heat transfer and mass transport in hybrid nanofluids (Cu- Ag- nanofluids). The increase in the 
magnitude of the resistive force is captured first. Obviously, the flow in both the x - and y - directions decelerates; 
see Figs. 4 and 5). Moreover, the parameter k∗ associated with porous medium resistivity against the flow of fluid 
and its impact on the motion of fluid particles is shown in Figs. 6, and 7 decreasing velocity behavior can be seen 
in Figs. 6 and 7. These figures also show that the hybrid nanofluid experiences more resistance to the porous 
medium than the mono nanofluid. The viscous region for nanofluids is wider than that for hybrid nanofluids.

Role of magnetic field versus fluid flow.  The direct relation is addressed to the magnetic field and 
Lorentz force. The influence of the Lorentz force on flow can be determined by the variation in M . The large 
values of M increase the opposing effect of the Lorentzian force. Therefore, flow experiences retardation due to 
the Lorentz force. (See Figs. 6 and 7). Thus, BLT is approached by varying the magnetic field (the intensity of 
applied). It is also noted that the Lorentz force for the case of flow of the Cu- Ag- nanofluids is greater than the 
Lorentz force in the case of flow of the Cu-nanofluid.

Temperature field versus variation of crucial model parameters.  The effects of Du, (Gr)t ,M , Pr , 
β∗ , and Ec versus thermal energy for both nanofluids ( Cu -nanofluids) and hybrid nanofluids (Cu- Ag- nanoflu-
ids) are examined. The observed influence of these parameters is shown in Figs. 8, 9. The parameter Du is called 
Dufour number. It appears in the dimensionless form of the energy equation when the transcript of thermal 
energy due to the concentration gradient is taken into account. It measures the transfer of heat energy due 
to compositional differences caused by nanoparticles and solute diffused in the fluid. The effects of Du on the 
temperature of the Cu -nanofluid and Cu- Ag- hybrid nanofluid are shown in Fig. 8. The temperature of both 
types of fluids has an increasing tendency as a function of Du . The influence of Du on the temperature of the Cu- 
nanofluid is smaller than that on the temperature of the Cu- Ag- nanofluids. The effects of the buoyancy force 
on the temperature of the Cu-nanofluid and Cu- Ag- nanofluids are represented by Fig. 9. (Gr)∈ > 0 is the case 

Figure 2.   Influence of β on f ′ when (Gr)t = 0.5, Pr = 4, Sc = 5,K
∗ = 0.1,Ec = 0.001, (Gr)c = 0.3,M = 0.5,β∗ = 0.2, Sr = 0.1 and 

Du = 0.2.
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when the buoyancy force is positive, and flow is assisted by this force. However, (Gr)t < 0 in the case when the 
buoyancy force is negative, the flow in this case is called opposing flow.

Wall shear stresses, heat transfer rate and mass flux.  Numerical data related to wall shear stresses 
in the x and y-directions, wall heat transfer rate and wall mass flux for both types of fluids, Cu -fluid (mono 
nanofluid) and Cu - Ag -fluid (hybrid nanofluid), are investigated versus the variation in key parameters, k∗ , Du , 
Sr and Sc (see Table 6). The numerical outcomes are summarized in Table 6. It appears that k∗ is inversely pro-
portional to the voids present in the porous medium. Hence, the resistive force per unit area (stress) increases. 
Therefore, wall shear stresses in both the x and y-directions are increasing functions of k∗ . The temperature gra-
dient and mass flux are both decreasing functions of k∗ . It is also observed that wall shear stress increases when 
Du is increased. On the other hand, a rise in wall mass flux against Du is noted. Finally, the temperature gradient 

Figure 3.   Influence of K∗ on f ′ when (Gr)t = 0.5,Pr = 4, Sc = 5,β = 0.2,Ec = 0.001, (Gr)c = 0.3,M = 0.5,β∗ = 0.2, Sr = 0.1 and 
Du = 0.2.

Figure 4.   Influence of M on f ′ when (Gr)t = 0.5,Pr = 4, Sc = 5,β = 0.2, Ec = 0.001, (Gr)c = 0.3,K
∗ = 0.1,β∗ = 0.2, Sr = 0.1, 

and Du = 0.2RETRACTED A
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on solute particles is determined by Sr , and an increase in Sr causes a decrease in wall shear stress. However, the 
opposite trend is noted for Sc.

Core points and conclusions
The features of heat energy and mass diffusion, which play essential roles in the behaviour of nanoparticles and 
hybrid nanostructures, are addressed over the vertical 3D melting surface. Newtonian fluid is considered under 
simultaneous influences of heat generation, porous medium, viscous dissipation, temperature gradient, rate 
of mass diffusion, and Joule heating. The mathematical modelling is solved using the famous FEM. The prime 
findings are listed below:

1.	 The convergence of the proposed problem is confirmed for finite element mesh density equal to 300.

Figure 5.   Influence of β on g ′ when (Gr)t = 0.5, Pr = 4, Sc = 5,K
∗ = 0.1,Ec = 0.001, (Gr)c = 0.3,M = 0.5,β∗ = 0.2, Sr = 0.1 and 

Du = 0.2.

Figure 6.   Influence of K∗ on g ′ when (Gr)t = 0.5,Pr = 4, Sc = 5,β = 0.2,Ec = 0.001, (Gr)c = 0.3,M = 0.5,β∗ = 0.2, Sr = 0.1 and 
Du = 0.2.
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2.	 The magnetic field reduces the motion of both nanoparticles and hybrid nanostructures, where the effect on 
hybrid nanofluid is more significant than on nanofluid.

3.	 The Dufour number amplified the temperature of both hybrid nanofluid and nanofluid while the temperature 
for hybrid nanofluid is higher than nanofluid.

4.	 The temperature for both fluids diminish as the buoyancy force acts onto the system.
5.	 The joule heating parameter intensified the temperature for both fluids, and hybrid nanofluid is stronger 

than nanofluid.
6.	 The Prandtl number decreases the temperature profile for both fluids, but the temperature for hybrid nano-

fluid is slightly higher than nanofluid.
7.	 The temperature profile for both fluids increases when the heat generation and viscous dissipation act onto 

the system.

Figure 7.   Influence of M on g ′ when (Gr)t = 0.5,Pr = 4, Sc = 5,β = 0.2,Ec = 0.001, (Gr)c = 0.3,K
∗ = 0.1,β∗ = 0.2, Sr = 0.1 and 

Du = 0.2.

Figure 8.   Influence of Du on θ when (Gr)t = 0.5,Pr = 4, Sc = 5,β = 0.2,Ec = 0.001, (Gr)c = 0.3,K
∗ = 0.1,β∗ = 0.2, Sr = 0.1 and 
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8.	 The temperature gradient increased the concentration for both fluids, while the diffusion parameter decreased 
the concentration for both fluids.

9.	 Wall shear stress amplified with the porous medium parameter, Dufour number and diffusion parameter 
but the wall shear stress decrease for the temperature gradient parameter. The mass wall flux rises with the 
Dufour number and decreases the wall shear stress, while heat transfer rate and mass flux decrease as the 
porous medium parameter increases.

The Galerkin finite element method could be applied to a variety of physical and technical challenges in the 
future67–77.
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