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Spin revolution breaks time
reversal symmetry of rolling
magnets

ElenaY. Vedmedenko™ & Roland Wiesendanger

The classical laws of physics are usually invariant under time reversal. Here, we reveal a novel class

of magnetomechanical effects rigorously breaking time-reversal symmetry. These effects are based

on the mechanical rotation of a hard magnet around its magnetization axis in the presence of friction
and an external magnetic field, which we call spin revolution. The spin revolution leads to a variety of
symmetry breaking phenomena including upward propulsion on vertical surfaces defying gravity as
well as magnetic gyroscopic motion that is perpendicular to the applied force. The angular momentum
of spin revolution differs from those of the magnetic field, the magnetic torque, the rolling axis, and
the net torque about the rolling axis. The spin revolution emerges spontaneously, without external
rotations, and offers various applications in areas such as magnetism, robotics and energy harvesting.

Symmetry breaking leads to fascinating effects across sciences, from the appearance of spontaneous magnetiza-
tion to exciting properties of two-dimensional layered material systems"2. Here, we reveal a novel magneto-
mechanical effect rigorously breaking time-reversal symmetry. State-of-the-art gyroscopic effects involve the
motion of spinning objects. A spinning axis can be defined by its mechanical angular momentum L and velocity
;. A spinning object can be controlled or manipulated by another external rotation with angular velocity 2 to
align 2, and €2 due to the Coriolis force as shown in Fig. 1a’. State-of-the-art gyromagnetic effects are based on
the motion of spinning magnetic objects. In this case, the magnetization M stemming from the spin angular
momentum can be controlled or manipulated by an external rotation €2 to align M and R via the spin-rotation
coupling as shown in Fig. 1b*”". In all these cases, an object subject to manipulation is initially spinning around
a well-defined axis € in the laboratory frame.

The magnetomechanical effect introduced here concerns a hard magnetic object (conducting or insulating)
with magnetization M that does not spin initially, but rather rests at a particular position (see Fig. 1c). Several
torques, including a gravitational and a magnetic torque, are acting on the object and we are interested in the
characteristics of the resulting movement (e.g. rolling) of such an object (e.g. a sphere). In a first approxima-
tion, we neglect all effects of moving electric charges or electric fields due to the time-dependent magnetization
because of their weakness. Furthermore, we are interested in the regime of rolling without slipping. Our analysis
shows that, when a net torque about an object’s rolling axis is minimized T¢ . = Zf\i | Ti — min, the object spins
up with an angular momentum Ly, pointing in a direction which differs from those of the magnetic field, the
magnetic torque, the rolling axis, and the net torque about the rolling axis, and starts to move perpendicularly to
an applied force with a velocity vy. We denote this combination of spontaneous rotation and translational move-
ment as spin revolution (SR). In contrast to known effects, the SR emerges spontaneously, without application
of any external rotation about Ly. In contrast to the electron spin, which is antiparallel to its magnetic moment,
Ly can be parallel or antiparallel to an equilibrium magnetization orientation M. The key ingredient for this
counterintuitive motion is the minimization of the total torque about the rolling axis leading to the emergence of
torque about M. If M., is inclined with respect to the surface’s normal, the subsequent motion corresponds to
the rolling with inclined axis. This motion breaks the time-reversal symmetry of the moving magnet and leads to
circular trajectories as well as to vertical propulsion defying gravity. The time-reversal symmetry breaking paves
the way for an effective interconversion of translational and rotational motion and, by that means, to numerous
applications in mechanics, robotics, energy harvesting and magnetism. For example, SR allows the development
of rope-less, rail-less and hydraulics-less elevators, linear motors or angle gears. It can also be applied to the
controlled rotational and translational motion of magnetic particles.
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Figure 1. Gyroscopic, gyromagnetic and spin revolution effects. (a) Schematic representation of a mechanical
gyroscope, which can be controlled by an external rotation £ to align the spinning axis £, with €. (b) Schematic
representation of a gyromagnetic effect, in which the magnetization can be controlled by external rotation £ to
align the magnetization M with . (c) Schematic side view of a spin revolution effect. Initially, the magnetized
sphere is at rest and M||B. When the sphere starts to roll down an incline, the magnetization departs from its
initial orientation, relaxes to a direction ensuring minimal total torque about rolling axis 7cm. — min, and
starts to revolve with 2g. Vectors are represented by bold letters for clarity. Reprinted with permission from''.

Results

Overview of experiments. To make the objectives of the manuscript as clear as possible, we start with a
short overview of our experiments and then present a detailed quantitative analysis. The first simplest experi-
ment serves to clarify the question: what is the difference between the rolling motion of non-magnetic and hard-
magnetic bodies? In this experiment, magnetized NdFeB spheres and their non-magnetic metallic counterparts
of identical diameters were let to roll down an incline or to roll on a plane due to an external force Fy,p (see
description and Movie S1-54%). Non-magnetic spheres on an incline were rolling as expected linearly, rotating
about a standard horizontal axis, while a magnetic sphere revolved; that is, it spun around an almost vertical
axis and at the same time was on a non-linear trajectory just like a charge under the action of the Lorentz force
or a planet on its orbit. To clearly show this spinning we have restricted the motion of a magnetic sphere to one
dimension using a transparent test tube in Movie S1-S28. In Movie S3% one can clearly appreciate a Lorentz-like
force acting on a magnetic sphere, while this force is absent for a non-magnetic sphere. The almost vertical ori-
entation of the rolling axis is counterintuitive because it coincides neither with that of the earth’ magnetic field,
nor with the horizontal mechanical rolling axis, nor with the vectorial sum of the corresponding torques. The
Lorentz-like force shown in Movie S3? is interesting because it leads to a non-local breaking of time-reversal
symmetry. That is, if one reverses the magnetic field orientation, the Lorentz force reverses, while the Lorentz-
like force in our case will not, as explained in detail in®. This non-local symmetry breaking becomes particularly
pronounced in the experiment with two magnetic spheres, which were put each into a vertical non-magnetic
tube. The tubes were placed close to one another and the spheres arranged themselves on the internal sides of
the tubes due to the magnetic attraction F.2 and F2!'* as shown in Movie S5°. When the tubes were rotated due
to Foppl about their vertical axes, the spheres moved always upwards independently of the sense of rotation and
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of the magnetization orientation of the spheres. This is in contrast to the behavior of time-reversal invariant
systems. For instance, turning a screwdriver clockwise allows one to tighten, while turning it counterclockwise
to loosen a screw, while neither the change of the tube’s rotation nor the change of the sphere’s magnetization
orientation will change the direction of sphere’s translation.

Equations of motion. To illustrate the nature of the effect in a more detailed way, we start with a standard
problem in rotational kinematics considering a sphere rolling down an inclined plane. A rolling motion can be
represented as a combination of a rotation about a rolling axis and its translation. A rotational torque arises from
an instantaneous static friction force F, and equals tgs = R x F with R being the vector connecting the center-
of-mass (c.m.) and a contact point. In the coordinate system connected with the contact point (see Fig. 1c) the
rolling axis coincides with tgs = (0, 2 5mgRsing, 0) = (0, 'EFS, 0), with B being the inclination angle (see®, part A),
m the mass and g the gravitational acceleration. It is well known that a homogeneously magnetized solid sphere
is equivalent to a point dipole placed at its center®'®. So, if a sphere is magnetized, a uniform magnetic field B
(e.g. the earth’s field) exerts a torque Tg = M(#) x B = Mgepm(¢) x B on this dipole (with M, being the satura-
tion magnetization and ey (¢) the unit magnetization vector), and the net mechanical torque becomes:

Tem = trs + 18(t) = R x Fg + M(t) x B (1)

We introduce the following equation of motion for the magnetization in the coordinate system of the contact
point:
oM(t)/ot = —

re 37 MO x (M) x B) M(t) X Qem, @)

1 +a?) (1+a?)
with the gyromagnetic ratio y, the rolling angular velocity £, and the magnetic damping constant . Here,
the first term accounts for the rotation of M towards the field due to tg'*!?, while the second term corresponds
to the mechanical precession of M around a rolling axis.

The Newton’s equation for the c.m. is:

ma =mg+ F; + N (3)

with N being the normal force (see®, part B). To find M(#) and, hence, the equilibrium magnetization M, we
solve Egs. (1)-(3).

First, we solve this set of equations analytically and numerically for v, M(f) and B lying in the same plane
(xz) = II. If the amplitude of the mechanical torque |tgs| surpasses that of the maximal possible magnetic torque
|T3'®*|, a sphere starts to roll in a usual way; that is, dM(t) /9t # 0and Tc . 7 0as shown in Fig. 2a. In contrast to
a usual rolling, however, the sphere rolls non-harmonically due to tg. If| tgs| < [TF*|, both torques may become
compensated (Te.m. = 0) atsin[£(Meq, B)] = sin[0cq] = (RF;)/(M;B) (see®, part B, Fig. 2b and the right panel of
Fig. 1c). The magnetization relaxes towards M, and remains at rest in rotational equilibrium. In the next step we
allow for deviations of v and B from the IT plane (see Fig. 2c—e). For|tgs| < |t§**| the equilibrium magnetization
will still relax to a direction minimizing the net torque T m, but this orientation will not belong to ITanymore as
shown in Fig. 2¢,d. This, however, means that another torque Tg = r x F¢* might emerge if|tr| > |Tcm.|, with
r being a distance vector pointing from the axis M, to the contact point (see Fig. 2¢). Hence, if Tc m. vanishes,
that is dM(t) /3t — 0 (Eq. (2)), the sphere rotates up about M, with angular momentum Lg = I.m. g due to
TR (Ic.m. is the inertia tensor). This emergent rotation is the essential contribution to the SR.

Discussion

Symmetry-breaking motion of a magnet: spin revolution. Any rotation changes the trajectory of an
object. Particularly, a spinning object acts as a gyroscope moving perpendlcularly to the applied force F,pp) and
obeying the dynamics of the gyroscope axis p: a’; = CR— (Ly x Fapp)™. There is, however, an important distinc-
tion between a standard gyroscope and a revolving magnet described here: the revolution axis is magnetic. The
equation of motion becomes (with y being the gyromagnetic ratio):

Meq/0t = T (L x Eayp) (4)
q I QR pp!

c.m.

This outcome contains interesting physics. First, a magnetic sphere on an incline should revolve up spontaneously,
without any external torque around M, that is different from g, Tgs as well as their sjum Second, the time-reversal
symmetry becomes broken as an action of the time operator T on the left side of Eq. (4) == = TE_) = T'(+)differs

from that on the right side of Eq. (4) T ( ) T@Lr)T(Fs) = T(+)T(—)T(+) = T(—) in contrast to a standard

gyroscope with g((f)) = % =T(—)on the left Furthermore, the right side of Eq. (4) does not contain M.

Thus, we have a unique situation: M, defines the spatial alignment of Ly but M, and Ly can be either parallel
or antiparallel to one another, because the torque Tr = r x Fydefining Ly is independent of M. Hence, the field
reversal should result in the reversal of M, but not in that of Ly as shown in Fig. 2f. In other words, the reversal of
Fappl will result in the reversal of the SR trajectory, while the reversal of B will not. Hence, the SR leads to a kind
of Lorentz force: for a given F,,p and B a revolving sphere drifts to the right or to the left with vg (). However,
the sign of the Lorentz drift can be switched by the reversal of both, B or Fappls while that of the SR-drift by the
reversal of F,p,p only. This is the consequence of the time-reversal violation.

These conclusions were checked by an experimentally letting hard magnetized NdFeB spheres to roll down
an incline (see description and Movie S1-S2°). Initially, M (and the sphere) slowly precessed around T, , until
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Figure 2. Dynamics of a revolvmg up magnet. Initially, the magnetization Mis parallel to a magnetic field

B. Next, a mechanical torque Tgs is ap_phed and M (t) evolves for (a) (v, B ell= (z x) and | Ts| > [T ; (b)
>, B) € Mand|Tgs| < |75 (¢) (v, B) ¢ [Tand|Tgs| > |79 (d) (v, B) ¢ Mand|Tps| < |T*; (e) Schematical
representation of geometrical axes, forces and angular momentum acting on a rolling magnetic sphere with
inclined axis. All definitions correspond to the text; (f) Comparison of the Lorentz force for a positive charge
and the force due to the SR under the local (Fappl reverses,B remains unchanged) and global (F,pp) reverses, B
reverses) time reversal.

the M., corresponding to Tcm, — 0 was reached. Then, it rotated up around M., and moved down an incline in
agreement with the theoretical predictions. M, was always collinear to Lg, but it was parallel or antiparallel to
it depending on F,p). Furthermore, one can switch the sign of angular velocity £ by changing the orientation
of B with respect to the plane spanned by F,,,) and the surface normal. The gyroscopic drift of the revolving
magnet can be seen in Movie S3%, where the reversal of Fypp1 leads to the reversal of vr(¢). The drift direction
can be described by the Eq. (4).

In a reciprocal version of this experiment one can fix the revolving sphere by additional magnet My, and move
the rolling surface instead of the sphere to achieve the SR (see Fig. 3a, Movie $4°).

In the next step we quantify the angular velocity g for a spontaneous rolling down an incline and a driven
rolling as shown in Fig. 3a. For the rolling down an incline with &g _Lv, an acceleration a can be found analyti-
cally because of the simplification vg ||v (see?, part C):

252 gsing )
=_-— = _gsin
2m 7 £

Interestingly, it depends neither on eq nor on the mass m. Generally, vg # v (Fig. 2f) and can be found
numerically by deriving M, from Eq. (2), inserting the result into Eq. (1), and solving Egs. (1)-(4).

Figure 3b shows g of a NdFeB sphere in three cases: I corresponding to the set-up of Fig. 3a with linear veloc-
ity v = 5m/s; II corresponding to the rolling down an incline with 8 = /10and B = (—0.95, —0.22,0.22)10°
T; and III corresponding to the rolling down an incline with 8 = w/10and B = (0, 1, 0)10~°T. As one can see
from this data Qg can be varied in a broad range by changing the applied force or inclination.

Spin revolution effect in a system of two hard magnets. Now we switch to the SR in time-depend-
ent fields. Let us consider two magnetic spheres, each put into a vertical non-magnetic tube. The tubes are placed

Scientific Reports|  (2022) 12:13608 | https://doi.org/10.1038/s41598-022-17766-z nature portfolio



www.nature.com/scientificreports/

M Mo

O 2.0 ) &

Figure 3. Different embodiments of the spin revolution. (a) Reciprocal embodiment leading to revolution of a
sphere without its lateral displacement. Reprinted with permission from'’; (b) Numerically calculated Q2R for a
NiCoB sphere withm = 3 - 1074 kg, R=3"- 103 m and M = 0.5 A - m?, and friction coefficient k = 0.1 for I
embodiment of (a) with v = 5 m/s, II rolling down an incline with 8 = w/10and B = (—0.95, —0.22,0.22)10~°
T; and III rolling down an incline with 8 = /10 and B = (0, 1,0)107> T; (c) Two subsequent snap-shots of
magnetic spheres (NiCoB,m = 5-10"*kg, R = 3 - 103 m and M; = 0.5 A - m?) moving upwards inside

of two non-magnetic tubes. (d) Top view of the set-up (c). Red arrows indicate the magnetic moments, red
dashed lines show the rolling planes, red circles indicate the orientation of rolling friction. Blue arrows represent
magnetic fields, black arrows show forces.

Ta

close to one another and the spheres arrange themselves on internal sides of the tubes due to the magnetic attrac-
tion Frlrf and Ff&lo as shown in Fig. 3¢,d. If the tubes are rotated about their vertical axes due to Fappls the spheres
rotate initially together with the tubes. At a critical angle 8, the sum of gravitational and magnetic forces over-
comes the frictional force F, and the spheres move upwards against intuitive expectation that they return to their
initial or to somewhat lower positions in response to Fy, + mg. The reason for this counterintuitive behaviour
is the SR emerging at a critical angle 8, when the net torque Tcm. vanishes. According to Eq. (4) the M, (and
spheres) should move upwards for any F,p,|. Our experiments support the expectation of emerging revolution
as well as that of a lifting force defying gravity which tries to push the spheres downwards, and the magnetic
interaction attracting the spheres in horizontal direction (see Fig. 3c and Movie S5°).

In time-reversal invariant systems, the equations of motion are invariant under the transformation
(q,p-t) —T (q, —p, —t) with q being the coordinates, p the momentum and ¢ the time. In other words, the
trajectory in reversed time should be a backward sequence of positions constituting the trajectory in forward
time'®". To check this, one reverses the momentum p and looks for the corresponding trajectory. If one reverses
the rotational momentum of the tubes, the spheres will not go downwards. They will repeatedly move upwards
to any tube height (Fig. 4, Movie S5°) breaking the time-reversal symmetry. Importantly, this symmetry breaking
is neither local, like that of a Lorentz force, nor dissipation-driven. Indeed, the trajectory of a charge due to the
Lorentz force becomes time-reversal invariant if the direction of magnetic field is reversed, because B — T_B
(see®, part D and Fig. S1®). The only way to force the spheres moving downwards is to reverse the gravitational
force. This operation is, however, forbidden as the forces are even under time-reversal (F T F).

Dissipation is also a known source for the violation of time-reversal symmetry as shown in Fig. 4a—d. In this
case, however, the trajectory’s length changes while the reversability of time events is not affected. In case of SR
the reverse tape effect is impossible as shown in Fig. 4e-h: the time reversal results in a new trajectory. While
friction is one of reasons for both phenomena: the SR and the energy dissipation, the latter is neither the reason
for the SR, nor for the described time-reversal symmetry breaking. Rather, this symmetry violation stems from
the emergent revolving up of the magnet and subsequent curved trajectory as explained in®, part E-F.
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Figure 4. Time-reversal symmetry breaking. (a,b) Side-view of the forward-in-time (s(¢)) and backward-
in-time (s(—t)) trajectories of an ideal harmonic oscillator. Time-reversal symmetry is preserved. (c,d) Real
harmonic oscillator with dissipation. Time-reversal symmetry is broken because [s(t)| # [s(—t)|, reversed order
of events is preserved. (e-h) Side-view of the embodiment revealing a lifting force for different combinations

of tubes’ rotations corresponding to the forward-in-time (e,g) and the backward-in-time motion (f;h). Black
arrows indicate the angular momenta of the tubes and those of the spheres. Red arrows indicate trajectories.
Green arrows show the allowed orientation of magnetization.

In case of tubes, the SR is achieved due to combination of magnetic attraction, friction and gravitation.
It is, however, important that mg does not belong to the IT plane defined by F,p, and N. If mg € T1, e.g. the
tubes lie on a horizontal surface, the SR does not appear (see®, part G and Fig. S3%). However, already tiniest
deviation from the horizontality ensures the SR. The upper limit of the lifting force can be approximated by
Fiift(r12) & Fm(r12) — kFm (r12) cos B — mg with k being the friction coefficient. As the rolling friction Fygis tiny
(0.05-0.07 for metal/plastic interfaces), Fji can reach significant values.

Conclusions

To conclude, we presented a novel magnetomechanical effect consisting of rotating up a magnet and subsequent
gyroscopic motion, thereby breaking time-reversal symmetry. This phenomenon offers a variety of promising
applications in different fields of science and engineering including the delivery of magnetic (nano)particles.
Particularly, the SR effect can be used to achieve controllable translation of objects or magnetic particles in any
direction on vertical or horizontal surfaces as shown in Movie S6%. The advantage of this motion is the absence
of direct contact between the tubes and the absence of any kind of guides increasing the weight and complex-
ity of the system. Furthermore, the SR effect can be used for effective interconversion between rotational and
translational motion that is important for linear or angle motors as shown in MovieS4 8. The advantage of this
kind of conversion is the absence of any kind of gears and versatile possibilities of switching the rotational sense.
Additionally, the lifted magnets can be used for energy storage and its later harvesting using magnetic induc-
tion. An array of revolving magnets can also be utilized as information storage element. Thus, the SR effect will
change our perspectives of existing magnetic phenomena and open up new technological possibilities for energy
storage, energy interconversion and robotics.
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Methods

Magnetization dynamics. To describe the time-dependence of an equilibrium magnetization orientation
Mg, we solve numerically the set of coupled Eqgs. (1)-(2) using the condition for rolling without slipping which
accounts for the fact that the contact point of a sphere and a surface will be instantaneously at rest. At each time
step we first solve Eq. (2) starting with a given initial magnetization orientation using the Runge-Kutta method
of fourth order. When a required convergence is reached, we regard an achieved magnetization as instantane-
ously stable Meq(#) and introduce it into the Egs. (3) and (1). In the next step these differential equations are
solved for a(t), vr(t), and the net torque 7cm, using the fourth-order Runge-Kutta method. These values are
then used to update the orientation of Meq(t) and the position vector of the sphere. In the last step they are used
as initial parameters in (2) and the entire procedure is repeated until the sphere’s c.m. and M (#) do not change
with time anymore.

To describe the lifting effect, we start with a small initial rotation of the tubes by an angle 8 (8 = 7/10in
Fig. 4b). The tubes will not be moved anymore, but the spheres may roll with velocity dg(t)/dt. In the next step
we calculate M (t) by solving two coupled equations (Eq. (2), one for each sphere) for an instantaneous B(t).
The resulting M1 2(t) are used as input parameters to find LR and the new B(¢) and a from Egs. (1)-(3). The
procedure is repeated until dB(t)/dt and dM1 5(t)/dt vanish.
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