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Spin revolution breaks time 
reversal symmetry of rolling 
magnets
Elena Y. Vedmedenko* & Roland Wiesendanger

The classical laws of physics are usually invariant under time reversal. Here, we reveal a novel class 
of magnetomechanical effects rigorously breaking time-reversal symmetry. These effects are based 
on the mechanical rotation of a hard magnet around its magnetization axis in the presence of friction 
and an external magnetic field, which we call spin revolution. The spin revolution leads to a variety of 
symmetry breaking phenomena including upward propulsion on vertical surfaces defying gravity as 
well as magnetic gyroscopic motion that is perpendicular to the applied force. The angular momentum 
of spin revolution differs from those of the magnetic field, the magnetic torque, the rolling axis, and 
the net torque about the rolling axis. The spin revolution emerges spontaneously, without external 
rotations, and offers various applications in areas such as magnetism, robotics and energy harvesting.

Symmetry breaking leads to fascinating effects across sciences, from the appearance of spontaneous magnetiza-
tion to exciting properties of two-dimensional layered material systems1,2. Here, we reveal a novel magneto-
mechanical effect rigorously breaking time-reversal symmetry. State-of-the-art gyroscopic effects involve the 
motion of spinning objects. A spinning axis can be defined by its mechanical angular momentum Ls and velocity 
�s . A spinning object can be controlled or manipulated by another external rotation with angular velocity � to 
align �s and � due to the Coriolis force as shown in Fig. 1a3. State-of-the-art gyromagnetic effects are based on 
the motion of spinning magnetic objects. In this case, the magnetization M stemming from the spin angular 
momentum can be controlled or manipulated by an external rotation � to align M and � via the spin-rotation 
coupling as shown in Fig. 1b4–7. In all these cases, an object subject to manipulation is initially spinning around 
a well-defined axis �s in the laboratory frame.

The magnetomechanical effect introduced here concerns a hard magnetic object (conducting or insulating) 
with magnetization M that does not spin initially, but rather rests at a particular position (see Fig. 1c). Several 
torques, including a gravitational and a magnetic torque, are acting on the object and we are interested in the 
characteristics of the resulting movement (e.g. rolling) of such an object (e.g. a sphere). In a first approxima-
tion, we neglect all effects of moving electric charges or electric fields due to the time-dependent magnetization 
because of their weakness. Furthermore, we are interested in the regime of rolling without slipping. Our analysis 
shows that, when a net torque about an object’s rolling axis is minimized Tc.m. =

∑N
i=1 τi → min , the object spins 

up with an angular momentum LR, pointing in a direction which differs from those of the magnetic field, the 
magnetic torque, the rolling axis, and the net torque about the rolling axis, and starts to move perpendicularly to 
an applied force with a velocity vR. We denote this combination of spontaneous rotation and translational move-
ment as spin revolution (SR). In contrast to known effects, the SR emerges spontaneously, without application 
of any external rotation about LR. In contrast to the electron spin, which is antiparallel to its magnetic moment, 
LR can be parallel or antiparallel to an equilibrium magnetization orientation Meq. The key ingredient for this 
counterintuitive motion is the minimization of the total torque about the rolling axis leading to the emergence of 
torque about Meq. If Meq is inclined with respect to the surface’s normal, the subsequent motion corresponds to 
the rolling with inclined axis. This motion breaks the time-reversal symmetry of the moving magnet and leads to 
circular trajectories as well as to vertical propulsion defying gravity. The time-reversal symmetry breaking paves 
the way for an effective interconversion of translational and rotational motion and, by that means, to numerous 
applications in mechanics, robotics, energy harvesting and magnetism. For example, SR allows the development 
of rope-less, rail-less and hydraulics-less elevators, linear motors or angle gears. It can also be applied to the 
controlled rotational and translational motion of magnetic particles.
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Results
Overview of experiments.  To make the objectives of the manuscript as clear as possible, we start with a 
short overview of our experiments and then present a detailed quantitative analysis. The first simplest experi-
ment serves to clarify the question: what is the difference between the rolling motion of non-magnetic and hard-
magnetic bodies? In this experiment, magnetized NdFeB spheres and their non-magnetic metallic counterparts 
of identical diameters were let to roll down an incline or to roll on a plane due to an external force Fappl (see 
description and Movie S1–S48). Non-magnetic spheres on an incline were rolling as expected linearly, rotating 
about a standard horizontal axis, while a magnetic sphere revolved; that is, it spun around an almost vertical 
axis and at the same time was on a non-linear trajectory just like a charge under the action of the Lorentz force 
or a planet on its orbit. To clearly show this spinning we have restricted the motion of a magnetic sphere to one 
dimension using a transparent test tube in Movie S1–S28. In Movie S38 one can clearly appreciate a Lorentz-like 
force acting on a magnetic sphere, while this force is absent for a non-magnetic sphere. The almost vertical ori-
entation of the rolling axis is counterintuitive because it coincides neither with that of the earth’ magnetic field, 
nor with the horizontal mechanical rolling axis, nor with the vectorial sum of the corresponding torques. The 
Lorentz-like force shown in Movie S38 is interesting because it leads to a non-local breaking of time-reversal 
symmetry. That is, if one reverses the magnetic field orientation, the Lorentz force reverses, while the Lorentz-
like force in our case will not, as explained in detail in8. This non-local symmetry breaking becomes particularly 
pronounced in the experiment with two magnetic spheres, which were put each into a vertical non-magnetic 
tube. The tubes were placed close to one another and the spheres arranged themselves on the internal sides of 
the tubes due to the magnetic attraction F12m  and F21m10 as shown in Movie S58. When the tubes were rotated due 
to Fappl about their vertical axes, the spheres moved always upwards independently of the sense of rotation and 

Figure 1.   Gyroscopic, gyromagnetic and spin revolution effects. (a) Schematic representation of a mechanical 
gyroscope, which can be controlled by an external rotation � to align the spinning axis �s with � . (b) Schematic 
representation of a gyromagnetic effect, in which the magnetization can be controlled by external rotation � to 
align the magnetization M with � . (c) Schematic side view of a spin revolution effect. Initially, the magnetized 
sphere is at rest and M||B . When the sphere starts to roll down an incline, the magnetization departs from its 
initial orientation, relaxes to a direction ensuring minimal total torque about rolling axis Tc.m. → min , and 
starts to revolve with �R . Vectors are represented by bold letters for clarity. Reprinted with permission from11.
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of the magnetization orientation of the spheres. This is in contrast to the behavior of time-reversal invariant 
systems. For instance, turning a screwdriver clockwise allows one to tighten, while turning it counterclockwise 
to loosen a screw, while neither the change of the tube’s rotation nor the change of the sphere’s magnetization 
orientation will change the direction of sphere’s translation.

Equations of motion.  To illustrate the nature of the effect in a more detailed way, we start with a standard 
problem in rotational kinematics considering a sphere rolling down an inclined plane. A rolling motion can be 
represented as a combination of a rotation about a rolling axis and its translation. A rotational torque arises from 
an instantaneous static friction force Fs and equals τFs = R × Fs with R being the vector connecting the center-
of-mass (c.m.) and a contact point. In the coordinate system connected with the contact point (see Fig. 1c) the 
rolling axis coincides with τFs = (0, 27mgRsinβ , 0) = (0, τ

y
Fs, 0) , with β being the inclination angle (see8, part A), 

m the mass and g the gravitational acceleration. It is well known that a homogeneously magnetized solid sphere 
is equivalent to a point dipole placed at its center9,10. So, if a sphere is magnetized, a uniform magnetic field B 
(e.g. the earth’s field) exerts a torque τB = M(t)× B = MseM(t)× B on this dipole (with Ms being the satura-
tion magnetization and eM(t) the unit magnetization vector), and the net mechanical torque becomes:

We introduce the following equation of motion for the magnetization in the coordinate system of the contact 
point:

with the gyromagnetic ratio γ , the rolling angular velocity �c.m. and the magnetic damping constant α . Here, 
the first term accounts for the rotation of M towards the field due to τB12,13, while the second term corresponds 
to the mechanical precession of M around a rolling axis.

The Newton’s equation for the c.m. is:

with N being the normal force (see8, part B). To find M(t) and, hence, the equilibrium magnetization Meq we 
solve Eqs. (1)–(3).

First, we solve this set of equations analytically and numerically for v, M(t) and B lying in the same plane 
(xz) = � . If the amplitude of the mechanical torque |τFs| surpasses that of the maximal possible magnetic torque 
|τmax

B | , a sphere starts to roll in a usual way; that is, ∂M(t)/∂t  = 0 and Tc.m.  = 0 as shown in Fig. 2a. In contrast to 
a usual rolling, however, the sphere rolls non-harmonically due to τB . If |τFs| ≤ |τmax

B | , both torques may become 
compensated ( Tc.m. = 0 ) at sin[∠(Meq,B)] = sin[θeq] = (RFs)/(MsB) (see8, part B, Fig. 2b and the right panel of 
Fig. 1c). The magnetization relaxes towards Meq and remains at rest in rotational equilibrium. In the next step we 
allow for deviations of v and B from the � plane (see Fig. 2c–e). For |τFs| ≤ |τmax

B | the equilibrium magnetization 
will still relax to a direction minimizing the net torque Tc.m. , but this orientation will not belong to � anymore as 
shown in Fig. 2c,d. This, however, means that another torque τR = r × Fs

14 might emerge if |τR| > |Tc.m.| , with 
r being a distance vector pointing from the axis Meq to the contact point (see Fig. 2e). Hence, if Tc.m. vanishes, 
that is ∂M(t)/∂t → 0 (Eq. (2)), the sphere rotates up about Meq with angular momentum LR = Ic.m.�R due to 
τR ( Ic.m. is the inertia tensor). This emergent rotation is the essential contribution to the SR.

Discussion
Symmetry‑breaking motion of a magnet: spin revolution.  Any rotation changes the trajectory of an 
object. Particularly, a spinning object acts as a gyroscope moving perpendicularly to the applied force Fappl and 
obeying the dynamics of the gyroscope axis ρ : ∂ρ

∂t = R2

Ic.m.ω
(Lρ × Fappl)

15. There is, however, an important distinc-
tion between a standard gyroscope and a revolving magnet described here: the revolution axis is magnetic. The 
equation of motion becomes (with γ being the gyromagnetic ratio):

This outcome contains interesting physics. First, a magnetic sphere on an incline should revolve up spontaneously, 
without any external torque around Meq that is different from τB , τFs as well as their sum. Second, the time-reversal 
symmetry becomes broken as an action of the time operator T on the left side of Eq. (4) T(Meq)

T(t) = T(−)
T(−)

= T(+) differs 
from that on the right side of Eq. (4) T

(

R2

Ic.m.�R

)

T(LR)T(Fs) = T(+)T(−)T(+) = T(−) in contrast to a standard 
gyroscope with T(ρ)T(t) = T(+)

T(−)
= T(−) on the left. Furthermore, the right side of Eq. (4) does not contain Meq.

Thus, we have a unique situation: Meq defines the spatial alignment of LR but Meq and LR can be either parallel 
or antiparallel to one another, because the torque τR = r × Fs defining LR is independent of Meq. Hence, the field 
reversal should result in the reversal of Meq but not in that of LR as shown in Fig. 2f. In other words, the reversal of 
Fappl will result in the reversal of the SR trajectory, while the reversal of B will not. Hence, the SR leads to a kind 
of Lorentz force: for a given Fappl and B a revolving sphere drifts to the right or to the left with vR(t) . However, 
the sign of the Lorentz drift can be switched by the reversal of both, B or Fappl , while that of the SR-drift by the 
reversal of Fappl only. This is the consequence of the time-reversal violation.

These conclusions were checked by an experimentally letting hard magnetized NdFeB spheres to roll down 
an incline (see description and Movie S1–S28). Initially, M (and the sphere) slowly precessed around Tc.m. until 

(1)Tc.m. = τFs + τB(t) = R × Fs +M(t)× B

(2)∂M(t)/∂t = −
γα

(1+ α2)Ms
M(t)× (M(t)× B)−

1

(1+ α2)
M(t)×�c.m.,

(3)ma = mg + Fs +N

(4)∂Meq/∂t =
γR2

Ic.m.�R
(LR × Fappl)
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the Meq corresponding to Tc.m. → 0 was reached. Then, it rotated up around Meq and moved down an incline in 
agreement with the theoretical predictions. Meq was always collinear to LR, but it was parallel or antiparallel to 
it depending on Fappl . Furthermore, one can switch the sign of angular velocity �R by changing the orientation 
of B with respect to the plane spanned by Fappl and the surface normal. The gyroscopic drift of the revolving 
magnet can be seen in Movie S38, where the reversal of Fappl leads to the reversal of vR(t) . The drift direction 
can be described by the Eq. (4).

In a reciprocal version of this experiment one can fix the revolving sphere by additional magnet �Mm and move 
the rolling surface instead of the sphere to achieve the SR (see Fig. 3a, Movie S48).

In the next step we quantify the angular velocity �R for a spontaneous rolling down an incline and a driven 
rolling as shown in Fig. 3a. For the rolling down an incline with �R⊥v , an acceleration a can be found analyti-
cally because of the simplification vR‖v (see8, part C):

Interestingly, it depends neither on θeq nor on the mass m. Generally, vR  = v (Fig. 2f) and can be found 
numerically by deriving Meq from Eq. (2), inserting the result into Eq. (1), and solving Eqs. (1)–(4).

Figure 3b shows �R of a NdFeB sphere in three cases: I corresponding to the set-up of Fig. 3a with linear veloc-
ity v = 5 m/s; II corresponding to the rolling down an incline with β = π/10 and B = (−0.95,−0.22, 0.22)10−5 
T; and III corresponding to the rolling down an incline with β = π/10 and B = (0, 1, 0)10−5 T. As one can see 
from this data �R can be varied in a broad range by changing the applied force or inclination.

Spin revolution effect in a system of two hard magnets.  Now we switch to the SR in time-depend-
ent fields. Let us consider two magnetic spheres, each put into a vertical non-magnetic tube. The tubes are placed 

(5)a =
5

2

Fs

m
=

5

7
g sin β

Figure 2.   Dynamics of a revolving-up magnet. Initially, the magnetization �M is parallel to a magnetic field 
�B . Next, a mechanical torque �τFs is applied and �M(t) evolves for (a) (�v, �B) ∈ � =

(

ẑ, x̂
)

 and |�τFs| > |�τmax
B | ; (b) 

(�v, �B) ∈ � and |�τFs| ≤ |�τmax
B | ; (c) (�v, �B) /∈ � and |�τFs| > |�τmax

B | ; (d) (�v, �B) /∈ � and |�τFs| < |�τmax
B | ; (e) Schematical 

representation of geometrical axes, forces and angular momentum acting on a rolling magnetic sphere with 
inclined axis. All definitions correspond to the text; (f) Comparison of the Lorentz force for a positive charge 
and the force due to the SR under the local ( �Fappl reverses,�B remains unchanged) and global ( �Fappl reverses, �B 
reverses) time reversal.
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close to one another and the spheres arrange themselves on internal sides of the tubes due to the magnetic attrac-
tion F12m  and F21m10 as shown in Fig. 3c,d. If the tubes are rotated about their vertical axes due to Fappl , the spheres 
rotate initially together with the tubes. At a critical angle β , the sum of gravitational and magnetic forces over-
comes the frictional force Fs and the spheres move upwards against intuitive expectation that they return to their 
initial or to somewhat lower positions in response to Fm +mg . The reason for this counterintuitive behaviour 
is the SR emerging at a critical angle β , when the net torque Tc.m. vanishes. According to Eq. (4) the Meq (and 
spheres) should move upwards for any Fappl . Our experiments support the expectation of emerging revolution 
as well as that of a lifting force defying gravity which tries to push the spheres downwards, and the magnetic 
interaction attracting the spheres in horizontal direction (see Fig. 3c and Movie S58).

In time-reversal invariant systems, the equations of motion are invariant under the transformation 
(q, p, t)  →T (q,−p,−t) with q being the coordinates, p the momentum and t the time. In other words, the 
trajectory in reversed time should be a backward sequence of positions constituting the trajectory in forward 
time16,17. To check this, one reverses the momentum p and looks for the corresponding trajectory. If one reverses 
the rotational momentum of the tubes, the spheres will not go downwards. They will repeatedly move upwards 
to any tube height (Fig. 4, Movie S58) breaking the time-reversal symmetry. Importantly, this symmetry breaking 
is neither local, like that of a Lorentz force, nor dissipation-driven. Indeed, the trajectory of a charge due to the 
Lorentz force becomes time-reversal invariant if the direction of magnetic field is reversed, because B  →T −B 
(see8, part D and Fig. S18). The only way to force the spheres moving downwards is to reverse the gravitational 
force. This operation is, however, forbidden as the forces are even under time-reversal ( F  →T F).

Dissipation is also a known source for the violation of time-reversal symmetry as shown in Fig. 4a–d. In this 
case, however, the trajectory’s length changes while the reversability of time events is not affected. In case of SR 
the reverse tape effect is impossible as shown in Fig. 4e–h: the time reversal results in a new trajectory. While 
friction is one of reasons for both phenomena: the SR and the energy dissipation, the latter is neither the reason 
for the SR, nor for the described time-reversal symmetry breaking. Rather, this symmetry violation stems from 
the emergent revolving up of the magnet and subsequent curved trajectory as explained in8, part E–F.

Figure 3.   Different embodiments of the spin revolution. (a) Reciprocal embodiment leading to revolution of a 
sphere without its lateral displacement. Reprinted with permission from11; (b) Numerically calculated �R for a 
NiCoB sphere with m = 3 · 10−4 kg, R = 3 · 10−3 m and Ms = 0.5 A ·m2 , and friction coefficient k = 0.1 for I 
embodiment of (a) with v = 5 m/s, II rolling down an incline with β = π/10 and B = (−0.95,−0.22, 0.22)10−5 
T; and III rolling down an incline with β = π/10 and B = (0, 1, 0)10−5 T; (c) Two subsequent snap-shots of 
magnetic spheres (NiCoB, m = 5 · 10−4 kg, R = 3 · 10−3 m and Ms = 0.5 A ·m2 ) moving upwards inside 
of two non-magnetic tubes. (d) Top view of the set-up (c). Red arrows indicate the magnetic moments, red 
dashed lines show the rolling planes, red circles indicate the orientation of rolling friction. Blue arrows represent 
magnetic fields, black arrows show forces.
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In case of tubes, the SR is achieved due to combination of magnetic attraction, friction and gravitation. 
It is, however, important that mg does not belong to the � plane defined by Fappl and N. If mg ∈ � , e.g. the 
tubes lie on a horizontal surface, the SR does not appear (see8, part G and Fig. S38). However, already tiniest 
deviation from the horizontality ensures the SR. The upper limit of the lifting force can be approximated by 
Flift(r12) ≈ Fm(r12)− kFm(r12) cosβ −mg with k being the friction coefficient. As the rolling friction FrS is tiny 
(0.05–0.07 for metal/plastic interfaces), Flift can reach significant values.

Conclusions
To conclude, we presented a novel magnetomechanical effect consisting of rotating up a magnet and subsequent 
gyroscopic motion, thereby breaking time-reversal symmetry. This phenomenon offers a variety of promising 
applications in different fields of science and engineering including the delivery of magnetic (nano)particles. 
Particularly, the SR effect can be used to achieve controllable translation of objects or magnetic particles in any 
direction on vertical or horizontal surfaces as shown in Movie S68. The advantage of this motion is the absence 
of direct contact between the tubes and the absence of any kind of guides increasing the weight and complex-
ity of the system. Furthermore, the SR effect can be used for effective interconversion between rotational and 
translational motion that is important for linear or angle motors as shown in MovieS4 8. The advantage of this 
kind of conversion is the absence of any kind of gears and versatile possibilities of switching the rotational sense. 
Additionally, the lifted magnets can be used for energy storage and its later harvesting using magnetic induc-
tion. An array of revolving magnets can also be utilized as information storage element. Thus, the SR effect will 
change our perspectives of existing magnetic phenomena and open up new technological possibilities for energy 
storage, energy interconversion and robotics.

Figure 4.   Time-reversal symmetry breaking. (a,b) Side-view of the forward-in-time ( s(t) ) and backward-
in-time ( s(−t) ) trajectories of an ideal harmonic oscillator. Time-reversal symmetry is preserved. (c,d) Real 
harmonic oscillator with dissipation. Time-reversal symmetry is broken because |s(t)| �= |s(−t)| , reversed order 
of events is preserved. (e–h) Side-view of the embodiment revealing a lifting force for different combinations 
of tubes’ rotations corresponding to the forward-in-time (e,g) and the backward-in-time motion (f,h). Black 
arrows indicate the angular momenta of the tubes and those of the spheres. Red arrows indicate trajectories. 
Green arrows show the allowed orientation of magnetization.
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Methods
Magnetization dynamics.  To describe the time-dependence of an equilibrium magnetization orientation 
�Meq , we solve numerically the set of coupled Eqs. (1)–(2) using the condition for rolling without slipping which 

accounts for the fact that the contact point of a sphere and a surface will be instantaneously at rest. At each time 
step we first solve Eq. (2) starting with a given initial magnetization orientation using the Runge–Kutta method 
of fourth order. When a required convergence is reached, we regard an achieved magnetization as instantane-
ously stable �Meq(t) and introduce it into the Eqs. (3) and (1). In the next step these differential equations are 
solved for �a(t) , �vR(t) , and the net torque �Tc.m. using the fourth-order Runge–Kutta method. These values are 
then used to update the orientation of �Meq(t) and the position vector of the sphere. In the last step they are used 
as initial parameters in (2) and the entire procedure is repeated until the sphere’s c.m. and �M(t) do not change 
with time anymore.

To describe the lifting effect, we start with a small initial rotation of the tubes by an angle β ( β = π/10 in 
Fig. 4b). The tubes will not be moved anymore, but the spheres may roll with velocity dβ(t)/dt . In the next step 
we calculate �Meq

1,2(t) by solving two coupled equations (Eq. (2), one for each sphere) for an instantaneous β(t) . 
The resulting �Meq

1,2(t) are used as input parameters to find �LR and the new β(t) and �a from Eqs. (1)–(3). The 
procedure is repeated until dβ(t)/dt and d �M

eq
1,2(t)/dt vanish.
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