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Non‑stationary time‑varying 
vehicular channel characteristics 
for different roadside scattering 
environments
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With the deep integration of wireless communication technology and automobile industry, vehicular 
communication has become one of the key technologies supporting the development of Internet-
of-vehicle. Due to the high-speed mobility of vehicles and the rapid change of the propagation 
environments, vehicle-to-vehicle (V2V) wireless communication channels are generally non-
stationary. Meanwhile, the variability of V2V channel characteristics is obvious in different scattering 
environments. Focusing on these research points, this paper presents the analysis and comparison 
of V2V channel characteristics for different scattering scenarios based on a series of 5.9 GHz channel 
measurements. The measurement data are collected from the iron bridge, the soundproof wall, and 
the road lamp scenarios. The stationary time and frequency are investigated on the basis of method of 
local scattering functions. The classical channel characteristics, including power delay profile, Ricean 
K-factor, root means square (RMS) delay spread and RMS Doppler spread are extracted following the 
propagation principle. Furthermore, considering the source and birth-death process of multi-path 
components (MPCs) in different scattering propagation environments, cluster identification and 
statistical results are presented and compared. The different values of the channel parameters and the 
different performance of the channel under different scattering environments can help us understand 
the V2V channel deeply. The research results can be used for the design and optimization of vehicular 
communication systems in different scattering environments.

Internet-of-vehicle (IoV) is a significant technology to achieve the goals of intelligent vehicles and intelligent 
transportation systems. It is one of the most important application scenarios of the fifth generation mobile com-
munication technology and a popular research direction in the current Internet of things industry1,2. As one of 
the important basic safeguard technologies, vehicle-to-vehicle (V2V) wireless communication is an essential 
part of the IoV technology, which can supply a low-delay, high-speed, and secure data transmission service.

Wireless communication between vehicles generally occurs in complicated propagation environments. The 
communication performance and channel characteristics, to a large extent, are affected by surroundings, espe-
cially in the propagation scenarios with abundant scatterers. Compared with the traditional cellular network, V2V 
communication systems have many different characteristics, such as the low heights and high-speed mobility of 
both transmitter and receiver antennas3. Therefore, the influence on the V2V channel from surrounding scat-
terers is obvious and non-ignorable. Because it can result in the non-stationary performance of V2V channels4.

Indeed, the non-stationary of the channel has attracted more and more attention in the research and analysis 
of vehicular communications. A lot of channel models focusing on the non-stationary characteristic of V2V 
channels have been proposed5–7. In contrast, there is insufficient literature to study the impact on vehicular com-
munications from different scattering scenarios, such as scatterers with different sizes and structures.

On the non-stationary characteristic of V2V channels, lots of research efforts focus on the construction of 
geometry-based channel models. Following the theoretical foundation in the classic textbook8, the ellipse model 
is the most popular one in the channel modeling research. Jiang et. al9 built a vehicular channel model, using 
the ellipse model to depict roadside scattering environments. But vehicles in this reference are assumed to be 
static and described as a two-circle model. Using the similar method, in the channel modeling of the reference by 
Liang et. al10, the static scatterers on the both roadsides are assumed to be uniformly distributed on time-varying 
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ellipses, and the mobile scatterers are uniformly distributed in time-varying segments of the road. However, the 
scatterers can also be assumed to be randomly distributed on an ellipse with two moving vehicles being its foci11.

For the special propagation scenarios, some different geometrical models are used to conduct the channel 
modeling work as well. For the tunnel environments, Jiang et. al12 propose that a two-cylinder model can be used 
to describe moving vehicles, as well as a multiple confocal semi-ellipsoid model can be used to depict internal 
surfaces of tunnel walls. Zhao et. al13 proposed a geometry-based stochastic scattering model, in which a three-
dimensional two-cylinder and a two-dimensional multi-ring are respectively used to describe the stationary 
and the moving scatterers.

In addition, other models are also used in the non-stationary V2V channel modeling work. For example, in 
the model of the reference by Li et. al14, considering the effects of different vehicles scattering on V2X channels, 
the authors treat vehicles as the scattering centers. In the proposed geometrical model for the V2V channel in 
the reference by Cheng et. al15, small scattering objects along the roadside are assumed to be uniform linear 
distributed.

It can be found from above related work that most existing research have partiality for channel modeling on 
the scattering propagation environments. However, the differences of the influence between different scatters 
are rarely involved. Meanwhile, as one of important means for the analysis of wireless communication, channel 
measurement should also be carried out to extract typical channel characteristics, obtain some reliable and real 
results, and verify the effectiveness of the proposed models.

In order to describe and characterize the non-stationary vehicular channel for the different scattering sce-
narios, time-varying characteristics in the areas of iron bridge, soundproof wall, and road lamp are measured 
and analyzed in this paper. Based on the 5.9 GHz channel measurements, the multi-path components (MPCs) 
caused by the typical roadside scatterers are presented. The time-varying power delay profile, RMS delay spread 
and RMS Doppler spread are analyzed. The differences of influence on channel characteristics from different 
scatterers are compared. The main contributions of this paper are as follows.

•	 Differences of the contributing MPCs from investigated scatters are analyzed. In this paper, the scattering 
effects caused by different surrounding environments on both sides of the road are distinguished. Charac-
teristics of MPCs from different scatterers are analyzed.

•	 The influence on vehicular channel characteristics caused by different scatterers is compared. In this paper, 
we carried out 3 V2V channel measurement campaigns in different scattering scenarios, including iron 
bridge, soundproof wall, and road lamp cases. Differences of scattering effect caused by different scatterers 
are explored.

•	 Stationary times in the different scattering propagation scenarios are extracted. In this paper, considering 
the non-stationary of V2V channels, the stationary times in the iron bridge, soundproof wall, and road lamp 
propagation environments are calculated, respectively.

•	 Cluster identification and statistical characteristics of MPCs caused by different scatterers are conducted. In 
this paper, considering the source and birth-death process of MPCs, cluster identification for the power delay 
profile and statistical analysis of inter-cluster interval and intracluster decay time constant are performed.

The remainder of this paper is organized as follows. Section “Measurement campaign” gives the description of 
V2V channel measurement campaigns. In Section “Time-varying channel characteristics”, time-varying chan-
nel characteristics including stationary time, power and delay of MPCs, RMS delay spread and RMS Doppler 
spread in different scattering scenarios are analyzed. Section “Cluster identification and statistical results” pre-
sents cluster identification and statistical results of MPCs. Finally, Section “Conclusion” draws the conclusions.

Measurement campaign
Measurement scenarios.  The measurement campaigns are conducted in Wuhan, China. The measure-
ment scenarios are set to three kinds of cases with different roadside scattering environments, including iron 
bridge, soundproof wall, and road lamp cases.

•	 Scenario 1: Iron bridge. Bridge is a common road structure in some cities with inland rivers or lakes. In this 
measurement, the bridge is a suspension bridge over the Yangzte river, as shown in Fig. 1a. The main struc-
tures of the bridge include three large iron cable towers and several iron cables on both sides of the bridge. 

Figure 1.   The measurement scenarios. (a) Iron bridge. (b) Soundproof wall. (c) Road lamp.
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In our measurement, the two measurement vehicles drove in the same direction, passing through three iron 
towers in turn. During the measurement, the TX vehicle firstly keep driving behind the RX vehicle. After 
about 10 s, the TX vehicle overtook the RX vehicle. Due to the large height of the iron towers, there is almost 
no other obstruction between vehicles and the top of the tower, which means an obvious LOS path will exist 
between measurement vehicles and iron towers. However, the iron cables beside the bridge and the other 
parts of the iron towers will result in reflection effects.

•	 Scenario 2: Soundproof wall. Soundproof wall appears generally on the viaducts built in urban areas, aim-
ing at reducing the noise and guaranteeing the normal and quiet lives of residents near the viaducts. The 
structure of soundproof wall normally consists of sound barriers and metallic frames, as shown in Fig. 1b. 
The existence of soundproof wall makes the propagation environment become a semi-enclosed scene, which 
will cause some different channel characteristics comparing to that in the traditional propagation scenarios. 
At the same time of this measurement, some other vehicles passed by the measurement vehicles. Meanwhile, 
there are also many buildings with large heights beside the viaduct. Therefore, the passing vehicles and build-
ings will result in some reflection paths.

•	 Scenario 3: Road lamp. This scenario is selected on a bridge with a wide view, as shown in Fig. 1c. In this 
measurement, the vehicles drove between two rows of road lamps neatly distributed on the roadside. The 
road lamps are propped up by iron poles. Except the distant buildings, the main reflection source will be the 
road lamps beside the road, the metallic traffic signs, and other passing vehicles in this case.

According to the description above, we can find that what the three measurement scenarios have in common is 
the presence of reflections caused by scatterers beside the road. However, it should be noted that the scatterers 
are not the same. Therefore, whether it will result in different influence on the vehicular channel characteristic 
is the issue we need to explore in the next work.

Measurement equipment.  In this paper, our measurement campaigns are conducted using the radio 
channel sounder provided by super radio AS and Norwegian University of Science and Technology (NTNU)16. 
The measurement system is composed of the following parts:

•	 TX and RX: The transmitter (TX) of the channel sounder performs single-input single-output (SISO) meas-
urement and emits a chirp signal. The power of TX part is 16 dBm. The carrier frequency is set to 5.9 GHz 
with a frequency bandwidth of 100 MHz. The receiver (RX) can receive 1933 chirps per second. Every chirp 
signal contains 2560 samples.

•	 TX antenna: TX antennas are installed on the roof of transmitter vehicles at the heights of 1.53 m, 1.57 m 
and 1.57 m with the antenna gains of 2 dBi, 2 dBi and 2 dBi for measurements 1, 2 and 3, respectively.

•	 RX antenna: RX antennas are fixed to the roof of receiver vehicles. The heights of them for measurements 1, 
2 and 3 are 1.50 m, 1.50 m and 1.78 m, and the antenna gains are 2 dBi, 2 dBi and 10 dBi, respectively.

•	 Others: During each measurement, two computers are used to collect and save real-time information, includ-
ing measurement data, global positioning system (GPS) data and speeds of TX and RX vehicles. Moreover, 
videos are recorded during the entire measurements.

Tab. 1 gives the detailed parameter settings for the three measurements. All the antennas used in the measure-
ments are omni-directional in order to collect measurement data more accurately.

Time‑varying channel characteristics
Stationary time.  Vehicular communication usually occurs in a rapidly changing and mobile driving envi-
ronment. In these propagation environments, scatterers are distributed on both sides of the road. With the move-
ment of vehicles, the scatterers will result in the vehicular channel being a non-stationary fading process17,18.

For non-stationary channels, stationary time is an important characteristic, in which the analysis of vehicular 
channel can be simplified under the assumption of wide-sense-stationary and uncorrelated scattering (WSSUS). 

Table 1.   Measurement Parameters.

Measurement 1 Measurement 2 Measurement 3

Center frequency fc 5.9 GHz 5.9 GHz 5.9 GHz

Bandwidth B 100 MHz 100 MHz 100 MHz

Delay resolution �τmin 10 ns 10 ns 10 ns

Chirp interval TC 517 us 517 us 517 us

TX power PTX 16 dBm 16 dBm 16 dBm

TX antenna gain GTX 2 dBi 2 dBi 2 dBi

RX antenna gain GRX 2 dBi 2 dBi 10 dBi

TX antenna height hTX 1.53 m 1.57 m 1.57 m

RX antenna height hRX 1.50 m 1.50 m 1.78 m
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Therefore, in order to measure the stationary time, the collinearity of the local scattering function is used in 
this paper. The value of collinearity varies from 0 to 1. A larger value represents a similar power spectral density 
between the neighboring local scattering functions, where the fading process can be considered quasi-stationary. 
And the stationary time is defined as the time range where the collinearity exceeds a threshold of αth = 0.95,19.

Based on the methodology in the reference by Bernadó et. al19, the collinearity in time can be defined as

where L[kt , kf ; n, p] is the estimate of a time-frequency dependent scattering function on the basis of local scat-
tering function19. The � · �2 operation on L(kt ) is the vectorized local scattering function at a given time instant kt . 
n ∈ {0, · · · ,N − 1} denotes the delay index, and p ∈ {−M/2, · · · ,M/2− 1} is the frequency index. Meanwhile, 
kt , kf  are the index of the consecutive stationary region in time and frequency.

In our analysis, we define ts , Mt , �t as time resolution, dimension of the minimum stationary region in 
time, and time shift between consecutive stationary region, respectively. The stationary time Tstat can thus be 
calculated by the Equation (2).

Here, α is the indicator function, which is defined as

According to the method in the reference by Bernadó et. al19, we set dimension of the minimum stationary region 
to Mt = 40 samples with 20.7 ms. And then, the sliding shift, a half of Mt , �t is equal to 20 with a resolution 
of 10.3 ms in Tstat . The analysis in frequency domain are conducted in exactly the same way, except a different 
dimension minimum stationary region Nf  , where Nf  is 512 with 20 MHz and the sliding shift in frequency of 
�f  is 128 with a resolution of 5 MHz in Fstat.

Fig. 2a–e show the collinearity in time of the measurements in iron bridge, soundproof wall, and roadside 
lamp propagation environments, respectively. For the collinearity in time, a high value between kt and �kt can 
be considered as a similar power spectral density without rapid change in the channel during this time region. 
Meanwhile, the stationary time after applying the threshold of αth = 0.9 is shown in Fig. 2b–f. Furthermore, the 
minimum Tstat and Fstat , the 5% outage probability, mean and standard deviation values of Tstat and Fstat are 
presented in Tab. 2.

It can be found from the above results that the values of minimum stationary time obtained from the three 
measurements are similar (around 10.35 ms). However, values of the 5% outage probability and average station-
ary times are different. The statistical results indicate that, for the stationary time, the average values and values 
of the 5% outage probability are larger in the iron bridge and road lamp scenarios than the values obtained from 
the soundproof wall scenario. The statistical results of stationary frequency are similar to the results of stationary 
time. It means that the V2V channels in the iron bridge and road lamp scenarios are more stationary than that 
in the soundproof wall scenario. The reason is that the propagation environments are relatively open in the iron 
bridge and road lamp scenarios with stable iron chains and metal poles. In contrast, the existence of soundproof 
walls on both sides of the road forms a relatively closed propagation environment, which leads to the surround-
ing vehicles with great mobility and randomness being the main scatterers. Therefore, these factors result in a 
non-stationary channel in the soundproof wall scenario. Our result is consistent with the conclusion drawn from 
the in-tunnel and on-bridge scenarios in the reference by Bernadó et. al19.

Power delay profile.  In the analysis of wireless channel characteristics, power delay profile (PDP) is gen-
erally used to describe the received power of MPCs within a period of propagation delay from τ to ( τ + � 
τ ). After processing the channel measurement data, we can get discretized channel impulse response (CIR) 
h(TCn,�τminm) by inverse Fourier transform on the channel transfer function with respect to the frequency. 
Then, the instantaneous PDP P(TCn,�τminm) can be obtained by equation (4).

where, TCn denotes the measurement time t, n ∈ {0, 1, · · · ,Nc − 1} . Nc is the total number of chirps within a 
time unit. �τminm represents the delay τ , m ∈ {0, 1, · · · ,Ns − 1} . Ns is the number of samples per chirp. In this 
paper, according to the parameter setup of the channel sounder, Nc is 1933 per second and Ns is 2560.

We then define Nw as the length of quasi-stationary window and j ∈ {1, 2, . . . ,NJ } as the window index. NJ 
represents the number of quasi-stationary windows. tj = Nw · (j − 1) · TC denotes the time of the j-th window. 
Thus, the average power delay profile (APDP) in the j-th window can be given by equation (5).

(1)
ct[kt , kt +�kt] =

N−1
∑

n=0

M/2−1
∑

p=−M/2

N/2−1
∑

kf=−N/2

L[kt , kf ; n, p] ⊙ L[kt +�kt , kf ; n, p]

�L(kt)�2 · �L(kt+�kt)�2

(2)Tstat[kt] = ts(Mt −�t)+ ts�t




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
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Figure 2.   Collinearity in time and stationary time for the measurements. (a, b) Iron bridge. (c, d) Soundproof 
wall. (e, f) Roadside lamp.
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Based on the wireless propagation principle and measurement results, we extract the instantaneous PDPs 
for the three measurement scenarios. The instantaneous PDPs over measurement time are shown in Fig. 3. The 
result also presents the relationship between received power and delay, from which the multi-path phenomena 
caused by different scatterers can be observed in the three measurement scenarios.

For the measurement 1 (iron bridge case), some MPCs with strong power and large lifetime can be observed, 
which are marked by white circles in Fig. 3a. These MPCs are caused by the cable towers on the iron bridge. It 
can also be observed that measurement vehicles approaching the cable towers will result in MPCs with small 
delay and strong power, and vehicles leaving the cable tower will lead to MPCs with large delay and weak power. 
The largest delay can reach 2500 ns with a corresponding propagation distance of 750 m. In addition, MPCs 
can also be caused by the iron bridge cables, however, with a short lifetime and a relatively weak power. In order 
to distinguish from the foregoing components, these weak MPCs are marked by the white squares in Fig. 3a.

For the measurement 2 (soundproof wall case), the main MPCs are produced by the iron frames of the 
soundproof walls, such as paths marked by white ellipse in Fig. 3b. The frames of soundproof walls are fixed on 
both sides of the road. Thus, the delay and power of MPCs change with the vehicles approaching or leaving the 

Table 2.   Statistical results of the stationary time.

Scenarios

Tstat Fstat

min 5% out mean std min 5% out mean std

Iron Bridge 10.35 ms 0.37 s 3.26 s 2.51 s 5 MHz 20 MHz 66.88 MHz 18.99 MHz

Soundproof Wall 10.35 ms 0.09 s 1.55 s 1.04 s 5 MHz 10 MHz 57.18 MHz 22.59 MHz

Street Lamp 10.35 ms 0.68 s 2.49 s 1.22 s 5 MHz 30 MHz 69.14 MHz 16.74 MHz

Figure 3.   Power delay profiles of the measured scenarios. (a) Iron bridge. (b) Soundproof wall. (c) Roadside 
lamp.
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iron frames. Meanwhile, other passing vehicles can lead to MPCs as well. However, the MPCs originated from 
other vehicles have a small delay, weak power and short lifetime, as marked by the white arrows in Fig. 3b. In 
addition, the influence from high buildings beside the road can also be observed occasionally.

For the measurement 3 (road lamp case), the metal road lamp poles are densely distributed on both sides of 
the road, which result in a large number of MPCs. These propagation paths have a relatively small delay of about 
1000 ns with a corresponding propagation distance of 300 m. We use white square to highlight these MPCs, as 
shown in Fig. 3c. Due to the measurement conducted on an open bridge over a lake, the influence from the large 
traffic signs can also be observed obviously. Meanwhile, it can be observed that the MPCs caused by large metallic 
traffic signs have a large delay and a relatively strong power, which are marked by the white arrows in the figure.

From the analysis above, it can be found that the MPCs are generally produced by surrounding scatters, 
especially the scatters covered by metallic surface or with large size. In the three measurements, the iron cable 
tower of the bridge, the large metallic traffic signs, and large buildings result in rich MPCs with large delay and 
strong power. Meanwhile, the iron bridge cables, metallic frames of soundproof walls, road lamp poles, and 
passing vehicles can also lead to MPCs. However, these MPCs have a small delay and a short lifetime due to 
the small size of the scatterers. But in any case, MPCs caused by both cases can make an obvious impact on the 
vehicular channel characteristics.

In the analysis of wireless channel, Ricean K-factor is an important parameter to present the ratio relation-
ship of the power between specular and diffuse components. It is widespread for characterizing the small-scale 
fading. The definition of Ricean K-factor can be described by equation (6).

where, r2 and 2σ 2 are the power of specular part (line of sight component) and diffuse part (other MPCs except 
LOS component), respectively.

According to the measurement results, the Ricean K-factor for the three measurements are extracted and 
the cumulative distribution functions (CDFs) of them are presented in Fig. 4. It can be found that the mean of 
Ricean K-factor for the 3 measurements in iron bridge, soundproof wall, and road lamp scenarios are 3.39 dB, 
0.67 dB, and 3.96 dB with standard deviation of 2.49 dB, 3.18 dB, and 2.57 dB, respectively. The results indicate 
that average values of the Ricean K-factors in the iron bridge and road lamp scenarios are larger than that in the 
soundproof wall scenario. The reason is that the relative openness of propagation environments in the iron bridge 
and road lamp cases make the LOS component dominant. We thus get a bigger value of Ricean K-factor. On the 
contrary, the propagation environment in the soundproof wall case is a semi-closed one. The influence of the 
multipath effect from the passing vehicles is obvious. This can also be found from the large standard deviation 
of Ricean K-factor, which indicates that the process affected by MPCs is varying.

RMS delay spread and RMS Doppler spread.  Similar with the acquisition process of PDP, the discreted 
CIRs within each quasi-stationary window can be employed to acquire the delay-Doppler spectrum by equa-
tion (7).

where ν = r ·�ν denotes Doppler frequency shift with a unit of Hz. fdft[·] expresses discrete Fourier transform 
(DFT). �ν represents Doppler resolution. Parameter r = {rmin, rmin + 1, rmin + 2, . . . , rmax} is a scope value.

Similarly, the average delay-Doppler spectrum PB(tj , r�ν) can be obtained on the basis of equation (7), 
according to the same operation method between equation (4) and (5).

In the analysis of wireless channel, the appearance of delay and frequency dispersion is related to root means 
square (RMS) delay spread and RMS Doppler spread. So these are two important channel characteristics. Gen-
erally, they can be defined as the second central moments of PDP and delay-Doppler spectrum, respectively, 
shown in equation (8) and equation (10).

(6)K(dB) = 10 · log10

(

r2

2σ 2

)

(7)S(r�ν,�τminm) = |fdft[h(TCn,�τminm)]|2

Figure 4.   Cumulative distribution function of the Ricean K-factor.
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where Tm(tj) denotes the mean delay of the j-th window, as

The RMS Doppler spread of the j-th window Sν(tj) can be obtained by equation (10)

where νm(tj) expresses mean Doppler frequency shift of the j-th window, as

In addition, in the analysis of RMS delay and RMS Doppler spreads, a threshold should be set to avoid influence 
from spurious components. According to the reference by Fang et. al20, we set the threshold to 6 dB above the 
average noise floor in our analysis. Then, based on the measurement results, the CDFs of RMS delay spread and 
RMS Doppler spread of the three measurements are presented in Fig. 5a,b. The statistical results show that the 
average values of RMS delay spread in iron bridge, soundproof wall, and road lamp cases are 4.54 ns, 4.48 ns, and 
4.65 ns with a standard deviation of 0.38 ns, 0.44 ns, and 0.41 ns, respectively. It can be observed that the differ-
ence of influence from the surroundings on the RMS delay spread is not very obvious in our 3 measurements.

From Fig. 5b, it can be found that the largest average RMS Doppler spread of 218.4 Hz with a largest standard 
deviation of 65.5 Hz appears in the measurement of the soundproof wall scenario. This is consistent with the 
finding in the analysis of Ricean K-factor, which is caused by the semi-closed propagation environment and the 
influence of multi-path effect from the passing vehicles.

Cluster identification and statistical results
According to the principle in reference by Molisch21, MPCs often tend to arrive at the receiver in the form of 
”cluster”. Therefore, a classical Saleh-Valenzuela (SV) model22 was proposed to characterize the relationship 
between received power and delay of clusters.

(8)Sτ (tj) =

√

√

√

√

√

√

√

√

MD
∑

m=1
(�τminm)2 · P(tj ,�τminm)

MD
∑

m=1
P(tj ,�τminm)

− [Tm(tj)]2

(9)Tm(tj) =

MD
∑

m=1
(�τminm) · P(tj ,�τminm)

MD
∑

m=1
P(tj ,�τminm)

(10)Sν(tj) =

√

√

√

√

√

√

√

√

rmax
∑

rmin

(r�ν)2PB(tj , r�ν)

rmax
∑

rmin

PB(tj , r�ν)

− [νm(tj)]2

(11)νm(tj) =

rmax
∑

rmin

(r�ν) · PB(tj , r�ν)

rmax
∑

rmin

PB(tj , r�ν)

.

Figure 5.   Cumulative distribution function of the rms delay spread and the rms Doppler spread. (a) rms delay 
spread. (b) rms Doppler spread.
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where c1,1 represents the amplitude of the 1-st MPC in the 1-st cluster. L and Kl denote the total number of clus-
ters in the instantaneous PDP and total number of MPCs in the l-th cluster, respectively. Tl is the arrival delay 
of the 1-st path in the cluster l. For the l-th cluster, τk,l represents the excess delay of the k-th path relative to the 
1-st path by definition of τ1,l = 0 . Ŵ and γ represent the cluster decay time constant and the intracluster decay 
time constant, respectively.

Generally, the purpose of PDP modeling can be considered to obtain the arrival delay of the 1-st path in the 
l-th cluster Tl , the cluster decay time constant Ŵ and the intracluster decay time constant γ , i.e., the identification 
of clusters. Therefore, we adopt the methodology based on the theory of Kurtosis and region competition in 
reference by Gentile23 to realize the cluster identification. Results of the cluster identification for the three meas-
urements are presented in Fig. 6. It is observed that the LOS and MPC clusters can be identified well. Meanwhile, 
we can also find that the delay distributions of most MPC clusters are concentrated within or around 1000 ns, 
which means the main influence of MPCs is from scatters around 300 m for vehicular communications. How-
ever, there is still difference between the distribution of the MPCs due to the different surroundings in the three 
measurement scenarios. In the iron bridge case, we can observe that some MPCs have non-ignorable energy with 
a large delay, such as the reflection path with a delay of 3120 ns with a power of −32.6 dB (the corresponding 
propagation distance is 936 m). And in the road lamp case, we can observe some reflection paths with a large 

(12)
PDP(τ ) =

L
∑

l=1

Kl
∑

k=1

{[

20 log10(c1,1)−

(

Tl

Ŵ
+

τk,l

γ

)

· 10 log10(e)

]

· δ
(

τ − Tl − τk,l

)

}

Figure 6.   Result of cluster identification for the measurements. (a) Iron bridge. (b) Soundproof wall. (c) 
Roadside lamp.
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delay, but the propagation energy is relatively weak (such as the paths at 2130 ns with a power of −48.1 dB and 
at 2910 ns with a power of −48.46 dB ). Compared with these two cases, there is rare reflection path with a large 
delay in the soundproof wall scenario, which only one path at 1420 ns with a power of −23.6 dB can be observed. 
The reason is that the propagation environment is relatively closed due to the existence of soundproof walls on 
both sides of the road.

In the cluster identification and modeling of PDP, the cluster decay time constant and the intracluster decay 
time constant are two important parameters. In this paper, we also make analysis on the two key parameters 
by extracting inter-cluster interval and reciprocal of intracluster decay time constant. The inter-cluster interval 
between the (l-1)-th cluster and the l-th cluster is defined as �Tl = Tl − Tl−1(l ≥ 2) . And reciprocal of intra-
cluster decay time constant is an important part of the ray decay function.

Fig. 7 presents the statistical results of the inter-cluster interval and the intracluster decay constant. It can be 
found that there is a small difference in inter-cluster intervals between the results obtained from the measure-
ments of soundproof wall and road lamp cases. 90% of inter-cluster interval is within 740 ns for both the results 
extracted from them. However, 90% of inter-cluster interval is within 970 ns in the measurement of iron bridge 
scenario. This is caused by the reflection from the iron tower with a large delay and a strong power. The same 
finding can be observed from the statistical results of reciprocal of intracluster decay time constants. In addition, 
the result indicates that the reciprocal of intracluster decay time constants follow the exponential distribution 
with rate parameters of 0.034 GHz, 0.029 GHz, and 0.036 GHz, respectively.

Conclusion
This paper discusses the non-stationary characteristics of vehicular channel for different roadside scattering 
environments, focusing on the influence from different scatterers. The measurement data are collected from 
three V2V channel measurements in different scattering environments, including iron bridge, soundproof wall, 
and road lamp scenarios. The stationary time and frequency, power delay profile, Ricean K-factor, RMS delay 
spread and RMS Doppler spread are extracted. Considering the birth-death process of MPCs, cluster identifica-
tion is also conducted. The analysis results of the stationary time and frequency show that the V2V channel in 
soundproof wall scenario is more stable than that in iron bridge and road lamp scenarios. From the analysis 
results of MPCs, it can be found that the metallic cable tower on the bridge can cause rich MPCs with large 
delay and strong power. The metallic frames of soundproof walls and the poles of road lamps can lead to MPCs 
as well, however, with small delay and weak power due to their small sizes. Meanwhile, in the relatively closed 
propagation environment of the soundproof wall case, the influence from other passing vehicles cannot be 
ignored. In addition, it also can be found that a large metallic cable tower can make a large inter-cluster interval 
and reciprocal of intracluster decay time constant. These results can provide reference for the vehicular wireless 
communication network design and optimization.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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Figure 7.   Statistical results of the inter-cluster interval and the intracluster decay constant. (a) Inter-cluster 
interval. (b) Reciprocal of intracluster decay time constant.
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