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On controlled Hamilton 
and Hamilton–Jacobi differential 
equations of higher‑order
Savin Treanţă1,2,3, Kamsing Nonlaopon4* & Muhammad Bilal Khan5

In this paper, we investigate the nonlinear dynamics associated with controlled Lagrangians involving 
higher-order derivatives. More precisely, we establish the controlled higher-order Hamilton ordinary 
differential equations (ODEs) and Hamilton–Jacobi partial differential equation (PDE) for the 
considered class of Lagrangians governed by higher-order derivatives of the state variables. Moreover, 
we formulate and prove an invariance result with respect to the state variable. In addition, in order to 
validate the theoretical results and to highlight their effectiveness, some illustrative applications are 
presented.

In this paper, the main goal is to formulate and prove some elements on Hamilton–Jacobi theory governed by 
single-time controlled higher-order Lagrangians. More precisely, we investigate and establish: controlled Hamil-
ton ODEs, controlled Hamilton–Jacobi PDE, controlled generating function, and controlled canonical momenta. 
The current paper is based on the first author’s recent papers (see Treanţă1,2) and his collaborators (see Treanţă 
and Udrişte3), where only non-controlled Lagrangians have been considered. For instance, by considering some 
multi-time optimization problems, in Treanţă4 has established Hamilton-Pfaff PDEs. Also, by using the char-
acteristic system method, some linear higher-order Hamilton–Jacobi PDEs have been studied in Treanţă and 
Vârsan5. Several results on multi-time Hamilton–Jacobi theory, involving Lagrangians of second-order, have been 
formulated in Treanţă6. Moreover, a system of Hamilton–Jacobi PDEs governed by non-controlled Lagrangians 
of higher-order has been studied in Treanţă7.

As we all know, the single-time (classical) Hamilton–Jacobi theory appeared in mechanics out of the desire 
to characterize the motion of a particle using a wave. Therefore, the Euler–Lagrange and the associated Hamil-
ton ordinary differential equations have been replaced by Hamilton–Jacobi partial differential equations which 
describe the generating function. With the time, many researchers had a special interest in the study of Hamilton 
and Hamilton–Jacobi differential equations (see, for instance, see Rochet8, Miron9, Roman10, Krupkova11, Motta 
and Rampazzo12, Udrişte, and Ţevy13, Cardin and Viterbo14, Radjenović et al.15, He16). Recently, by using the 
classical Noether’s theorem and a non-standard Legendrian duality, the single-time and multi-time versions of 
Noether’s result have been investigated for autonomous second-order Lagrangians in Treanţă17. Moreover, by 
using appropriate techniques of calculus of variations and some geometric tools, necessary conditions of opti-
mality have been formulated for the optimization of some simple, multiple or curvilinear integral functionals 
(governed by Lagrangians of second-order) subject to ordinary/partial differential equation or isoperimetric 
constraints (see Treanţă18). In Krupková and Smetanová19 studied the Legendre transformation for regulariz-
able Lagrangians in field theory. Later, Smetanová20 stated some results regarding second-order Lagrangians 
corresponding to 2nd and 3rd order Euler–Lagrange forms. Also, the associated 3rd order Hamiltonian systems 
have been established. An excellent survey regarding the classical field theory is presented in Giachetta et al.21. A 
theoretical basis for stamp optimization, especially for determining optimal condition for the magnet-controlled 
transfer printing, is investigated by Linghu et al.22. Also, in Pascalis et al.23, antiplane wave band gaps are opti-
mized via pre-stress using genetic algorithms. For other different but connected ideas on this topic, the reader 
is directed to Mahdirajia et al.24, Brown and Balakrishnan25, and Vlasov26 (regarding the kinetic equation with 
a self-consistent field containing higher-order time derivatives).

Motivated by the ongoing research in this area, in this paper we investigate the nonlinear dynamics associ-
ated with controlled Lagrangians involving higher-order derivatives. More precisely, we establish the controlled 
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higher-order Hamilton and Hamilton–Jacobi differential equations for the considered class of Lagrangians gov-
erned by higher-order derivatives of the state variables. Moreover, we formulate and prove an invariance result 
with respect to the state variable.

The paper is structured as follows. “Controlled Hamilton and Hamilton–Jacobi differential equations” sec-
tion introduces the necessary mathematical tools for establishing the main results of the paper. Theorems 1 and 
2 present the controlled partial differential equation of Hamilton–Jacobi type, and an invariance result with 
respect to the state variable, respectively. These two theorems represent the main results of this paper. Finally, 
“Conclusions” section concludes the present research work.

Controlled Hamilton and Hamilton–Jacobi differential equations
This section formulates Hamilton and Hamilton–Jacobi differential equations governed by con-
trolled single-time Lagrangians of higher-order. In this regard, let k ≥ 2 be a fixed natural number, 
θ ∈ [θ0, θ1] ⊆ R, s : [θ0, θ1] ⊆ R → R

n, s =
(

si(θ)
)

, i = 1, n , is a C2k-class function (called the state variable), 
s(b)(θ) := db

dθb
s(θ), b ∈ {1, 2, . . . , k} , and u : [θ0, θ1] ⊆ R → R

m, u = (uα(θ)), α = 1,m , is a C1-class function 
(called the control variable). The real-valued function

of Ck+1-class, named controlled single-time Lagrangian of higher-order, depends by (k + 1)n+m+ 1 variables. 
By denoting

and considering the Legendre Transform for the above systems, the relation L = s(b)ipbi −H (with Einstein 
summation) modifies the following controlled simple integral functional

into

and the Euler–Lagrange ordinary differential equations of higher-order,

associated with (2), are just the Hamilton ordinary differential equations of higher-order,

In the following, we shall introduce the Hamilton–Jacobi partial differential equation based on controlled 
single-time Lagrangians of higher-order.

Let us consider the real-valued function S : R× R
kn × R

m → R and the controlled constant level sets

k ≥ 2 a fixed natural number, where s(b)(θ) := db

dθb
s(θ), b = 1, k − 1 . Further, we consider that these sets rep-

resent some hypersurfaces in Rkn+m+1 . This means that the normal vector field

has linearly independent components. Also, let

be a controlled transversal curve associated with the hypersurfaces �c . Then, the function

L

(

θ , s(θ), s(1)(θ), . . . , s(k)(θ), u(θ)
)

∂L

∂s(b)i

(

θ , s(θ), s(1)(θ), . . . , s(k)(θ), u(θ)
)

= pbi(θ), b ∈ {1, 2, . . . , k},

(1)I(s(·), u(·)) =

∫ θ1

θ0

L

(

θ , s(θ), s(1)(θ), . . . , s(k)(θ), u(θ)
)

dθ

(2)

J(s(·), u(·), p1(·), . . . , pk(·))

=

∫ θ1

θ0

(

s(b)i(θ)pbi(θ)−H(θ , s(θ), u(θ), p1(θ), . . . , pk(θ))
)

dθ

∂L

∂si
−

d

dθ

∂L

∂s(1)i
+

d2

dθ2
∂L

∂s(2)i
− · · · + (−1)k

dk

dθk
∂L

∂s(k)i
= 0, i ∈ {1, 2, . . . , n},

∂L

∂uα
−

d

dθ

∂L

∂u(1)α
+

d2

dθ2
∂L

∂u(2)α
− · · · + (−1)k

dk

dθk
∂L

∂u(k)α
= 0, α ∈ {1, 2, . . . ,m},

k
∑

b=1

(−1)b+1 db

dθb
pbi = −

∂H

∂si
,

db

dθb
si =

∂H

∂pbi
, b ∈ {1, 2, . . . , k},

∂H

∂uα
= 0, α ∈ {1, 2, . . . ,m}.

�c : S

(

θ , s, s(1), . . . , s(k−1), u
)

= c,

(

∂S

∂θ
,
∂S

∂si
,
∂S

∂s(1)i
, . . . ,

∂S

∂s(k−1)i
,
∂S

∂uα
,

)

Ŵ̃ :

(

θ , si(θ), s(1)i(θ), . . . , s(k−1)i(θ), uα(θ)
)

, θ ∈ R,
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has nonzero the total derivative

Further, by direct computation, it results the controlled canonical momenta

Definition 1  The controlled Lagrangian of higher-order

is named super-regular if

defines the function of components

In these hypotheses, the relations

in accordance with Legendre Transform (see Definition 1), can be formulated as

and the relation (3) can be rewritten as

The duality between the super-regular controlled Lagrangian of higher-order L and the following controlled 
Hamilton function gives

c(θ) = S

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

(3)

dc

dθ
(θ) =

∂S

∂θ

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

+
∂S

∂si

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

s(1)i(θ)

+

k−1
∑

r=1

∂S

∂s(r)i

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

s(r+1)i(θ)

+
∂S

∂uα

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

u(1)α(θ)

:= L

(

θ , s(θ), s(1)(θ), . . . , s(k)(θ), u(θ), u(1)(θ)
)

.

pbi(θ) :=
∂L

∂s(b)i

(

θ , s(θ), s(1)(θ), . . . , s(k)(θ), u(θ), u(1)(θ)
)

=
∂S

∂s(b−1)i

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

, b ∈ {1, 2, . . . , k}.

L

(

θ , s(θ), s(1)(θ), . . . , s(k)(θ), u(θ), u(1)(θ)
)

∂L

∂s(b)i

(

θ , s(θ), s(1)(θ), . . . , s(k)(θ), u(θ), u(1)(θ)
)

= pbi(θ), b ∈ {1, 2, . . . , k}

s(b) = s(b)
(

θ , s, . . . , s(b−1), p1, . . . , pk

)

, b ∈ {1, 2, . . . , k}.

s(b) = s(b)
(

θ , s, . . . , s(b−1), u, p1, . . . , pk

)

, b ∈ {1, 2, . . . , k},

s(b) = s(b)
(

θ , s, . . . , s(b−1), u,
∂S

∂s
, . . . ,

∂S

∂s(k−1)

)

, b ∈ {1, 2, . . . , k}

(4)

−
∂S

∂θ

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

=
∂S

∂si

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

· s(1)i
(

θ , si , u,
∂S

∂si
(·), . . . ,

∂S

∂s(k−1)i
(·)

)

+

k−1
∑

r=1

∂S

∂s(r)i

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

· s(r+1)i

(

θ , si , . . . , s(r)i , u,
∂S

∂si
(·), . . . ,

∂S

∂s(k−1)i
(·)

)

+
∂S

∂uα

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

u(1)α(θ)

− L

(

θ , s(θ), s(1)(θ), . . . , s(k)(θ), u(θ), u(1)(θ)
)

.
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(controlled non-standard Legendre duality of higher-order) or, for short,

Now, by considering all the previous reasoning, we can rewrite (4) as Hamilton–Jacobi partial differential 
equation based on controlled Lagrangians of higher-order,

Remark 1  The above controlled partial differential equation of Hamilton–Jacobi type, based on Lagrangians of 
higher-order, is equipped with the initial condition

and the corresponding solution S
(

θ , s, s(1), . . . , s(k−1), u
)

 is named the controlled generating function associated 
with the canonical momenta.

Remark 2  Conversely, let us consider S
(

θ , s, s(1), . . . , s(k−1), u
)

 is a solution of the controlled Hamilton–Jacobi 
partial differential equation based on Lagrangians of higher-order. Also, we define

Taking into acount the above mathematical tools, the following relation is true

showing that the cost simple integral functional can be formulated as a curvilinear integral functional which 
does not depend on the path.

The next theorem represents the first main result derived in the present paper. Its proof is provided by all the 
above computations and hypotheses.

Theorem 1  The controlled generating function of the canonical momenta is solution of the Cauchy problem

Example 1  Let θ be the time, u = (uα) is the control vector, and s = (si) is the vector of spatial coordinates. 
Consider the function (operator) H1 = I is associated with the information as a measure of organization (syn-
ergy and purpose), the function (operator) H2 = H is associated with the energy as a measure of movement, 
the function S1 is the generating function for entropy, and the function S2 is the generating function for action. 
A controlled system of partial differential equations having the following form

H

(

θ , s, . . . , s(k−1), u, p1, . . . , pk

)

:= s(b)i
(

θ , s, . . . , s(b−1), u, p1, . . . , pk

)

·
∂L

∂s(b)i

(

θ , s, . . . , s(k)(θ , s, . . . , s(k−1), u, p1, . . . , pk), u, u
(1)
)

− L

(

θ , s, s(1)(θ , s, u, p1, . . . , pk), . . . , s
(k)(θ , s, . . . s(k−1), u, p1, . . . , pk), u, u

(1)
)

,

H = s(b)ipbi −L .

(H − J − hig .)
∂S

∂θ
+H

(

θ , s, . . . , s(k−1), u,
∂S

∂s
,
∂S

∂s(1)
, . . . ,

∂S

∂s(k−1)

)

= 0.

S

(

0, s, s(1), . . . , s(k−1), u
)

= S0

(

s, s(1), . . . , s(k−1), u
)

,

pbi(θ) =
∂S

∂s(b−1)i

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

, b ∈ {1, 2, . . . , k}.

∫ θ1

θ0

L

(

θ , s(θ), s(1)(θ), . . . , s(k)(θ), u(θ), u(1)(θ)
)

dθ

=

∫ θ1

θ0

[

s(b)i(θ)pbi(θ)−H

(

θ , s(θ), . . . , s(k−1)(θ), u(θ),

∂S

∂s
(·),

∂S

∂s(1)
(·), . . . ,

∂S

∂s(k−1)
(·)

)]

dθ

=

∫

Ŵ

∂S

∂s(b−1)i
ds(b−1)i +

∂S

∂θ
dθ =

∫

Ŵ

dS,

∂S

∂θ
+H

(

θ , s, . . . , s(k−1), u,
∂S

∂s
,
∂S

∂s(1)
, . . . ,

∂S

∂s(k−1)

)

= 0

S

(

0, s, s(1), . . . , s(k−1), u
)

= S0

(

s, s(1), . . . , s(k−1), u
)

= given.
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is called physical control. This kind of system can be written by using the real vector function 
S = (S1, S2) : R× R

n × R
m → R.

The following theorem formulates the second main result of this paper. It establishes, under some hypotheses, 
the invariance with respect to the state variable s of

Theorem 2  If the equality

is fulfilled and the associated domain is convex, then

is invariant with respect to s.

Proof  By computation, we obtain

equivalent with

or,

∂S1

∂θ
+H1

(

θ , s, u,
∂S1

∂s
,
∂S2

∂s

)

= 0,

∂S2

∂θ
+H2

(

θ , s, u,
∂S1

∂s
,
∂S2

∂s

)

= 0

dS

dθ
+H

(

θ , s, . . . , s(k−1), u,
∂S

∂s
,
∂S

∂s(1)
, . . . ,

∂S

∂s(k−1)

)

.

L

(

θ , s(θ), s(1)(θ), . . . , s(k)(θ), u(θ), u(1)(θ)
)

=
∂S

∂θ

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

+
∂S

∂si

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

s(1)i(θ)

+

k−1
∑

r=1

∂S

∂s(r)i

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

s(r+1)i(θ)

+
∂S

∂uα

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

u(1)α(θ)

dS

dθ
+H

(

θ , s, . . . , s(k−1), u,
∂S

∂s
,
∂S

∂s(1)
, . . . ,

∂S

∂s(k−1)

)

∂L

∂sj

(

θ , s(θ), s(1)(θ), . . . , s(k)(θ), u(θ), u1(θ)
)

=
∂2S

∂θ∂sj

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

+
∂2S

∂si∂sj

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

s(1)i(θ)

+

k−1
∑

r=1

∂2S

∂s(r)i∂sj

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

s(r+1)i(θ),

+
∂2S

∂uα∂sj

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

u(1)α(θ)

−
∂H

∂sj

(

θ , s(θ), . . . , s(k−1)(θ), u(θ),
∂S

∂s
(·),

∂S

∂s(1)
(·), . . . ,

∂S

∂s(k−1)
(·)

)

=
∂2S

∂θ∂sj

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

+
∂2S

∂si∂sj

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

s(1)i(θ)

+

k−1
∑

r=1

∂2S

∂s(r)i∂sj

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

s(r+1)i(θ),

+
∂2S

∂uα∂sj

(

θ , s(θ), s(1)(θ), . . . , s(k−1)(θ), u(θ)
)

u(1)α(θ)
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involving

and the proof is complete. 	�  �

Illustrative applications.   Next, we will formulate and investigate two applications associated with the 
studied formalism in the paper. 

(1)	 Let us extremize the following simple integral functional 

 subject to the restrictions 

  

Solution.  To study the above constrained variational control problem, we consider the following auxiliary 
Lagrangian

that determines the following Euler–Lagrange type equations [or Hamilton type equations, if we consider 
H = s(b)ipbi −L = ṡ(θ)p(θ)+ s(θ)+ u2(θ) ] 

 and 

 By combining the last two relations, we obtain 

 and taking into account the conditions s(0) = 0, s(1) = x1 , it follows b = 0, c = 2
(

x1 −
1
2

)

.

(2)	 The following application takes into account the equations of multi-time dynamics generated by suit-
able Lagrangians. Let us extremize the mechanical work provided by the controlled variable force 
V = (s2(θ)+ u2(θ), s2(θ)+ u2(θ)) to move its application point along the following piecewise smooth 
curve ϒ0,1 , included in [0, 1]2 , joining the points (0, 0), (1, 1) , so that 

∫

ϒ0,1
sθ1(θ)dθ

1 + sθ2(θ)dθ
2 = 0 (path-

independent curvilinear integral) and the boundary conditions s(0, 0) = 0 , s(1, 1) = 0 are satisfied.
	   Solution. We consider the following controlled curvilinear integral functional 

subject to: 
∫

ϒ0,1
sθ1(θ)dθ

1 + sθ2(θ)dθ
2 = 0 (path-independent curvilinear integral) and the boundary con-

ditions s(0, 0) = 0, s(1, 1) = 0 . The path-independence associated with the cost functional J(s(·), u(·)) 
gives the relation 

 Also, the corresponding Lagrange 1-form has the components 

∂

∂sj

[

dS

dθ
+H

(

θ , s, . . . , s(k−1), u,
∂S

∂s
,
∂S

∂s(1)
, . . . ,

∂S

∂s(k−1)

)]

= 0,

dS

dθ
+H

(

θ , s, . . . , s(k−1), u,
∂S

∂s
,
∂S

∂s(1)
, . . . ,

∂S

∂s(k−1)

)

= f (θ , s(1)(θ), . . . , s(k)(θ), u(θ), u1(θ))

I(s(·), u(·)) =

∫ θ1

θ0

L (s(θ), ṡ(θ), s̈(θ), u(θ), θ)dθ

= −

∫ 1

0

(

s(θ)+ u2(θ)
)

dθ

ṡ(θ) = u(θ), s(0) = 0, s(1) = x1 = given.

L1(s(θ), ṡ(θ), s̈(θ), u(θ), θ) = −
(

s(θ)+ u2(θ)
)

+ p(θ)(u(θ)− ṡ(θ)),

ṗ(θ) = 1 ⇒ p(θ) = θ + c, c ∈ R,

− 2u(θ)+ p(θ) = 0 ⇒ u(θ) =
p(θ)

2
=

θ + c

2
,

u(θ) = ṡ(θ).

s(θ) =
θ2

4
+

cθ

2
+ b, b ∈ R

J(s(·), u(·)) =

∫

ϒ0,1

(

s2(θ)+ u2(θ)
)

dθ1 +
(

s2(θ)+ u2(θ)
)

dθ2

s

(

∂s

∂θ2
−

∂s

∂θ1

)

= u

(

∂u

∂θ1
−

∂u

∂θ2

)

.
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 and the extremals are provided by the Euler–Lagrange system of PDEs 

 implying that (s∗, u∗) = (0, 0) is the optimal solution of the considered isoperimetric constrained vari-
ational control problem.

	   Also, it can be easily verified that Theorem 2 is satisfied for the above two illustrative applications.

Conclusions
In this paper, we have established the nonlinear dynamics associated with a class of controlled Lagrangians 
involving higher-order derivatives. Concretely, we have formulated the controlled higher-order Hamilton and 
Hamilton–Jacobi differential equations for the considered Lagrangians governed by higher-order derivatives of 
the state variables. Also, we have formulated and proved an invariance result with respect to the the state variable. 
An illustrative application of the theoretical results obtained in the paper was also provided.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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(
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