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Online knowledge distillation 
network for single image dehazing
Yunwei Lan  , Zhigao Cui*, Yanzhao Su, Nian Wang, Aihua Li, Wei Zhang, Qinghui Li & 
Xiao Zhong

Single image dehazing, as a key prerequisite of high-level computer vision tasks, catches more 
and more attentions. Traditional model-based methods recover haze-free images via atmospheric 
scattering model, which achieve favorable dehazing effect but endure artifacts, halos, and color 
distortion. By contrast, recent learning-based methods dehaze images by a model-free way, which 
achieve better color fidelity but tend to acquire under-dehazed results due to lacking of knowledge 
guiding. To combine these merits, we propose a novel online knowledge distillation network for 
single image dehazing named OKDNet. Specifically, the proposed OKDNet firstly preprocesses hazy 
images and acquires abundant shared features by a multiscale network constructed with attention 
guided residual dense blocks. After that, these features are sent to different branches to generate 
two preliminary dehazed images via supervision training: one branch acquires dehazed images via 
the atmospheric scattering model; another branch directly establishes the mapping relationship 
between hazy images and clear images, which dehazes images by a model-free way. To effectively 
fuse useful information from these two branches and acquire a better dehazed results, we propose an 
efficient feature aggregation block consisted of multiple parallel convolutions with different receptive. 
Moreover, we adopt a one-stage knowledge distillation strategy named online knowledge distillation 
to joint optimization of our OKDNet. The proposed OKDNet achieves superior performance compared 
with state-of-the-art methods on both synthetic and real-world images with fewer model parameters. 
Project website: https://​github.​com/​lanyu​nwei/​OKDNet.

Haze reduces image visibility with low contrast and color changes, which results in poor performance of high-
level computer vision tasks such as object detection, automatic drive, and image understanding. Hence, image 
dehazing technology, as a key prerequisite, has become a crucial subject in computer vision. Generally, the 
formation mechanism of hazy images can be modeled as the following atmospheric scattering model:

where I represents images obtained under hazy conditions; J represents restored hazy-free images; x represents 
the pixel location. Moreover, A and t  represent the atmospheric light and transmission map.

Obviously, Eq. (1) is an ill-posed problem, which means we cannot acquire haze-free images J from hazy 
inputs I directly since both A and t  are undetermined. To this end, some prior-based methods estimate trans-
mission map and global atmospheric light via a statistical rule on haze-free images, including dark channel 
prior (DCP)1, color-lines prior (CLP)2, color attenuation prior (CAP)3, and non-local dehazing (NLD)4. These 
prior-based methods can achieve excellent dehazing effect, but tend to cause halos and color distortion since 
unilateral assumption cannot hold in various scenes.

To solve these problems, some learning-based methods5–9 estimate atmospheric light and transmission map 
more accurately by data driving. Moreover, some methods10–12 estimate transmission map and dehaze images 
via a type-2 fuzzy approach and a Z-score-based weighting function. These methods dehaze effectively but still 
cause some color or illumination distortion since the atmospheric scattering model is just an ideal equation, 
which cannot completely represent the formation process of real haze. Hence, some end-to-end learning-based 
methods13–25 have been proposed, which do not estimate above intermediate parameters, and directly build the 
mapping between clear images and hazy inputs to achieve dehazing. However, due to the huge gap exists between 
hazy images and clear images, these end-to-end methods need strong feature extraction ability, and always solve 
this problem by increasing network depth13,14 and feature scales15–18. Recent researches have demonstrated that 
these multiscale methods have poor generalization ability especially when applied to real scenes due to over-
fitting in synthetic field and lacking of extra knowledge for training guiding. Hence, some innovative works adopt 

(1)I(x) = J(x)t(x)+ A(1− t(x))
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prior dehazed images (i.e., the dehazed images of dark channel prior) or features in the reconstruction of clear 
images to guide network training, which achieve better dehazing effect in various scenes.

Different from existing dehazing methods, we propose an online knowledge distillation network for single 
image dehazing named OKDNet. As shown in Fig. 1, we notice that model-based dehazing methods, includ-
ing prior-based methods (i.e., DCP) and some learning-based methods (i.e., DCPDN), conduct better dehaz-
ing performance when compared to some recent multiscale end-to-end dehazing methods. For example, after 
DA, DCPDN achieves the best NIQE with a value of 4.62. Moreover, although DCP causes color distortion, it 
still achieves better values than AODNet in term of NIQE. This means the atmospheric scattering model, as a 
universal haze formation model, provides a training guidance and makes the network achieve better dehazing 
performance in real scenes although some distortion may be caused. Hence, the proposed OKDNet embeds 
the atmospheric scattering model in the network and adopts online knowledge distilling for optimization. As 
shown in Fig. 2, we firstly preprocess hazy images by two convolutions and acquire abundant features by feature 
shared network, a multiscale network constructed by some attention guided residual dense blocks (AGRDBs). 
Then these shared features are sent to online distillation network, where we achieve one-stage knowledge distil-
lation by supervision training. Specifically, we get two preliminary dehazed images by the atmospheric scatter-
ing model and model-free method respectively. Moreover, considering that these two dehazed branches have 
complementary advantages in term of image contrast and color fidelity, an efficient feature aggregation block 
(FAB) is proposed to get a better dehazed image. In the online distillation network, the FAB performs as a teacher 
network, and two dehazed branches before the FAB work as students, which is optimized by building an extra 
loss function for knowledge distillation. Hence, different from traditional knowledge distillation, the proposed 
OKDNet do not need to pretrain teacher networks, which achieves the joint training and optimization of both 
teacher and student network. We call this knowledge distillation method as online knowledge distillation in this 
paper, and conclude main contributions as follows:

Figure 1.   Comparative results on a real-world image using DCP, DCPDN, EPDN, AODNet, Grid, DA, 
MSBDN, PSD, and the proposed method. Natural Image Quality Evaluator (NIQE) is a non-reference criterion 
that is widely used in image quality assessment. Lower values of NIQE represent better performance.

Figure 2.   The general network structure of OKDNet.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14927  | https://doi.org/10.1038/s41598-022-19132-5

www.nature.com/scientificreports/

1.	 We propose an online knowledge distillation network for single image dehazing named OKDNet, which 
combines the merits of model-based dehazing methods and model-free dehazing methods by online knowl-
edge distillation, and achieves favorable dehazing effect.

2.	 To improve the feature representation ability of the feature shared network, we introduce an attention guided 
residual dense block (AGRDB) to construct this multiscale network.

3.	 We propose a novel feature aggregation block (FAB) to effectively fuse the useful information of two dehazed 
branches and achieve a better dehazing effect.

4.	 We conduct experiments both on synthetic and real-world datasets to verify the dehazing effect of the pro-
posed OKDNet, and prove the effectiveness of each module by an ablation study.

Related work
Model‑based methods.  Model-based methods restore dehazed images by atmospheric scattering model, 
where the estimation of atmospheric light and transmission map is the most critical issue. Early model-based 
methods adopt statistical assumptions concluded from haze-free images to estimate the transmission map 
and then recover haze-free images via atmospheric scattering model. For example, dark channel prior (DCP)1 
assumes that clear images have low intensity in at least one channel, and acquires the atmospheric light and 
transmission map based on this theory. Color-lines prior (CLP)2 constructs a local formation model to recover 
the transmission map based on the lines offset, and accurately estimates transmission map. Moreover, Color 
attenuation prior (CAP)3 builds a linear relationship among color, haze concentration and scene depth, which 
achieves favorable dehazing effect. Another method NLD4 estimates the transmission map by hundreds of dis-
tinct colors, which greatly improves image visibility but tends to overenhance images. Early model-based meth-
ods have favorable dehazing effect but these dehazed images are contaminated by artifacts, halos and color 
distortion since unilateral assumption cannot hold in various scenes. With the development of deep learning, 
recent model-based methods tend to estimate transmission map and global atmospheric light by data driv-
ing. For example, MSCNN5 and DehazeNet6 build an efficient convolutional neural network (CNN) to esti-
mate transmission map and restore visually pleasing results. However, the dehazing performance of these two 
methods is limited since the atmospheric light is still estimated by traditional methods. To solve this problem, 
AODNet7 combines the atmospheric light with transmission map into a parameter by setting a linear equation. 
DCNet8 constructs a dark channel network to estimate transmission map and dehazes images via the atmos-
pheric scattering model. Another method DCPDN9 embeds the atmospheric scattering model into CNN, which 
directly restores dehazed images by the joint estimation of the atmospheric light and transmission map. These 
two methods alleviate cumulative error of two times parameter estimation. However, due to the atmospheric 
scattering model is a simplified model and cannot completely replace the formation process of haze, model-
based methods still suffer from color and illumination changes. Differently, Sharma et al.10 use a type-2 fuzzy 
approach to estimate scene depth and global atmospheric light, and then dehaze images via the atmospheric 
scattering model. Moreover, they also propose a novel adaptive interval type-2 fuzzy filter11 as an AI agent, 
which can effectively retain the naturalness of results during the dehazing process. Another method12 estimates 
the scene transmission map and atmospheric light using Z-score-based weighting function for image dehazing.

End‑to‑end methods.  End-to-end methods, also called image translation, directly establish the map-
ping between hazy images and clear images instead of using atmospheric scattering model to achieve dehaz-
ing. Due to the huge discrepancy exists between hazy image domain and clear image domain, these methods 
often enhance feature extraction ability by increasing network depths and scales. For example, GCAN15 adopts 
smoothly dilation convolution to extract multiscale features, and merges these features by a gated network to 
alleviate artifacts. GFN16 derives three subimages (white balance (WB), contrast enhancing (CE), and gamma 
correction (GC)) from a hazy image, and directly recovers clear images by using learned confidence maps to 
fuse these three subimages. GridDehazeNet17 builds a deep multiscale network based on a grid architecture 
and enhances the information flow of different scales to recover haze-free images. Another method MSBDN18 
constructs a multiscale network and combines the features from different scales using feature fusion mechanism 
to extract global and local features. Differently, EPDN20 acquires high contrast images based on the adversarial 
training between a pix2pixHD generator and a multiscale discriminator. However, due to trained on synthetic 
images and without any extra knowledge to assist training, above end-to-end methods conduct poor model 
generalization in real scenes. Thus, Shao et  al.21 firstly propose the domain adaptation problem, and build a 
bidirectional translation network to dehaze effectively when applied to real-world hazy images. Chen et al.22 use 
physical priors to guide network training and proposed PSD network, which acquires high contrast results in 
multiple real scenes. Wang et al.23 propose a novel simple but powerful atmospheric illumination prior (AIP) 
to guide an end-to-end multiscale network training, which achieves good dehazing effect. Moreover, to reduce 
the rely of computational resource, Liu et al.24 propose a generic model-agnostic convolutional neural network 
to restore clear images from hazy inputs. CSIDNet25 establishes a compact single image dehazing network com-
posed of three convolutional layers and improves its real-time applications.

Knowledge distillation.  Knowledge distillation is widely used in recent image super-resolution tasks, 
which aims to transfer the useful information of a cumbersome network to a designed light-weight network so 
that reducing parameters while maintaining the same performance. For example, Hong et al.26 applied knowl-
edge distillation to heterogeneous task imitation, which adopts a complex dehazing network to guide the train-
ing of a simple dehazing network and achieves the same dehazing performance. Differently, Wu et al.27 pro-
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posed a training strategy for nonhomogeneous tasks, which adopts features generated in the process of clear 
image reconstruction to guide the training of dehazing network. Recently, more forms of knowledge distillation 
emerge, which greatly promotes the development of computer vision tasks. For example, Zhang et al.28 proposed 
a mutual learning strategy, which constitutes a mutual teaching and learning mechanism between two networks. 
Zhang et al.29 proposed a self-distillation strategy, which constructs a deep CNN and distills the features of deep 
convolutions to the shallower convolutions. Moreover, Li et al.30 proposed a novel online knowledge distillation 
method, which does not rely on pretrained teachers and improves the accuracy of pose estimation. Inspired by 
it, we build an online knowledge distillation network for single image dehazing named OKDNet. The OKDNet 
combines the merits of model-based methods and model-free methods, which acquires high quality dehazed 
images with discriminative textures and vivid color in both synthetic and real-world datasets.

Proposed method
Existing end-to-end dehazing methods always acquire under-hazed results especially in real scenes due to lack 
of perception to haze. Considering that the atmospheric scattering model simulates the formation process of 
haze and conducts significant guiding function to network training, we propose an online knowledge distilla-
tion network for single image dehazing named OKDNet. As shown in Fig. 2, the whole architecture of OKDNet 
can be divided into three parts: preprocessing network, feature shared network, and online distillation network. 
The preprocessing network consists of two 3 × 3 convolutions to extract features of the input hazy images. These 
two convolutions followed by a batch normalization and ReLU function respectively, which change the channel 
numbers to 32, and maintain the image resolution to acquire preprocessed features Fpre.

Feature shared network.  To effectively extract haze-relevant features and acquire preliminary dehazed 
images, we send preprocessed features Fpre to feature shared network. As shown in Fig. 2, the feature shared 
network firstly changes feature shape of Fpre from 256 × 256 × 32 to 64 × 128 × 128 and further to 128 × 64 × 64 by 
two downsampling blocks to form features under different receptive field, Then, local features (e.g., structures 
and edges) and global features (e.g., color and textures) are extracted by this multiscale network. To improve 
the feature representation ability of each scale, we introduce an efficient attention guided residual dense block 
(AGRDB). Considering that low-resolution features contain more local textures information, we apply more 
AGRDBs to enhance feature extraction. After that, these enhanced features of adjacent scales are fused by chan-
nel concatenation, and restored to the former scale by two upsampling blocks until get the final shared features 
Fs (256 × 256 × 32).

As shown in Fig. 3, the proposed AGRDB firstly extracts features by a designed residual dense block (RDB). 
The RDB can effectively restore image details since the input of each convolution contains abundant features of 
all former convolutions. In our AGRDB, the RDB have the same configurations in17, which contains four 3 × 3 
convolutions to extract features, and one 1 × 1 convolution to fuse these features before element-wise addition. 
After that, we adopt channel attention mechanism and spatial attention mechanism to guide the feature extrac-
tion of the AGRDB. In the channel attention mechanism, an average pooling is firstly used to compress feature 
maps Fr after RDB to a channel vector (1 × 1 × C), and then a 3 × 3 convolution with a sigmoid function forms 
channel attention maps to weigh these input features by element-wise multiplication. After the channel attention 
mechanism, these refined features pay less attention to overenhanced features and effectively alleviate global color 
distortion. Considering that the haze distribution is uneven on image regions, a spatial attention mechanism is 
further applied to make the network pay more attention to haze-related pixels and high-frequency image regions. 
Different from the channel attention mechanism, the spatial attention mechanism directly acquires spatial atten-
tion maps (H × W × 1) by a 3 × 3 convolution combined with a sigmoid function, and weighs features by another 
element-wise multiplication. Finally, we further merge these feature maps and get the output Fo.

Figure 3.   The structure of AGRDB.
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Online distillation network.  To effectively combine the complementary merits of model-based methods 
and model-free methods, we acquire two preliminary dehazed images based on these two methods and build an 
efficient feature aggregation block (FAB) for online knowledge distillation. As shown in Fig. 2, the online distil-
lation network can be divided into two parts: student network and teacher network.

Student network.  The student network is a multi-branch architecture consisting of two dehazing branches: 
model-free branch and model-based branch. In model-free branch, since the feature shared network has effec-
tively extracted haze-relative features, we use two convolutions to generate dehazed image J , in which the first 
convolution is followed by batch normalization and ReLU function, and the second convolution is followed by 
batch normalization and Tanh function. For model-based branch, we use two convolutions to generate the trans-
mission map t  , and use the atmospheric light estimation network (ANet) in DCPDN9 to generate the atmos-
pheric light A . By substituting the generated A and t  into the atmospheric scattering model, another dehazed 
image J mod can be obtained.

J and J mod are generated in different ways, and each has its own advantages: J mod has favorable dehazing 
effect but tends to cause color or illumination distortion, which may degrade the quality of dehazed images; by 
contrast, J has better color fidelity but some local regions exist residual haze. Hence, we propose a FAB to merge 
the merits of model-based methods and model-free methods.

Teacher network.  Unlike traditional knowledge distillation methods, which use pretrained networks as teacher 
networks, we introduce FAB to combine the dehazed images of student branches to establish a powerful teacher 
network. As shown in Fig. 4, the FAB consists of four parallel point-wise convolutions (1×1convolutions) and a 
gated network. Firstly, J, J mod and shared features Fs are combined by channel-wise concatenation and used as 
the input of FAB, where Fs contains rich features of original images. Then we adopt multiple parallel point-wise 
convolutions and pooling layers with different kernel sizes to extract local and global features simultaneously. 
In other words, a 1 × 1 convolution with a 7 × 7 (5 × 5, 3 × 3) pooling layer is equivalent to directly using a 7 × 
7 (5 × 5, 3 × 3) traditional parallel convolutions. Better than traditional parallel convolutions, the point-wise 
convolutions followed by pooling layers can reduce model parameters without using large convolutional kernel. 
Moreover, we concatenate multiscale features by channel-wise concatenation, and feed it into a gated network (a 
3× 3 convolution) to accurately weight features and generate three attention maps. These three attention maps 
( αJ ,αJ mod ,αs ) weight input features ( J , J mod , Fs ) by linear combination to get an optimized dehazed image 
outFAB , which can be expressed as Eq. (2):

where αJ ,α mod and αs are the weight maps generated by the gated network; J and J mod are two dehazed images 
generated by student branches, Fs is shared features before FAB.

As is mentioned above, the output of FAB combines the merits of dehazed images generated by model-free 
methods and model-based methods, which performs as a teacher to optimize these two dehazed branches (per-
form as students) in reverse. Moreover, considering that the shared features are essential for these two dehazed 
branches, we also set it as a student for optimizing. Hence, we adopt online knowledge distillation by building 
three extra distillation loss function between model-free dehazed images J, model-based dehazed images J mod 
and shared features Fs , which achieves the joint optimization of these three dehazed results (J, J mod and OutFAB).

Loss function.  Several experiments31,32 have shown that the combination of pixel-wise loss and feature-wise 
loss can effectively improve network training. Hence, in our online knowledge distillation network (OKDNet), 
the overall loss function contains L1 loss, negative structural similarity (SSIM) loss33, and distillation loss, which 
can be expressed as Eq. (3):

where L1 represents the L1 loss, LSSIM represents the negative SSIM loss, Ldiss represents the distillation loss, and 
� is a trade-off coefficient for balancing the overall loss, which is set to 0.5.

(2)outFAB = J ∗ αJ + J mod ∗ α mod + Fs ∗ αs

(3)Lloss = L1 + LSSIM + �Ldiss

Figure 4.   The structure of FAB.
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L1 loss.  Previous research13 have shown that pixel-to-pixel losses can rapidly match the feature distribution 
between hazy images and clear images, thus we adopt L1 loss for network training. Different from L2 loss (mean 
square error), L1 loss (standard deviation error) can accelerate network training more stably, which can be 
expressed as Eq. (4):

where GT represents clear images and OutFAB represents dehazed images generated by feature aggregation block 
(FAB).

Negative SSIM loss.  The negative SSIM loss can effectively match the luminance, contrast, and structure, and 
thus improves the structural similarity between clear images and dehazed images. Hence, we adopt negative 
SSIM loss to optimize the network training, which can be expressed as Eq. (5):

where OutFAB and GT denote the dehazed images and clear images, respectively.

Distillation loss.  In our OKDNet, the dehazed images obtained by FAB play the role of a teacher to teach feature 
shared network and students (two dehazing branches) in reverse. To achieve this, pixel-wise L1 losses are utilized 
to minimize the difference between dehazed images of teacher and student, which can be expressed as Eq. (6):

where OutFAB represents dehazed images generated by FAB (teacher), J and J mod represent dehazed images of 
each branch (student), respectively, and Fs represents the output of feature shared network. In this work, we first 
convert the size of Fs to be the same as that of OutFAB , and then calculate the loss between them.

Experimental results
To evaluate the performance of our method on synthetic and real-world datasets, we quantitatively and quali-
tatively compare our OKDNet with several state-of-the-art methods, including DCP1, DCPDN9, EPDN20, 
AODNet7, Grid17, DA21, MSBDN18, and PSD22. All these methods are learning-based methods except DCP, 
which is a traditional prior-based method. The adopted datasets and implementation details are introduced in 
section "Datasets" and section "Implementation details", respectively.

Datasets.  During the training, we adopt the Indoor Training Set (ITS) in Realistic Single Image Dehazing 
(RESIDE)34 which contains 13,990 indoor hazy images and the corresponding haze-free images. For testing, we 
adopt three synthetic datasets (Synthetic Objective Testing Set (SOTS) in RESIDE, I-HAZE35, and O-HAZE36) 
to evaluate the performance of the proposed method. Among them, the SOTS contains 500 indoor and outdoor 
paired images produced by the atmospheric scattering model, and the I-HAZE and O-HAZE contain 35 paired 
indoor images and 45 paired outdoor images produced by professional haze machine. Moreover, considering 
that apparent discrepancy exists between synthetic and real-world hazy images, some real-world images in2 and 
URHI datasets21 are adopted to further verify the dehazing effect of these methods when applied in real scenes.

Implementation details.  The proposed method is trained and tested in the PyTorch framework. During 
the training, we resize the image to 256 × 256, set the batch size to 4, and train 30 epochs. Moreover, we use the 
Adam optimizer to accelerate the training process, and adopt a default value for the attenuation coefficient; 
where β1 = 0.9 and β2 = 0.999 . We set the initial learning rate to 0.001, and decreases it to half after every five 
epochs.

Comparisons with state‑of‑the‑art methods.  Results on synthetic datasets.  The atmospheric scat-
tering model has shown the positive correlation of scene depth and haze concentration, which affects the haze 
removal effect of these algorithms. Hence, considering that these methods are trained on indoor images, we 
mainly test on outdoor images to verify the generalization ability. Figure 5 shows the experimental results of our 
method compared with some recent methods on the SOTS outdoor synthetic datasets. We can easily find that 
the prior-based method DCP suffers from color over-saturation and abnormal brightness since the unilateral 
assumption used to estimate the transmission map and atmospheric light is not applicable to various scenes. 
Moreover, the model-based DCPDN acquires high contrast results but causes some illumination distortion. By 
contrast, the Grid has overfitted in indoor scenes, which causes artifacts and leads to a large amount of residual 
haze in outdoor scenes. Moreover, the EPDN and AODNet dehaze images effectively but dim the brightness of 
dehazed images and degrade the visual effect of them. Differently, the DA causes slight brightness distortion 
during the dehazing process. And another method PSD improves the image contrast but leads to severe illumi-
nation over-saturation. Only MSBDN and our OKDNet acquire high quality results with discriminative textures 
and vivid color, which shows these two methods have better generalization ability in the changes of scene depth.

To further validate the performance of our OKDNet on synthetic datasets SOTS, five evaluation metrics 
(peak signal-to-noise ratio (PSNR), structural similarity (SSIM), lightness order error (LOE)37, naturalness 
image quality evaluator (NIQE)38, and model parameters) are employed for quantitative comparison. The results 
are shown in Table 1, where M is set as 1× 106 for briefly representing the number of model parameters. For 
indoor datasets, DCP performs poorly with PSNR and SSIM being 19.95 dB and 0.872 respectively, which means 

(4)L1 = �GT − OutFAB�1

(5)LSSIM = −SSIM(OutFAB,GT)

(6)Ldiss = �OutFAB − J�1 + �OutFAB − J mod �1 + �OutFAB − Fs�1
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that generated artifacts and color distortion severely influence the quality of restored images. Moreover, most 
learning-based methods acquire high PSNR and SSIM since they are trained on the indoor synthetic datasets. 
Only PSD performs poorly in indoor synthetic scenes due to the guidance of multiple priors. For outdoor data-
sets, we notice that the DCP achieves similar results to indoor scenes. By contrast, the PSNR and SSIM of these 
learning-based methods drop dramatically when applied to outdoor images due to the discrepancy of scene 
depth between indoor and outdoor scenes. Fortunately, with the help of embedding atmospheric scattering 
model, the proposed OKDNet improves PSNR from 23.16 dB to 23.38 dB and improves SSIM by 0.002 when 
compared with the second-best method MSBDN. Note that the MSBDN achieves good results on both indoor 
and outdoor images since it is trained by both indoor and outdoor images from RESIDE, while the proposed 
OKDNet is only trained by indoor images but achieves better results on both indoor and outdoor images, which 
proves its powerful generalization. For LOE and NIQE, the proposed OKDNet achieves the best value on both 
indoor images and outdoor images when compared with the other methods. Moreover, the proposed OKDNet 
also reduces the model parameters to 2.58 M and keeps excellent computational efficiency. According to the 
above evaluation metrics, the proposed OKDNet achieves the best results, which improves dehazing effect by 
merging the merits of model-based methods and model-free methods, and reduces model parameters by adopt-
ing online knowledge distillation.

To further validate the dehazing effect and generalization ability of the proposed method, we adopt I-HAZE 
and O-HAZE as benchmarks for qualitative and quantitative comparison. Figure 6 and Fig. 7 give the qualitative 
comparison on the I-HAZE and O-HAZE, and we can find that model-based methods DCP and DCPDN cause 
color distortion and darken the results. By contrast, model-free methods Grid and MSBDN tend to hardly deal 
with hazy images and leave residual haze in some regions. The PSD acquires dehazed images with high contrast 
but ovenhances the color, which makes the results look inauthentic. Only DA and the proposed method can effec-
tively dehaze images and restore visually pleasing results. Moreover, better than the DA, the proposed OKDNet 
can restore more natural color and more clear textures. Table 2 gives the quantitative comparison results on the 
I-HAZE and O-HAZE. For I-HAZE, the DCP, DCPDN, and PSD perform poorly, which means that the abnormal 
illuminance and overenhanced color degrade the quality of dehazed images. Better than the other methods, the 

Figure 5.   Results of comparison experiments on the SOTS outdoor datasets.

Table 1.   Quantitative comparison results on the SOTS outdoor datasets. Number in bold, italics, and 
underline indicate the first, second, and third best results, respectively. DCP is a prior-based method without 
model parameters. Higher values of PSNR and SSIM; and lower values of LOE and NIQE represent better 
performance.

SOTS Metrics DCP DCPDN EPDN AODNet Grid DA MSBDN PSD Ours

Indoor

PSNR 19.95 dB 20.85 dB 25.09 dB 19.12 dB 32.16 dB 30.32 dB 32.67 dB 16.32 dB 30.92 dB

SSIM 0.872 0.875 0.932 0.845 0.984 0.981 0.983 0.729 0.988

LOE 227.94 331.51 258.30 266.54 188.55 247.55 168.34 320.59 131.10

NIQE 4.385 4.801 4.618 4.106 4.231 4.830 4.839 3.8310 3.319

Outdoor

PSNR 20.44 dB 20.08 dB 20.31 dB 21.47 dB 16.21 dB 22.59 dB 23.16 dB 15.15 dB 23.38 dB

SSIM 0.898 0.896 0.902 0.922 0.783 0.927 0.936 0.771 0.938

LOE 205.45 148.121 338.77 277.79 337.83 116.72 72.19 314.94 53.60

NIQE 3.1242 2.984 3.206 3.586 3.158 2.897 3.702 3.388 2.849

Model Parameters – 0.94 M 35.86 M 0.09 M 0.96 M 54.59 M 28.71 M 6.2 M 2.58 M
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proposed OKDNet achieves the best values of PSNR, LOE, and NIQE being 17.16 dB, 275.75, and 3.743. Note 
that the DCPDN achieves the best value of SSIM being 0.826, which further verifies the atmospheric scattering 
model plays an important role in image dehazing. For O-HAZE, the proposed OKDNet significantly improves 
the PSNR from 18.37 dB to 18.96 dB and improves the SSIM from 0.765 to 0.837, which validates that it owns 
powerful generalization ability. Moreover, the OKDNet achieves good values of LOE and NIQE, which means 
that the results generated by OKDNet retain favorable image naturalness.

Results on real datasets.  Recent learning-based dehazing methods tend to present insufficient generalization 
ability and poor dehazing effect on real-world images since they are trained on synthetic datasets. Hence, sev-
eral real-world hazy images from2 are selected to verify the performance of the proposed method when applied 
in real scenes. As shown in Fig. 8, prior-based method DCP tends to cause halos and severe color distortion, 
which validates that unilateral prior cannot hold in various scenes. Another model-based method DCPDN 
cannot effectively dehaze images and suffers from illumination distortion due to inaccurate estimation of the 
atmospheric light and transmission map. Moreover, the PSD acquires images with high contrast but tends to 
overenhance these images due to the guideline of multiple priors and atmospheric scattering model. By contrast, 

Figure 6.   Results of comparison experiments on the I-HAZE.

Figure 7.   Results of comparison experiments on the O-HAZE.

Table 2.   Quantitative comparison results on the I-HAZE and O-HAZE. Number in bold, italic, and underline 
indicate the first, second, and third best results, respectively. Higher values of PSNR and SSIM; and lower 
values of LOE and NIQE represent better performance.

Metrics DCP DCPDN EPDN AODNet Grid DA MSBDN PSD Ours

I-HAZE

PSNR 12.31 dB 14.27 dB 15.86 dB 15.06 dB 13.01 dB 17.10 dB 16.73 dB 12.92 dB 17.16 dB

SSIM 0.676 0.826 0.751 0.772 0.634 0.807 0.798 0.712 0.814

LOE 453.87 422.31 397.41 534.94 462.81 303.67 309.10 388.65 275.75

NIQE 4.738 4.683 4.517 3.993 4.841 6.734 5.868 4.335 3.743

O-HAZE

PSNR 14.94 dB 13.79 dB 16.23 dB 16.61 dB 13.83 dB 18.37 dB 18.08 dB 14.46 dB 18.96 dB

SSIM 0.672 0.726 0.716 0.696 0.707 0.712 0.765 0.677 0.837

LOE 560.00 337.03 260.21 464.47 538.58 203.86 332.23 453.27 180.33

NIQE 3.132 3.330 2.777 2.670 2.798 6.056 4.524 3.813 2.789
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model-free methods acquire pleasing visually images but tend to dehaze ineffectively due to lacking of knowl-
edge guiding. For example, the Grid and MSBDN methods perform poorly when applied in real scenes and lead 
to a large amount of residual haze, although they have good effect in synthetic datasets, which shows these two 
methods have over-fitted in synthetic scenes. Note that the MSBDN achieves bright results since it is trained by 
both indoor and outdoor images from RESIDE, while the proposed method is only trained by indoor images 
and consequently the results of the proposed method seem darker than MSBDN. Also, EPDN and DA acquire 
high quality images with better dehazing effect but tend to overenhance some regions. Compared with afore-
mentioned methods, the proposed method and AODNet achieve better dehazing effect and recover more vivid 
color. Moreover, although the edges are not visible properly as in PSD, the results of the proposed method have 
advantages in restoring texture details (hair of woman) when compared with other methods.

To further show the generalization ability of the proposed method, we compare these methods on real-world 
images in the URHI datasets21. As shown in Fig. 9, prior-based method DCP still effectively dehazes images, but 
leads to obvious color distortion. By contrast, learning-based methods cannot dehaze thoroughly. Specifically, 
model-based method DCPDN and AODNet cause illumination distortion and leave some residual haze in local 
regions. Moreover, Grid and MSBDN conduct poor dehazing performance in these scenes, which verifies these 
two methods have poor generalization in real scenes. Another method PSD also cannot dehaze effectively and 
tends to cause illumination and color changes. Only EPDN, DA and the proposed OKDNet achieve visually 
pleasing results and restore most textures. Unfortunately, the EPDN recovers high contrast images but exists 
severer color over-saturation. The DA fails to dehaze local haze and still causes slight color changes. By contrast, 
the proposed OKDNet acquires dehazed images with more distinctive features and more natural color by com-
bining the merits of both model-based methods and model-free methods with online knowledge distillation.

For objective evaluation, we further make quantitative comparison on the real-world images from paper2 
and URHI datasets by non-reference criterions that are widely used in image quality assessment since real-world 
images do not have corresponding ground truths. These criterions are Blind/Referenceless Image Spatial Qual-
ity Evaluator (BRISQUE)39, Natural Image Quality Evaluator (NIQE), and Perceptual Index (PI)40. All these 
criterions are aesthetic metrics, which can be used to evaluate the effect of haze, noisy, color shifts, illumination 
changes and other image degraded phenomenon. Thus, although above criterions are not designed to measure 
the effect of dehazing, they are widely used in dehazing fields since they can be used to compare the perceptual 
quality quantitatively. Table 3 gives the quantitative comparison results on the real-world images from paper1 
and URHI datasets. For images in paper1, the proposed method achieves the best values of NIQE, BBRISQUE, 
and PI being 3.088, 13.05, and 2.015. Moreover, better than the second best AODNet, the comparison results 
further validate that the proposed method can more effectively restore dehazed image with natural color and good 
visual effect. For URHI datasets, the proposed method also achieves the best values when compared with other 
methods, which means that it has good generalization ability and is effective when applied in different scenes.

According to the above qualitative and quantitative experiments and analysis, the proposed method has 
superior dehazing effect and sufficient generalization ability. However, it still causes over-enhancement on some 
images, and the details of the image are lost. (the contrast of the tree in the second image of Fig. 8 and the edges 

Figure 8.   Experimental results of comparison on real images. The content in the red box in the image is 
enlarged for visual comparison.
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of humans in the last image of Fig. 9) This is because the proposed method emphasizes the generalization abil-
ity of the model in the training process, which leads to the over-enhancement appearance on some images. 
Although the generalization ability of the proposed method is improved, the method will inevitably cause over-
enhancement on some images since the atmospheric scattering model is embedded. This is a disadvantage of 
this method, and also a common problem of most dehazing methods. We think the generalization ability of the 
model is more important for the dehazing tasks, and a little distortion is tolerable.

Figure 9.   Results of comparison experiments on the URHI datasets. The content in the red box in the image is 
enlarged for visual comparison. From left to right and top to bottom: Input hazy images, dehazed images using 
DCP1, DCPDN9, EPDN20, AODNet7, Grid17, DA21, MSBDN18, PSD22, and the proposed method.

Table 3.   Quantitative comparison results on the images in paper2 and URHI datasets. Number in bold, italics, 
and underline indicate the first, second, and third best results, respectively. Lower values of NIQE, BRISQUE, 
and PI represent better performance.

Datasets Metric Haze DCP DCPDN EPDN AODNet Grid DA MSBDN PSD Ours

Images in paeper2

NIQE 3.783 3.521 4.201 3.392 3.299 3.938 4.499 4.003 3.835 3.088

BRISQUE 18.96 13.74 18.97 14.62 15.49 17.59 14.47 15.36 16.59 13.05

PI 2.665 2.323 2.683 2.264 2.242 2.561 3.697 2.592 3.2048 2.015

URHI

NIQE 4.715 3.982 4.058 3.942 3.902 6.128 4.388 4.605 3.822 3.539

BRISQUE 33.73 27.62 27.89 22.22 31.65 23.23 21.79 27.36 24.26 19.36

PI 4.544 3.198 3.975 3.224 4.058 4.929 4.326 3.381 3.194 3.038
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Ablation study.  To validate the effectiveness of the proposed OKDNet, we conduct an ablation study to 
evaluate the performance of the following key modules: attention guided residual dense block (AGRDB), feature 
aggregation block (FAB), multiscale feature shared network, knowledge distillation of the model-based student 
branch, and knowledge distillation of the model-free student branch. The following variants are constructed 
in our experiments: Variant A, the proposed method without the AGRDB (we replace it to RDB designed in 
paper17); Variant B, the proposed method without the FAB (we replace it to feature aggregation unit designed 
in paper30); Variant C, the proposed method without the multiscale feature shared network (we replace it to a 
single scale network consisted of AGRDBs ); Variant D, the proposed method without the knowledge distillation 
of the model-based student branch; Variation E, the proposed method without the knowledge distillation of the 
model-free student branch; Variation F, the proposed method. We train these variants on the ITS datasets for 30 
epochs and test the trained variants on the SOTS outdoor datasets, I-HAZE, and O-HAZE, and conduct quan-
titative comparisons to evaluate the performance of each variant. As shown in Table 4, the proposed method 
achieves superior performance with PSNR and SSIM on both three datasets. Moreover, by comparing the Vari-
ant F and the corresponding variant, we can find that each of the above modules contributes to the dehazing 
performance of the proposed OKDNet.

Conclusion
In this paper, we propose an online knowledge distillation network for single image dehazing named OKDNet, 
which merges the merits of model-based methods and model-free methods. Specifically, we dehaze images 
respectively by model-based methods and model-free methods based on the shared features extracted by a 
multiscale architecture consisted of Attention Guided Residual Dense Blocks (AGRDBs), and adopt an efficient 
Feature Aggregation Block (FAB) to get a better dehazed image. Moreover, an online knowledge distillation 
strategy is adopted, which use the features of final dehazed image (perform as teacher) to teach each dehazed 
branch (perform as student) in reverse, and achieve the joint optimization of the whole network. Different from 
previous knowledge distillation methods, the proposed OKDNet do not rely on a pretrained teacher network, 
and show excellent dehazing effect on both synthetic and real scenes with more computational efficiency.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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