www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Atmospheric observations
suggest methane emissions

in north-eastern China growing
with natural gas use
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The dramatic increase of natural gas use in China, as a substitute for coal, helps to reduce CO,
emissions and air pollution, but the climate mitigation benefit can be offset by methane leakage into
the atmosphere. We estimate methane emissions from 2010 to 2018 in four regions of China using the
GOSAT satellite data and in-situ observations with a high-resolution (0.1°x 0.1°) inverse model and
analyze interannual changes of emissions by source sectors. We find that estimated methane emission
over the north-eastern China region contributes the largest part (0.77 Tg CH,, yr!) of the methane
emission growth rate of China (0.87 Tg CH, yr!) and is largely attributable to the growth in natural gas
use. The results provide evidence of a detectable impact on atmospheric methane observations by

the increasing natural gas use in China and call for methane emission reductions throughout the gas
supply chain and promotion of low emission end-use facilities.

Over the last decade, natural gas (NG) has become the fastest-growing fossil energy in China as a result of coal-
to-gas switch action to reduce air pollution and carbon dioxide (CO,) emissions. The NG consumption increased
dramatically from 108.5 billion standard cubic meters (bcm) in 2010 (4% of primary energy consumption) to a
record level of 306.4 bcm in 2019 (8.1% of primary energy consumption), and it will keep increasing according
to China’s energy plan, and the share of gas in the energy mix is expected to reach 15% by 2030, while coal and
oil consumption will decline'. Domestic production of natural gas has increased approximately twofold from
94.8 t0 176.2 bem, and the imported NG also increased dramatically. Methane (CH,) is the primary component
of NG and the second most important anthropogenic greenhouse gas after CO, with an estimated 20-year global
warming potential 84-86 times greater than CO,% Oil and natural gas production is one of the major sources
of CH, in the atmosphere**. The CH, leakage rate from NG upstream (extraction and gathering, processing,
transmission and storage, distribution) and end-use combustion to the atmosphere is the key factor determin-
ing climatic advantage of the coal-to-gas shift>®. Atmospheric measurements studies found that a large amount
of methane emissions from oil and gas production are unaccounted for the bottom-up inventories”®. Chan
et al.? reported eight-year estimates of methane emissions from oil and gas operations in western Canada and
found that they are nearly twice of those from inventories. Zhang et al.® estimated a leakage equivalent to 3.7%
(~60% higher than the national average leakage rate) of the gross gas extracted from the largest oil-producing
basin in the United States (US) using high-resolution satellite observations. Moreover, basin-wide estimates of
emissions using in situ airborne data reported an inverse relationship between the basin-level leakage rate and
gas production*’.

Emissions from NG distribution network were found to be the major CH, contributor (56%) accounting for
the detectable CH, emissions in Paris, as evidenced from CH, and its isotopic composition by mobile measure-
ment on the ground'. Leaks from the NG pipelines were identified as the main source of CH, in emissions in
London® and several US cities and the leak rates vary in a large range (from 0.004 leaks/km to 0.63 leaks/km)+-'6.
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Figure 1. The emission estimates for 2010-2018 and the model corrections to net emissions in China. The four
regions are the north-eastern China (NE), the south-eastern China (SE), the north-western China (NW), and
the Qinghai-Tibetan Plateau (TP) areas. (Figures generated by ArcGIS Desktop 10.5.1, https://desktop.arcgis.
com/en/arcmap/10.5/).

Advanced mobile leak detection (AMLD) platform combined with GIS information of utility pipeline is used
to estimate CH, leakage from pipelines from the local distribution systems in the United States. It is found that
the leakage from those pipelines is approximately 5 times greater than inventories based on self-reported utility
leakage data'’. It was also found that the chances of leakage increase with the aging of the pipeline infrastructure
irrespective of the material types.

From 2010 to 2019, the length of the gas supply pipelines in the urban areas of China has increased approxi-
mately threefold from 298.6 to 935.6 million meters including 82% in the city and 18% in the county seat'®. The
CH, leakage from those pipelines is not actively monitored, which might be a potential threat to the net carbon
reduction of China’s energy switch strategy to reach the carbon-neutral goal in 2060"°. China is the biggest
methane emitting country® and many studies report increases in methane emissions from China in the past
decade considering China as one region (eg. Zhang et al.?’, Jackson et al.?!, Sheng et al.??). But there is limited
data publicly available on upstream emissions and local distribution of natural gas emissions in China among
different subregions. To overcome the limited access to the proprietary data, the combination of surface obser-
vations and satellite observations of column-averaged dry-mol fractions of methane provide an opportunity to
discover the leaks and to estimate emissions through top-down approaches. Here we use nine years of observa-
tions by the GOSAT satellite and the WDCGG (World Data Centre for Greenhouse Gases) surface stations, for
the first time to estimate methane emissions in subregions of China from 2010 to 2018 using a high-resolution
inverse model and find an impact of increasing natural gas use in China on CH, emissions, signaling a need for
effective mitigation strategies.

Results and discussions

Regional inversion of CH, emission. The NIES-TM-FLEXPART-VAR (NTFVAR) global inverse
model**?** is used to estimate the CH, emissions constrained by GOSAT and surface observations from 2010
to 2018. Here we focus on the analysis of inverse model results over China and its subregions. There are several
ways of regional division of China. In this study, we use a four-region division, based on different geographical
features, that is, the north-eastern China (NE), the south-eastern China (SE), the north-western China (NW),
and the Qinghai-Tibetan Plateau (TP) areas (Fig. 1). These regions differ in climate, agriculture type, also differ
in the major economic activities and CH, emission sources. The NE and SE regions are in the Eastern monsoon
area and are divided by the Qingling Mountains-Huai River, which is also the dividing line of 800 mm mean
annual precipitation, with the SE region experiencing more precipitation. Daxinganling-Yinshan-Helan moun-
tain is the physical geographic boundary of North and Northwest, which is also the dividing line of 400 mm
mean annual precipitation. The Northwest region is a non-monsoon area with mean annual precipitation of less
than 400 mm, including Xinjiang and Inner Mongolia where the main agriculture is animal husbandry®. TP
is a region at an average elevation over 4000 m, with the Kunlunshan range, Qilianshan range, and Hengduan
mountain chain as the division to other three regions.

Our optimized estimate of the average Chinese emissions is 58 Tg CH, yr™! during 2010-2018 (with model
uncertainty of 8.6 Tg CH, yr!), around 12% lower than the average prior emission of 65.6 Tg CH, yr™}, and
our estimate is consistent with Sheng’s* top-down study with 57.6 Tg CH, yr™! over 2010-2017. The optimized
average CH, budgets from the four subregions over 2010-2018 are 30.0 & 1.0 (average + standard deviation) Tg
CH, yr! from SE, 23.3+2.7 Tg CH, yr ! from NE, 2.9+ 0.2 Tg CH, yr ' from NW, and 1.7+ 0.1 Tg CH, yr!
from TP. NE and SE emit an order of magnitude more CH, compared to NW and TP. The inverse model correc-
tions are opposite in western and eastern China as illustrated in Fig. 1. Prior emissions in TP are underestimated,
especially in the west part of TP by 15-30%. Emissions are also underestimated in the west part of NW where
main flux hotspots depict the oil production sites. Prior emissions in the eastern coastal regions, however, are
overestimated by 15-25%, where high density and a large quantity of fluxes are shown. The scale of the adjustment
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Figure 2. CH, flux interannual variability and 2010-2018 anomaly in four regions NE, SE, NW, and TP in
China, lighter colour standing for prior emission and darker colour standing for posterior emission in each
region.

in different regions are within the uncertainty range estimated for other countries®. The overestimation of

anthropogenic emissions from China has been reported by previous inversion studies using former versions of
EDGAR inventories?>’~*. Our high-resolution inversion suggests that the overestimation originates from the
western part of China while its eastern part is underestimated. The improvement of model fit to the observations
by the inverse model is confirmed by an independent model evaluation with in-situ measurement and airplane
observations (shown in Supplementary Table 1).

Interannual changes in CH, emissions. Figure 2 shows the seasonal variation and anomalies of prior
and posterior total emissions in the four regions. The seasonal variability in TP and SE with maximum emissions
in summer and minimum in winter corresponds to wetlands and rice paddies, since SE is the main rice produc-
tion area of China®. A pronounced peak in summer and the second peak in winter is evident both in NW and
NE, where residential heat is supplied in winter. The posterior fluxes in NW, TP, and NE show large variability
compared to the prior fluxes.

The anomalies in interannual variability are calculated by subtracting the long-term monthly mean flux from
the raw time series and centred running mean (11-month) is constructed on the resultant time series to smooth
out short-term (monthly) fluctuations and highlight longer-term (yearly) trends. The posterior flux of TP shows
a notable positive anomaly in 2011 in response to the La Nina event during 2010-2011 and a negative anomaly
in response to the strong El Nino event during 2015-2016. A decreasing trend is detected during the transi-
tion from 2011 La Nina to 2016 EI Nino in the posterior flux in TP where the natural emissions are dominated,
and similar trend was reported in Southern Asia during the period®!. An observation study also found that the
atmospheric CH, concentration in TP increased rapidly during 2010-2012 and slowly during 2013-2015°*. The
rapid increases in the latter half of 2018 in all regions may be due to using 11-month running mean instead of
signal from the inversion and the variation in NW need to be further investigated.

Statistically significant increase trends in 2010-2018 are detected in NE for both prior and posterior flux
anomalies of total CH, emissions (95% confidence P <0.05 by Mann-Kendall approach®). The increasing trend
in SE is weaker but still significant (95% confidence). No trends in TP and NW are found. We estimate a yearly
increase rate of 0.87 Tg CH, yr™! for the whole of China during 2010-2018, which is consistent with Zhang’s*
51mulat1on 0f 0.72 Tg CH, yr™* for China during 2010-2016, but lower than the estimate of Miller’s® with 1.1 Tg
CH, yr™! over 2010-2015. NE contributes the most to the growth rate (0.77 Tg CH, yr™") followed by SE (0.13
Tg CH, yr™'), which is stronger compared to the increase of the prior fluxes (0.35 Tg CH, yr™!).

Trends in regional emission sectors. Anthropogenic CH, emission is about 90% of the total CH,
emission in China®"**. Figure 3 shows the relative contributions of major CH, emission sources in China and
related productions percentage in the four regions analysed in this study using data from EDGAR v5 and China
National Statistic Yearbook'8. The major anthropogenic emission sources are solid fuel (31%), rice production
(24%), waste (18%), and livestock (15%). NE is the most energy production region producing 55, 77, and 40%
of Chinese national coal, oil, and natural gas each year, followed by NW which produces 29, 14, and 23% of Chi-
nese national coal, oil and natural gas each year. 77% of rice is produced in SE and 21% in NE. The total volume
of collected municipal solid waste and wastewater discharged are mainly in SE (60%) and NE (35%) due to its
large population in SE (58% of national population) and NE (36% of national population). Ruminant population
spreads in the four regions with 33% in NE, 31% in NW, 26% in SE, and 10% in TP.

Coal production in China peaked in 2012 and declined since then from 41 to 37 Gt yr™! until 2018 with a
significant decrease in SE (decrease from 7.5 to 4 Gt yr™!).!® Rice production, ruminant population, and crude oil
production remain relatively stable (Supplementary Fig. S1). Waste (volume of discharged sewage and domestic
removed solid waste) and natural gas production show a dramatic increase during 2010-2018, which might be
the major contributors to CH, emission changes. The increase of CH, emissions from waste in China is 0.40 &
0.08 Tg CH, yr™' during 2010-2018 (according to EDGAR v6.0%), with 60% occurring in SE counterweighing
the decrease in emissions caused by coal production. The increase in total CH, emissions in SE is not as sig-
nificant as it is in NE since CH, emission in SE from coal production decrease significantly and counterweighs
the emissions from increasing waste and NG. The estimated CH, emission from coal production in SE is 0.36
Tg CH, yr™! with a national average emission factor of 9.3 m? t™!, while previous studies suggested that the coal
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Figure 3. Prior anthropogenic CH, emission from sectors and related production percentage in four regions.

mines with high methane content have emission factors over 20 m? t™! in SE, which indicates that both the coal
emissions and their decline can be even larger*>°.

Contribution of natural gas emission in north-eastern China. Estimation of CH, emissions from
NG includes leakage from energy extraction, processing, transport, and leakage at end-use applicant according
to site measurements and province-level data on pipeline distribution leakage provided by NG suppliers (see
Methods). The left panel in Fig. 4 shows the upper and lower bounds of the estimates of CH, emission from
NG and the total CH, emission trend with proportioned uncertainty during 2010-2018 in NE, both of which
depict statistically significant increasing trends. The variation of total CH, emission increase closely follows the
changes of CH, emissions from NG (Fig. 4 right panel), indicating NG leakage of CH, emissions is a notable
driver of CH, emission increase in NE. Removing the waste sector increment (0.14 Tg CH, yr™') estimated by
EDGAR v6.0 from the total increase in NE, we estimate an average CH, emission growth of 0.63 Tg CH, yr™' in
NE. The estimated NG leakage contributes 0.14 ~0.23 Tg CH, yr~!, and the changes of pipeline leakage dominate
the variation of CH, emissions from NG which is accounted from province-level loss amount from gas supply
pipeline. Natural gas pipeline leaks (estimated by the difference between the amount of gas purchased and the
amount of gas sold) is 3.4% in NE and 2.7% in China during 2010-2018, which is higher than the estimate
of ~1.4% in Russia®” and within the range of British estimate between 1.9 and 10.8%%. Taking 2018 year as exam-
ple, in NE region the NG production is 63 bcm, and the NG consumption is 101.5 bcm®. The estimated total NG
emission is 5.2 ~ 8.6% of the regional NG production or 3.2~ 5.3% of the regional NG consumption. A previous
study® has found that the self-accounting by NG supplies potentially can be lower than the actual leakage. The
discrepancy between top-down and bottom-up estimations of CH, emissions implies that a significant amount
of CH, leaks are not accounted for. Our estimates of the growing trend are higher than it in the inventory, and
some other studies suggest that CH, emissions from NG use can be underestimated by the bottom-up approach
in China*. The analysis shows a strong correlation between the trend in NG use and the increase of the CH,
concentration over NE China, translated into emission changes by the inverse model.

Implications for natural gas emission mitigation. Our analysis shows that the top-down approach
based on inversion modeling can support an observation-driven assessment of methane emissions from meth-
ane leakage, especially GOSAT data providing a long-term trend. Results highlight the relevance of NG use and
pipeline expansion to methane emissions. Such an increase of leaking methane from NG production and use
chain will cause potential danger to diverse stakeholders despite introducing a net carbon reduction.

Given the large NG distribution pipelines 935.6 million meters in China, NG leakage can be a significant
waste of energy and money. It can also accelerates ozone formation in urban areas*!, especially in North China
where surface ozone is already a severe air pollution problem*>**, Increase the monitoring of NG CH, emissions
through a number of methods from facility-level measurements* to city-scale surveys***>#¢ is a pressing task to
successful mitigation strategy. Advanced leak reduction technologies in the NG end-use sector can also bring
economic, environmental, and health benefits'”*.

Methods

Methane observations. Atmospheric CH, observations from satellite, surface, aircraft, and ship platforms
are used in this study. Greenhouse Gases Observing Satellite (GOSAT) is the first satellite dedicated to observ-
ing greenhouse gases from space launched in January 2009*. The orbit overpasses at around 12:49 (local time)
every three days, and the diameter of the footprint in nadir is approximately 10.5 km. The Thermal and Near-
infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS) is the main instrument
of GOSAT, measuring short-wavelength infrared (SWIR) radiance reflected from the Earth’s surface and atmos-
phere. We use column-averaged dry-air mole fraction of methane (XCH,) data from the NIES GOSAT Level 2
retrievals (v. 02.81)*. The GOSAT XCH, data is further corrected by subtracting the monthly mean difference
for each 5° latitude band between GOSAT observations and the model simulated XCH, optimized with inver-
sion that uses only surface observations®!. Ground-based atmospheric CH, observation data are obtained from
WDCGG, and aircraft and ships observations are from NIES (map shown in Supplementary Fig. S2). Weekly
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Figure 4. Estimated CH, emissions from NG (up and low range) and total CH, emission (estimation in a solid
line with uncertainty in shadow in NE during 2010-2018 (left panel) (detailed data in Supplementary Table S2)
and CH, emission increment relative to previous year (right panel).

flask-air samples and continuous measurements are contained in the ground-based atmospheric CH, observa-
tion data. The data from the flask sampling sites are used as an average concentration for a pair of flasks. For the
discrete flask-air measurements with pair sampling, average mole fraction for the pair is used. The continuous
observations are first averaged at hourly scale. Hourly data within 12:00-16:00 LT with well-mixed conditions
(except for mountain sites, where 0:00-4:00 LT) is used to represent daily averages as model inputs. Rejection
thresholds are set for data of GOSAT and the ground-based sites to filter out outliers (detailed description at
Wang et al.>%).

Atmospheric inverse model. We use the joint Eulerian three-dimensional transport model coupled with
a Lagrangian model FLEXPART (FLEXible PARTicle dispersion model) as the Lagrangian Particle Dispersion
Model (LPDM)***. The coupled model NIES-TM-FLEXPART-VAR (NTFVAR) combines National Institute for
Environmental Studies Transport Model (NIES-TM) v08.1i with a horizontal resolution of 2.5° and 32 hybrid-
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isentropic vertical levels®' and FLEXPART model v.8.0°2. The transport model is driven by the meteorological
data from the Japanese Meteorological Agency (JMA) Climate Data Assimilation System (JCDAS)>***. In this
study, variational inversion scheme is combined with the high-resolution variant of the transport model and its
adjoint described by Maksyutov et al.*#, and applied to inverse modelling of methane emissions in a number of
studies*?"*!. The inverse modeling problem is formulated and solved to find the optimal value of corrections to
prior fluxes considering mismatches of observations and modelled concentrations. Variational optimization is
applied to obtain flux corrections as anthropogenic and wetland scaling factors to vary prior uncertainty fields
on a monthly basis at a 0.1°x0.1° resolution separately for anthropogenic and natural wetland emissions with
bi-weekly time steps. The inverse model operates at the resolution of coupled transport model of 0.1°x0.1°
and applies spatial flux covariance length of 500 km. Uncertainty tests for the inverse model have been per-
formed using randomly perturbed observations and perturbed fluxes for different regions. We perturbed five
sets of observations consistently with the observation uncertainty at each site and produced five sets of perturbed
monthly Emissions Database for Global Atmospheric Research (EDGAR) and VISIT fluxes with a random scal-
ing factor applied separately for regions and each month. We then performed an inversion using the perturbed
pseudo-observations as measurement data and the perturbed fluxes (perturbed EDGAR and VISIT combined
with the non-perturbed soil sink, biomass burning, and other natural emissions from the ocean, geological
sources, and termites) as the prior fluxes and compared the inversion results to get the standard deviation of
the estimated emissions. The uncertainty of inverse simulation in China is 16.5%*>**. Independent evaluation of
the inverse model was made by observations at Dongsha Island (DSI) (20.7 N, 116.7E) and Novosibirsk (NOV)
(55N, 83E). DSI is located to the south of China and NOV is to the north of China (shown in Supplementary
Fig. S1). Bias and Root Mean Squared Error (RMSE) between observed and modelled concentrations with pos-
terior fluxes decrease in both sites, compared to the modelled concentrations with prior fluxes (Supplementary
S2).

A combination of emission inventories is used as prior fluxes. Annual anthropogenic emissions are from
the EDGAR v5. EDGAR provides a grid map at 0.1°x 0.1° resolution at the global level, and emissions of CH,
include all sources, such as fossil fuel production, agriculture, wastes and so on>*"¢. The monthly variation of
anthropogenic emissions is based on the EDGAR climatology data of 2015. EDGAR v5 updates emissions until
2015. Data beyond 2015 are extended by proportional scaling of EDGAR values of 2015 to the respective yearly
values in the report of PBL Netherlands Environmental Assessment Agency®’. Wetlands emissions are from
VISIT model simulations®. Biomass burning emissions are from the daily Global Fire Assimilation System
(GFASv1.2)®. Climatological emissions from the oceanic®, geological®', and termite®® sources are also included.

Estimation of natural gas emissions. As a comparison, fugitive CH, emissions from NG systems are
estimated on the basis of the 2006 IPCC Guidelines for Greenhouse Gas Inventories, and recent measurements.
The province-level annual natural gas production data is collected from the China Statistical Yearbook'® (2010-
2018) (see Supplementary Fig. S3 for more details). The fugitive emissions rates (FERs) for NG systems upstream
(energy extraction, processing, transport, and distribution) in China is set as constant at 1.8% (0.35kt CH, PJ™)
for the 2010-2018 period taken from Schwietzkes® study. There exist only limited measurements of gas leak-
age in China. The conventional gas methane leakage rates reported in the latest U.S. field studies are applied to
China. Alvarez et al.® found agreement between site-level results and top-down results, with the best estimate of
supply chain emissions. This estimate of 0il/NG CH, emissions can also be expressed as a production-normal-
ized emission rate of 2.3% (+0.4%/—0.3%) by normalizing annual gross natural gas production, which is mainly
from production, gathering, and processing sources. Zhang et al.'” estimated natural gas production emission
rate (or methane leakage rate) of 3.7 & 0.7% by a high-resolution satellite data-based atmospheric inversion
framework which is ~60% higher than the national average of 2.3 4= 0.3% in the largest oil and gas production
basin in the US. The leakage rate is even higher for the rapidly developing Delaware sub-basin (4.1%). The
emission distribution is based on province-level loss amount from gas supply pipeline, defined as the difference
between the amount of gas purchased (e.g., what enters the gateway to a province) and the amount of gas sold
(e.g., what is metered to consumers), obtained from the China City Statistical Yearbook (2010-2018)** (see Sup-
plementary Fig. S3 for more details). End-use (power generation, residential cooking, and industrial boilers)
processes included in the estimation is 0.4-0.9% following by Lebels®® estimation of appliance level leakage.
Taking the upstream and end-use EFs into account, the CH, emission is estimated as the sum of low FERs (1.8%)
and high FERs (4.4%) for production, 0.4-0.9% of end-user combustion, and the accounted province-level loss.

Data availability

The inverse model and forward transport model code can be made available to potential research collaborators
upon reasonable request. The XCH, retrievals (NIES Level 2 retrievals) are available at: https://data2.gosat.nies.
go.jp. Furthermore, in-situ data are archived on the WDCGG Global Network: https://gaw.kishou.go.jp (more
details on data file information and references see Supplementary S4). Other data products used in the study like
the EDGAR emissions inventory and GFAS Database are available for download at http://edgar.jrc.ec.europa.eu/
and https://www.ecmwf.int/en/forecasts/dataset/global-fire-assimilation-system. Wetland emission VISIT are
available at https://www.nies.go.jp/doi/10.17595/20210521.001-¢.html, and the NIES airborne and JR STATION
(Japan-Russia Siberian Tall Tower Inland Observation network) data are available at https://db.cger.nies.go.jp/
portal/geds/atmosphericAndOceanicMonitoring. Ship data are available by request to NIES observation group.
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