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An optimization model of tram
timetables considering various
signal priority strategies

Jing He'™, Yuting Xu?, Yanhuan Li%, Jian Yang? & Sihui Long***

Modern trams generally operate in a semi-independent Right Of Way that intersects with social
vehicles at junctions. Typically, there are two signal priority strategies at junctions: active signal
priority strategy and no-signal priority strategy. The active signal priority strategy is applied to
improve the efficiency of the tram. However, it inevitably causes delays to social vehicles. The
no-signal priority strategy could reduce the influence on social vehicles, but it will increase the tram
travel time. Therefore, we develop a Mixed-Integer Linear Programming model to optimize the tram
timetable and consider various signal priority strategies. In the model, the signal priority strategies of
the tram are a set of decision variables that consider the traffic flow of social vehicles rather than fixed
input parameters. The model considers minimizing the overall travel time of the tram and the negative
utility of signal priority strategies. A numerical experiment is conducted to demonstrate the validity of
the proposed model. The experimental results show that the proposed method can optimize the tram
timetable and maximize the overall benefits of the junction. Moreover, we compare the experimental
results of the proposed method with the approach of fixing the signal priority strategy for the tram

at junctions. On the one hand, our proposed method can improve the operational efficiency of trams,
i.e., the travel time decreases by 16.60%. On the other hand, the negative utility of signal priority for
the comprehensive scheme proposed in this work reduces by 39.45%.

The modern tram system is an urban rail transit system with small and medium volumes. Trams have the
outstanding advantages of being energy-efficient, environmentally friendly, fast, flexible in terms of transpor-
tation capacity, and comfortable. The development and implementation of trams in China have increased in
recent years. By the end of 2021, trams in 20 cities (demonstration zones) on the Chinese mainland had already
been put into operation, with a total mileage of over 503.60 km. Trams in China are entering a period of rapid
development.

Modern trams generally operate in a semi-independent right of way (ROW), which intersects with social
vehicles at junctions. The signal control and speed limits at junctions have a significant impact on the operation
process of the tram. The trams may stop at a red light at the junction, which results in an extra start-stop time.
To enhance the operational efficiency of trams, the current method is to set up a Transit Signal Priority (TSP) at
signalized junctions to provide an extra green duration for trams. There are two forms of TSP: a passive signal
priority strategy and an active signal priority strategy. Passive signal priority adjusts the signal timing param-
eters at the signalized junctions along the line so that trams running at the designed speed can pass through all
junctions without stopping. However, owing to the interruption of the station and junction, the longer boarding
times than scheduled may lead the pre-set green wave band to fail. If the tram still runs at the designed speed,
it may stop at the red light at the junction.

The active signal priority differs from the passive signal priority. It can obtain information about trams
through detectors. Then we determine whether to give the trams priority pass time according to the detection
result. When a tram approaches the junction, the signal timing is adjusted according to the pre-set priority
logic to prioritize the trams to pass if the signal priority strategy is activated. In addition to TSP, tram timetable
optimization is another method for reducing the number of tram stops at junctions. This method adjusts the
section running time and dwell time of trams so that trams reach junctions in the green phase. However, the
adjustment range of the timetables is limited. The speed limit and the number of passengers boarding and alight-
ing constrain the minimum section running time and dwell time of trams. The maximum section running and
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dwell times were also defined to maintain an equitable service level. Consequently, optimizing the timetables
cannot guarantee that all trams arrive at junctions during the green phase.

Compared to the method that merely optimizes the tram timetable or solitary TSP, coupled optimization of
the tram timetable and TSP may further reduce the tram travel time and improve the operational efficiency of
the tram. However, in practice, trams intersect with social vehicles at junctions. Although the TSP method has
the potential to increase the operational efficiency of a tram, the excessive signal adjustment will cause massive
delays and negative impacts on social vehicles. This effect, particularly during peak commuting hours, can cause
severe road traffic congestion. Therefore, reasonably combining the TSP control approach to construct an efficient
timetable is significant for maximizing the overall benefits of junctions.

Therefore, this research aims to create a comprehensive model to minimize the overall travel time of trams
and the negative utility of signal priority for social vehicles. We develop a Mixed-Integer Linear Programming
(MILP) model to optimize the tram timetable and consider various signal priority strategies. In the model, the
signal priority strategies of the tram are a set of decision variables that consider the traffic flow of social vehicles
rather than the fixed input parameters. A numerical experiment is conducted to demonstrate the validity of the
proposed model.

The remainder of this study is organized as follows. Section "Literature review" elaborates on the literature
review on the problem of tram timetable optimization and TSP actions. Section "Problem description” presents
the problem of adopting different signal priority strategies during different travel periods. Section "Mathematical
model" constructs a model to optimize the tram timetable to minimize the travel time of trams and the negative
utility of signal priority for social vehicles. Section "Mathematical model" further develops methods for solving
the proposed model. Section "Numerical experiment" presents numerical experiments to test the validity and
feasibility of the developed model. Section "Conclusions and future research" presents the main results of this
study and offers possibilities for future research.

Literature review
Research on train timetables. As an essential component of urban rail transit operation organizations,
train timetables determine the arrival and departure times of the trains at each station and play a crucial role
in managing and operating urban rail transit systems?. Most of the current research on train timetable opti-
mization has focused on railway and metro transportation. Nachtigall et al.*” proposed a model for timetable
optimization to reduce passenger waiting times at stations. Motvallian et al.® developed a model that considers
the tram operation time and the number of passengers who successfully reached their destination. A heuristic
approach based on a genetic algorithm was used to address this problem. Furthermore, several academics have
researched timetable optimization problems from the perspective of corporate interests. To increase the inter-
est of operating companies, Caprara et al.”!° proposed a model containing Lagrangian relaxation to maximize
corporate operations. Higgins et al.!! built a train timetable optimization model to reduce overall train delays
and operating costs. Zhu et al.'* considered the conflict in benefits between operating companies and passengers.
They analyzed the relationship between the train departure headway and departure time of passenger choice.
Subsequently, a two-level planning model was proposed and solved using a two-stage genetic algorithm.
Compared with the running process of other forms of rail transit systems, modern trams generally operate
in semi-independent ROW that intersects with social vehicles at junctions. The method for optimizing the train
timetable of the subway under exclusive rights-of-way cannot be directly applied to tram systems. Therefore,
some scholars have researched the optimization of tram timetables. Ji et al.'* developed a mixed integer model
to resynchronize traffic signal timings to guarantee tram movements. Jiang et al.'* proposed a model to optimize
the tram timetable under passive adjustment of signal timing at junctions to minimize tram travel time. Zhou
et al.”® considered the effect of an operation diagram on signal priority. They proposed a strict operation diagram
constraint model, HT-TRAM, and a loose operation diagram constraint model, ST-TRAM. i et al.1® developed a
method for optimizing a tram timetable. This method can reduce the tram section running time while increasing
the robustness of timetables. In addition, some scholars have developed tram timetable research that considers
tram manipulation behavior. Li et al.'” considered the influence of train manipulation on energy consump-
tion. They developed a two-layer joint optimization model of tram timetables and energy-efficient operations
to minimize traction energy consumption. A bi-level genetic to solve the model. Zhang et al.'® constructed an
energy-efficient optimization model guided by the section speed of trams to reduce the tram travel time and
total energy usage.

Research on transit signal priority. Wang et al."” divided the priority control of trams into two cat-
egories: time priority and space priority. Shalaby et al.? took the tram operated by King Street in Toronto as
an example and conducted micro-simulation experiments for four scenarios. It includes unconditional signal
priority, no-signal priority, no left turn, and no other traffic operation. They summarized the advantages of the
above four scenarios. Zhong et al.?! studied the signal coordination of the tram line and realized the relative pri-
ority control of the signal at the junction of the tram. TSP approaches primarily utilize either a passive priority
strategy or an active priority strategy*>?. Sermpis et al.** described the Athens tram signal priority scheme and
compared the implementation effects of passive signal priority strategy and active signal priority strategy. Chen
et al.?® obtained a passive green wave coordinated control strategy based offline by analyzing the running char-
acteristics of the tram and simulating the signal system. The method improves the punctuality of the trams. Ou
et al.” considered the tram characteristics and signal priority control at junctions and constructed a tram speed
guidance model. The model was aimed at reducing the tram delays at the junctions. Ji et al.”” proposed three
control strategies—green extension, vehicle hold, and speed steering—to guide the tram in the proper course to
improve its reliability of the tram. Zhou et al.?® used vehicle delay and junction saturation as constraints. Then,
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Figure 1. Schematic diagram of a tram line.

the priority time thresholds of the two signal priority strategies of green extension and early green are deter-
mined. This study was conducted using the Webster graphic method. Wang, Y.-P et al.**° considered the traffic
demand of trams and social vehicles and proposed an active signal priority control model for trams based on
deep reinforcement learning.

Some academics have studied signal priority strategy and tram timetable design. Shi et al.**** proposed a joint
optimization model for tram timetables and transit signal priority. It aimed to decrease the overall travel time of
trams and reduce the negative utility of signal priority on junctions. Zhang et al.** proposed a single-line timetable
optimization method for two-way trams based on an active signal priority strategy based on**%. Zhou et al.**
established a collaborative optimization model for tram timetables and junction signal timing to maximize the
overall benefits of trams and social vehicles. Jeong et al.*> considered the effect of the red-light phase difference
at the same junction on the operation of trams. They proposed a tram passive priority control model based on
the mixed-integer linear programming green waveband optimization model MAX BAND to ensure the green
wave passage of arterial social vehicles simultaneously under the condition of fundamental tram passage green
wave bandwidth. Zhang et al.*® proposed an asymmetric and unequal-width trunk signal coordination model
AM-BAND based on the trunk signal coordination model MAX BAND?*-* and the unequal-width trunk signal
coordination model MULTIBAND***!. BAM-TRAMBAND is a model for artery signal coordination optimiza-
tion proposed by Zhou et al.*2. The Asymmetrical Multi-BAND (AM-BAND) approach was used to develop it.
The tram line in Ningbo, China, validated the proposed model. Based on the literature*, Bai et al.*** fixed the
green wave bandwidth of trams and built a passive signal priority model. It was aimed at maximizing the green-
wave bandwidth of social vehicles to reduce vehicle delays.

Research on combining a signal priority strategy and tram timetables provides a good idea for tram timetables
optimization. However, the research is primarily limited to a method that adopts a fixed signal priority strategy
to optimize timetables. It neglects the impact on the optimization of tram timetables by adopting different signal
priority strategies during different travel periods. Therefore, a reasonable combination of signal priority strategies
to design an efficient timetable is a pressing issue that needs to be solved.

The contributions of this study are as follows:

e This study comprehensively optimizes the travel time of a tram and the negative utility of signal priority
strategies from a systems perspective. Collaborative optimization can maximize the overall benefits of trams
and social vehicles and provide theoretical reference and data support for tram operators in timetable design.

e This study proposes a method to optimize the tram timetable by adopting different signal priority strategies
during different travel periods. Compared with the current method that utilizes a fixed signal priority strat-
egy to optimize tram timetables, we concentrate on the impact on tram timetable optimization of adopting
different signal priority strategies during different travel periods. In the model, the signal priority strategies
of the tram are a set of decision variables considering the traffic flow of social vehicles rather than the fixed
input parameters. A numerical experiment is conducted to show the validity of the proposed model.

e This study develops a Mixed-Integer Linear Programming (MILP) model. The model effectively minimized
the overall travel time of the tram and the negative utility of signal priority for social vehicles. Moreover, the
various commercial solvers can solve the bi-objective MILP optimization model in this study.

Problem description

Problem description. Modern trams generally operate in semi-exclusive ROW that intersects with social
vehicles at junctions. It passes through several signalized junctions during the operation. According to the topo-
logical structure relationship between stations and junctions, the tram operating process is split into multiple
operation sections, as indicated in Fig. 1. To facilitate the model characterization, we portray the junctions along
the route as virtual stations. The set of stations and junctions is S = {1,2, - - - m — 1, m}, and the set of operation
sectionsis K = {1,2,---,1 — 1,1}.

The primary purpose of tram timetable optimization is to reduce the overall travel time of trams, which is
achieved by adjusting the section running time and dwell time of trams. Because periodic changes characterize
signalized junctions, even if the trams run fast, there is no guarantee that they can pass through junctions without
stopping. To ensure the smooth passage of the trams through the junctions and improve the operational effi-
ciency, the existing method usually only adopts a fixed signal priority strategy to optimize timetables. However,
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Figure 2. Peak hour traffic.

they ignored the impact of adopting different signal priority strategies during the different travel periods on the
tram timetables optimization results.

By detecting the actual traffic flow at the junction, we found that the traffic flow of social vehicles at each
phase is higher during peak commuting hours, as shown in Fig. 2. If the no-signal priority strategy is adopted
for the tram phases during this period, there is no need to sacrifice the green duration of the other phases, and
the negative impact on social vehicles is smaller. During off-peak hours, the traffic flow of social vehicles in each
phase was smaller, as shown in Fig. 3. If an active signal priority strategy is adopted for the tram phases during
this period, trams can be guaranteed to pass through junctions at the green light without stopping. The total travel
time of trams was reduced. The above analysis demonstrates that we can determine the signal priority strategy
adopted by trams by detecting the traffic flow of social vehicles during different travel periods. This method can
minimize the overall travel time of trams and the negative utility of signal priority for social vehicles.

In summary, this study takes the operation process of trams during different travel periods as the research
object and constructs an approach to optimize tram timetables by adopting different signal priority strategies
during different travel periods. The goal is to minimize the overall travel time of trams and the negative utility
of signal priority for social vehicles.

Assumptions.

Assumption1 The tram runs reliably. In this paper, trams possess exclusive rights-of-way (ROW) except for
junctions and assured tram movements at junctions. Consequently, random events do not disrupt tram move-
ments.

Assumption 2 The original signal timing at each junction is optimal, and the negative utility per second of the
adjustment made when using the active signal priority strategy is known. This assumption can also be found in
recent timetable research, such as Shi'®.

Assumption 3 By fine-tuning the existing signal timing, extending the dwell time, controlling the tram sec-
tion running time, or using an active signal priority strategy, the trams can cross the junction without stopping.
Consequently, the trams had no delays at the junctions.
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Figure 3. Off-peak hour traffic.

Assumption 4 The timetable optimization process does not change the departure time of the trams at the first
station.

Assumption 5 The problem of several train lines sharing the same track is not considered.
Assumption 6 The signal cycle length is the same for each junction during different travel periods.
Notations. Table 1 presents all of the relevant notations utilized in the formulation.

Mathematical model
Constraints related to tram timetables.

(1) Section Operation

Compared to a tram that can pass through the junctions without stopping, it will have an extra start-stop
time when the tram stops at a red light at the junction. Therefore, whether a tram stops at the junction affects
the running time of the section adjacent to the junction. In peak hour b, if the tram arrives at junction stop line
s + 1during the green phase, the lowest limit of the running time of the section is #{""". The running time of the
section had an upper limit of #***. If the tram arrives at junction stop line s + 1 durmg the red phase, it must
stop at the junction to wait for red signals. The lowest limit of running time of the section is t+™" The running
time of the section had an upper limit of tm“" In oft-peak hour b, the lowest limit of the running time of the
section is /. The running time of the sectlon had an upper limit of £;"
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Notations ‘ Description

Sets

Q Set of trams,Q = {1,2,---r — 1, r}

S Set of stations and junctions,S = {1,2,---m — 1, m}

S Set of stations,S C S

s Set of entrances to junctions,S/ cS

s’ Set of exits at junctions,S’ C S

K Set of sections,K = {1,2,---1—1, [}

B Set of tram travel periods,B = { 1,2,---y — 1,y}

Indexes

q Index of trams,g € Q

s Index of stations or junctions,s € S

k Index of sections,k € K

b Index of tram travel periods,b € B

Parameters

Cs Signal cycle length at junctions s,s € S

0 Signal offset at junction s (compared with the first junction in the “downward” direction),s € s
¢ Green duration of tram phase at junction s,s € S

t‘x(’ The initial dwell time of tram q

T{ Red duration of tram phase at approaching junctions s,s € S’

nin The lower limit of the running time in section k under non-stop movements at the junction
e The upper limit of the running time in section k under non-stop movements at the junction
t]t'“'“/ The lower limit of the running time in section k under junction stop movements

z,:’“”' The upper limit of the running time in section k under junction stop movements

Gq The departure time of tram g at the first station

H} The minimum headway between two consecutive train arrivals at the same station

HY The minimum headway between two consecutive trains departures from the same station
HA The minimum headway between a train departure and another train arrival at the same station
W Unit negative utility (per second) of adopting signal priority strategy at junction s,s € S

0, The traffic flow of social vehicles

Decision variables

tok Time of tram g in running section k

t,x Dwell time of tram g in station s,s € §

tgs The departure time of tram g from station s,s € S

t,ﬁs The arrival time of tram g at station s,s € S

t(‘;’s Time spent in a signal cycle when tram q arrives at junction s, s € S’

t;fs Time remaining in a signal cycle when tram q arrives at junction s,s € S’

Agbs A binary variable, which is 1 if tram g stops at junction s during period b; 0, otherwise

Ug,s Signal cycle number of tram q to the stop line at junction s,s € S

B A binary variable; which is 1 if the no-signal priority strategy is adopted at the junction s; 0, otherwise
Iobs The negative utility of adopting the signal priority strategy

Table 1. Notations.

{ tak = (1= agps — Qgber1) B + (clgps + gpsrt)

lok = (1 —Ogbs — O5q,b,s+l)t}?mx + (aq,b,s + O‘q,b,s+1) t;(nax
Vg € QkeK,seS\{m},ayps €10, 1}

(2) Dwell Time
W w Wi T
tos S tgs < (tq,;’ + T;)Vq €QseSs (2)
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t w t
g1 ot + (ctgbs — )M < tq’ivf trt + (1 — agps)M
b _O‘q,b,sM < tq,g < aq,b,sM
w
By =0ty =0

VgeQse S,be B,agps € {0, 1}, B; € {0, 1}

N =0vgeQseS,beB

3)

(4)

Constraint (2) indicates that the minimum dwell time is the initially scheduled dwell time. The maximum
dwell time is calculated by adding the minimum dwell times and the red duration adjacent to the junction. Con-
straint (3) indicates that if the tram stops at the junction, the tram dwell time at the junction is the time when
the red light changes to green. The tram dwell time at the junctions is zero if it can pass through the junctions
under green light without stopping. Constraint (4) indicates that the dwell time “departure from the junction

location” is zero.

(3) Tram Arrival and Departure Time

The departure time is calculated by summing the running time of the last station and the dwell time of the

station. The arrival time is calculated by summing the running time and dwell time of the previous station.

D w
te1 = Gg+ 131V € Q

s—1 s
D =G+ > tgx+ > Vg e Qses\(1)
k=1 s=1

s—1 s—1
A _ w
fgs =Cq + Z fak + Z tgs
k=1 s=1

Vg € Q,s € S\{1}

(4) Selection of signal priority strategy

(5)

(6)

This method determines the signal priority strategy adopted by the tram by detecting the traffic flow of social

vehicles during different travel periods. According to relevant literature

45-47

and the actual measurement of traffic

flow at junctions, we select the number of social vehicles as 800 as the threshold for determining which signal
priority strategy to adopt. If the traffic flow of social vehicles is > 800 during the travel period, the no-signal
priority strategy is adopted; otherwise, the active signal priority strategy is adopted.

gr [ L0 = 800
b= 0, otherwise

Vse S,beB

(5) Determination of whether a tram needs to stop at the junctions.

(8)

When the tram arrives at the signalized junctions, if the time consumed in the signal cycle is less than the
green duration of the tram phase, it can pass through the junctions without stopping. Otherwise, it must be
stopped at the junction.

A
{Cs(uqﬁ - 1) < tq,s — 0Os VgeQse s

Csugs > t(?,s — 0

1 =12 — 0 — Cs(ugs —1)Vg € Qs e §

trg=Ci—10VgeQseS

q, S
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Figure 5. Offsets and signal cycle numbers.

Bi =1, (aghs — )M < 125 = T < agpM
B =0, 0455 =0 (12)
Vge QseS,beB

As shown in Fig. 4., Fig. 5, constraint (9) is the number of signal cycles when the tram reaches the junction.
Constraints (10) and (11) are the equations for the time spent and remaining in a signal cycle whenever tram g
reaches junction s. Constraint (12) is the determination constraint for whether tram q must stop at junction s.

(6) The negative utility of signal priority strategy
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When the tram passes through the junctions during the green phase, it inevitably causes delays in social
vehicles. The negative utility of adopting the signal priority strategy is quantified as the product of the signal
priority response time, the negative utility of signal priority per unit time, and the traffic flow of social vehicles.

Iobs =T x W; x 6} x (1—agps)

13
VgeQ,seS,beB,ag, {01} (13)
(7) Headways

A A A

e 2
s~ fge 21D (14)

D
tq+1,s tq,s = HD

Vg e Q\{Irl},s €S

Objective function. This paper proposes a method to optimize tram timetables by adopting different signal
priority strategies during different travel periods to address the mentioned issues. The objective function consists
of two parts. Part 1 is the total travel time of all trams. The second part is the total negative utility of the signal
priority strategy. The specific form of the objective function is as follows:

minzqeozkeKzses(tq,k + t;{) + quozses,zbequ,b,s (15)

subject to constraints (1)-(14).

Solution approach. The optimization model constructed in this paper is a MILP model. It can be solved
using the optimization solver GUROBI. A common method for solving multi-objective optimization problems
is the linear weighted method. Its fundamental concepts are as follows:

e Construct a single-objective optimization model
Ignore the goal of minimizing the negative utility of the signal priority strategy and set a single-objective
optimization model (marked as model S1) to minimize the travel time. The goal of this model is minz,. Ignore
the goal of minimizing the total travel time and set it to minimize the single-objective optimization model
(marked as model S2) with the negative effect of the signal priority strategy as the goal. The goal of this model
is minz,.
® Solve single-objective optimization models
Two single objective optimization models S1and $2 are solved respectively, and the corresponding objec-
tive values of the optimal solutions are denoted as z; and z, respectively.
® Solve for the boundary points of the Pareto solution set
Add the constraint z; < z, to the constraints of the model S1. The obtained target value is recorded as z7,
and the output value of the energy consumption index is recorded as z3. The solution z, z; is a boundary
point in the Pareto solution set ® of the dual-objective optimization problem. Similarly, add z, < z, to the
constraints of model S2, and solve to obtain another boundary point of the Pareto solution set, denoted as
(z*s z3™). Then set the solution (27, z7) and the solution ( z{*, z3*) are added to the Pareto solution set ©.
® Set weights for two objectives
The weights o and o, of the total travel time and total negative utility are given respectively, satisfying
o1 >0, > 0,01+ =1
e Normalize the objective function
Set 1 = a1/z), 2 = 2z /25™
e Construct a single-objective optimization model based on the linear weighting method
The goal of the model is set as minz = min(¢; - Z; + ¢, - Z), and the constraint is the formula of Egs. (1)-
(14).
® Solve the single-objective optimization model based on the linear weighting method
Solve the model and add the resulting Pareto solution to the Pareto solution set ®.
e Obtain the Pareto Frontier
Repeat steps 2-5 until the required number of Pareto optimal solutions are obtained and output the Pareto
frontier according to the objective function value of the Pareto solution.

Numerical experiment

We designed numerical experiments with a tram line as the background to evaluate the validity and feasibility of
the model developed in this paper. We selected a weekday period of 7: 00-12: 00 to optimize the tram timetables
using the proposed method.

Numerical conditions and model parameters. Numerical conditions. We designed the numerical
experiments with a tram line as the background for this paper. The specific data are as follows. The tram line has
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Figure 6. Schematic diagram of the line.

The range for running time under non-stop movements at the junction(s) | The range for running time under stop movements at the junction(s)

No Section (min, max) (min, max)
1 YKZX- YB1 | (44,77) (47, 80)
2 YBI1- YB2 (6,6) (8,8)

3 YB2- BSGZ (20, 20) (24, 24)
4 BSGZ- BW1 | (35, 62) (40, 65)
5 BW1- BW2 (6,6) (8,8)

6 BW2-YSZ | (20,20) (22,22)
7 YSZ- XY1 (36, 66) (41, 69)
8 XY1- XY2 (7,7) 9,9

9 XY2-DBG | (22,22) (24, 24)
10 |DBG-YMI | (38,65) (42, 68)
11 |YMI-YM2 | (6,6) 9,9)
12 YM2- YG1 (28,52) (33, 55)
13 | YGI-YG2 (6,6) 9,9)
14 YG2- YLXS (20, 20) (24, 24)
15 YLXS- YY1 (36, 66) (41, 69)
16 | YYL-YY2 (7,7) 9,9)
17 YY2- XBKY | (20, 20) (22,22)
18 XBKY-ZHI1 | (31,53) (36, 56)
19 |ZHI1-ZH2 | (6,6) (8,8)
20 | ZH2- SF1 (29, 56) (34, 59)
21 | SF1-SF2 (7,7) 9,9)
22 | SF2-DBKY | (22,22) (24, 24)

Table 2. The range for section running time.

seven stations and eight signalized junctions, and the tram line is shown in Fig. 6. To evaluate the validity and
feasibility of the model developed in this work, we designed two other schemes for comparison.

All numerical experiments were performed on a computer with Intel (R) Core (TM) i7-1065G7 CPU, 8G
memory, operating system winl0, and solved using GUROBL.

Model parameters. The range for section running time is shown in Table 2.

Tables 3 and 4 present the range for dwell time and the departure time at the first station.

The signal timing parameters for each signal junction during the study period are listed in Table 5. Table 6
describes the traffic flow of social vehicles at each junction during the different travel periods. The calculation
of the negative utility of signal priority is inextricably linked to the traffic flow and junction saturation. The cal-
culation process is extremely complicated. To simplify the problem, we refer to the literature'®'’. The unit nega-
tive utility (per second) of adopting a signal priority strategy at a junction is Wy = 10. The minimum headway
between two consecutive train arrivals at the same station is H4 = 30. The minimum headway between two
consecutive train departures from the same station is H5 = 20. The minimum headway between train departure
and another train arrival at the same station is Hy = 30.

Results and discussions.  Complexity analysis. The model constructed in this paper comprised continu-
ous and binary variables. The magnitude of a set determines the size of each variable. Table 7 presents a complex
analysis of the problem.
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No Station | Range of dwell time(s) (min, max)
1 YKZX (0, 80)

2 BSGZ | (25,99)

3 YSZ (38, 120)

4 DBG (26, 101)

5 YLXS | (26,101)

6 XBKY (25,91)

7 DBKY (42, 50)

Table 3. The range for dwell time.

No | Departure time | No | Departure time
1 7:04 11 9:29
2 7:19 12 1 9:44
3 7:33 13| 9:58
4 7:48 14 | 10:13
5 8:02 15 10:27
6 8:17 16 | 10:42
7 8:31 17 | 10:56
8 8:46 18 11:11
9 9:00 19 | 11:25
10 9:15 20 | 11:40

Table 4. The departure time at the first station.

No Signal cycle(s) | Green time(s) | Red time(s) | Offset(s)
1 109 33 76 0

2 109 44 65 50

3 109 35 74 13

4 109 34 75 68

5 109 50 59 85

6 109 34 75 68

7 105 39 66 68

8 105 20 85 89

Table 5. Signal timing data at signalized junctions.

Junctions travel periods 2 5 8 11 13 16 19 21

7:00-7:30 500 461 428 488 | 483 452 487 498
7:30-8:00 511 531 500 501 | 571 529 514 544
8:00-8:30 1014 | 1419 931 974 | 1575 | 1271 964 | 1682
8:30-9:00 1081 | 1462 940 949 | 1605 952 | 1359 | 1552
9:00-9:30 607 651 611 604 | 612 631 652 617
9:30-10:00 656 633 629 600 | 500 495 571 780
10:00-10:30 517 513 537 548 | 520 541 532 580
10:30-11:00 924 | 1531 905 921 | 1582 | 1388 |1548 | 1625
11:00-11:30 957 | 1629 950 |1032 | 1592 | 1432 961 | 1584
11:30-12:00 921 | 1598 | 1269 | 1499 |1636 920 | 1642 | 1569

Table 6. The traffic flow of the social vehicles.
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BSGZ

YSZ

DBG

YLXS

DBKY

Type Variables of constraints | Theoretical dimension | Counts
tok YIKI-1QI 440
Continuous variables t,}’jﬁ, tgs,t,‘;‘,s 2181 1Ql 460
oty S5 10l 160
) Agbs 2181 1Q 460
Binary < s ,
0;, By, POINIRLe] 160
Constraints (1) SIKI-1Ql 440
Constraints (2) > ‘E -1Q| 140
Constraints (3) |81l 160
. /!
Constraints Constraints (4) > ‘S ‘ -1Q| 160
Constraints (5) > 1Ql 20
Constraints (6)—(7) SIS 1Ql 460
Constraints (8)-(13) > ‘S" -1Q| 160
Constraints (14) 2o ISE- 1\l 437

Table 7. Problem complexity.

Figure 7. The tram timetable of comprehensive optimization scheme (this work).

i

9:00

12:00

As indicated in Table 7, the timetable optimization problem proposed in this paper is a mega-scale linear
programming problem. It contains 2530 integer variables, 2900 binary variables, and approximately 10,000
constraints. The comprehensive optimization issue can be addressed using the optimization solver GUROBI.

Comparative discussions of optimization results.
overall travel time of trams after optimization is 21330 s, and the minimum negative utility of the signal priority
strategy is 32,016,450. The operational efficiency of the line has enhanced significantly. Fig. 7 depicts the tram
timetable for the comprehensive optimization scheme.

In Fig. 7, the red dotted lines represent the location of the junction, and the red circles indicate that the tram
stops at the junction.

To evaluate the validity and feasibility of the model developed in this work, we designed two other schemes
for comparison. Scheme 1 shows the adoption of the no-signal priority strategy for all travel periods. Scheme 2
shows the scheme for adopting the active signal priority strategy during all travel periods. Scheme 3 is the scheme
proposed in this study that adopts different signal priority strategies under different travel periods. After normal-
izing the multi-objective function, a comparison of the optimization results for each scheme is shown in Fig. 8.

As shown in Fig. 8, compared with the scheme that only adopts the no-signal priority strategy, the travel
time for the comprehensive scheme proposed in this study is reduced by 16.60%. The number of tram stops

According to the GUROBI data, the minimum
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Figure 8. Comparison of comprehensive optimization objectives of trams for different schemes.
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Figure 9. The tram timetable of the scheme for adopting the no-signal priority strategy scheme.

at junctions decreased by 53.66%. The above analysis revealed that when only adopting the no-signal priority
strategy during all travel periods, trams do not always have priority to pass through junctions without stopping.
These may be interrupted by a red signal at the junction. Consequently, the travel time for trams increased. The
scheme proposed in this work can significantly decrease the number of tram stops at junctions, shorten overall
tram travel time, and improve operational efficiency. The tram timetable for adopting the no-signal priority
strategy scheme is shown in Fig. 9.

Compared with the scheme that only adopts the active signal priority strategy during all travel periods, the
negative utility of signal priority for the comprehensive scheme proposed in this work decreased by 39.45%.
The above analysis shows that although only adopting the active signal priority strategy can slightly shorten the
overall travel time of the tram, the active signal priority strategy does not consider social vehicles. This inevitably
causes delays in social vehicles. The scheme in this study decreases the negative utility of signal priority for the
social vehicles by only slightly increasing tram travel times. It better balances the traffic benefits of tram and
social vehicles to maximize the overall benefits of the junction. The tram timetable for adopting the active signal
priority strategy scheme during all travel periods is shown in Fig. 10.
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Figure 10. The tram timetable for adopting the active signal priority strategy scheme.

Based on the comparison results between the scheme in this study and the other two schemes, the subgoals
of the scheme proposed in this work are slightly inferior to the optimal target values of each subgoal. However,
overall, the comprehensive objective of the method developed in this study is optimal among the three schemes.
The comprehensive method proposed in this work can optimize the tram timetable and balance the operational
efficiency of the tram and social vehicles. Moreover, it can realize the purpose of providing theoretical references
and data support for tram operators in designing timetables.

Conclusions and future research

Modern trams generally operate in a semi-independent ROW that intersects with social vehicles at junctions.
The trams may stop at a red light at the junction, which results in an extra start-stop time. To decrease the tram
travel time and the number of tram stops, the Transit Signal Priority (TSP) is applied to provide an extra green
duration for trams at the junctions. Although the active signal priority strategy has the potential to increase the
operational efficiency of the tram, the excessive signal adjustment can cause massive delays and negative impacts
on social vehicles. This effect, particularly during peak commuting hours, can cause severe road traffic conges-
tion. Therefore, we develop a MILP model to optimize the tram timetable and consider various signal priority
strategies. In the model, the signal priority strategies of the tram are a set of decision variables that consider the
traffic flow of social vehicles rather than the fixed input parameters. This method can address the issues of low
operating efficiency and a lack of consideration of the negative impact of the TSP on the junctions.

The numerical results of the experiment are as follows. Compared with the scheme that only adopts the
no-signal priority strategy, the travel time for the comprehensive scheme in this work decreases by 16.60%, and
the number of tram stops at junctions decreases by 53.66%. Compared with the scheme that adopts the active
signal priority strategy during all travel periods, the negative utility of the signal priority for the comprehensive
scheme proposed in this work is reduced by 39.45%. Overall, the comprehensive optimization scheme proposed
in this work can minimize the travel time of the tram and the negative utility of signal priority for social vehicles.

This study provides an analysis and discussion of this model. However, the computation of the negative utility
of signal priority for other social vehicles is simplified in this study. To be better implemented in actual tram lines,
it is better to further explore the more detailed and accurate methods of quantifying the negative unit utility of
different signal priority strategies in the model.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable
request.
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