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Effect study of heat treatment
on tensile properties of coarse
sandstone

YushunYang'*, Sijiang Wei?*“, Jihua Zhang?, Jingke Wu'> & Chunlei Zhang?

Brazilian split experiments were carried out on coarse sandstone, obtained from a coal seam

roof passed by the Shihuoshan tunnel in Xinjiang, and treated at different temperatures (room
temperature 25 °C and high temperature 100 °C~900 °C). The physical and mechanical characteristics
of the samples were studied. The results showed that: after heat treatment, the color of the coarse
sandstone samples gradually changed from dark gray to brownish red-pink; the higher the treatment
temperature was, the darker the sample color. Microcracks and mineral composition changes occured
in the coarse sandstone samples after heat treatment, which decreased the longitudinal wave velocity
of the samples. The longitudinal wave velocity of the coarse sandstone samples decreased as a
quadratic function of the treatment temperature. With the increase in longitudinal wave velocity, the
tensile strength of the samples first increased and then decreased, changing as a quadratic function
relationship. After heat treatment, the tensile stress—strain curve of the coarse sandstone could

be divided into compaction, elasticity, plasticity, and failure stages. The energy was continuously
accumulated in the coarse sandstone before its failure, and it was released suddenly after the failure.
With increasing treatment temperature, the cumulative energy in the prepeak stages first increased
and then decreased, reaching a maximum value at 500 °C. The prepeak energy and tensile strength of
the coarse sandstone samples satisfied a linear function fitting relationship, indicating that a higher
tensile strength in the coarse sandstone, led to more accumulated energy in the samples.

With the rapid development of underground engineering construction, engineering problems such as boring
tunnels through rocks such as sandstone are increasing. Underground fires affects the physical and mechanical
properties of surrounding rock materials and causes systemic failures and catastrophic accidents. Therefore, the
mechanical behavior of rock at high temperatures is an important parameter'~. The influence of high tempera-
ture on the mechanical properties of rock should be considered when designing of surrounding rock supports
after underground engineering fires.

In order to assess the mechanical properties of rocks subjected to high temperatures, researchers have per-
formed numerous studies and achieved important results. With increasing temperature, the attached water and
ore-bound water in limestone gradually disappears, and the mineral phase transformation, decomposition and
chemical bond fracture increase the internal damage and porosity of the limestone’. The stress-strain curves
form a hysteresis loops®. The strength of limestone decreases with increasing temperature, the angle of internal
friction increases first and then decreases with increasing temperature, and the relationship between cohesion
and temperature was opposite to that of the angle of internal friction’. With increasing heat treatment tempera-
ture, the mass, density, P-wave velocity and peak strength of granite generally show a downward trend, and with
increasing temperature and confining pressure, the deformation of granite changes from brittle to plastic®'2.
Cracks were formed at the ends of pores and rapidly expand and connect to form a pore fracture network struc-
ture, and the number and size of cracks produced by granite increase with increasing temperature'>~' After
high-temperature treatment, the permeability of granite gradually increases with the experienced temperature,
the increase of permeability within 500 °C was small, and the permeability of granite between 500 and 600 °C
undergoes a step change'”. The permeability of granite increases exponentially with the expansion of fractures's.
However, in practical engineering, high temperature causes a rock mass to break in tension, the stability decreases
and causes damage, and the tensile strength of granite generally decreases with increasing temperature!®-2!.
Chaudhary et al.” evaluated in detail some physico-mechanical parameters of sandstone rocks from Eastern
India, and their statistical correlation and swift prediction. Tmca et al.” studied high-temperature fluid rock
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Figure 1. High temperature box resistance furnace.

Figure 2. Samples treated at different temperatures.

interactions recorded in a serpentinized wehrlite from eastern Singhbhum Craton, India, and their results indi-
cated that these rocks experienced fluid rock interactions at temperatures above the serpentinization process.

The damage mechanisms of granite and sandstone in the thermal damage process are obviously different*,
resulting in a significant difference in the strength characteristics of the two rocks. Su et al.*>* studied the defor-
mation and strength characteristics of coarse sandstone and fine sandstone after high-temperature exposure,
analyzed the relationships among sample deformation, strength and failure characteristics, temperature and
confining pressure, and determined the mineral formation in the fine sandstone sample after high temperature
polymorphism. The above scientists conducted a series of studies and assessments on limestone, granite, sand-
stone and shale. Even if the rock engineering was subjected to slight stretching after high-temperature exposure,
collapse or other forms of failure will occur. Therefore, there was certain practical value in studying the tensile
properties of coarse sandstone after high-temperature treatment. In this paper, coarse sandstone from a coal
seam roof passed by the Shihuoshan tunnel, in Xinjiang, China was taken as the research object, and the varia-
tion law of tensile strength after being subjected to different temperatures was experimentally studied, to provide
theoretical support for the stability of geotechnical engineering after fire exposure.

Materials and methods

Coarse sandstone samples. Coarse sandstone samples were taken from a coal seam roof passed by the
Shihuoshan tunnel in Xinjiang, China. The local area of the tunnel passes through a natural coal seam zone. The
engineering design needs to measure the mechanical parameters of the coarse sandstone samples obtained from
the coal seam roof in this area after heat treatment. According to the methods recommended by the ISRM, the
coarse sandstone was processed into Brazilian disk samples with a diameter of 50 mm and a height of 40 mm.
There were 30 samples in total. The particle size of the samples was 0.2~ 1.0 mm, and the average particle size
was 0.5 mm; the density of the samples was 2275 ~ 2410 kg/cm?, and it’s the average value was 2346 kg/cm?, and
the dispersion coefficient was 1.4%. There were no obvious joints, cracks or other defects on the surface of the
samples, and their macroscopic appearance was relatively uniform.

Samples were treated at different temperatures in a KSW-5D-12 high-heat box-type furnace, as shown in
Fig. 1. Except for the temperature of 25 °C, the treatment temperature was set to 100 °C, 200 °C, 300 °C, 400 °C,
500 °C, 600 °C, 700 °C, 800 °C, and 900 °C; each temperature setting uses three samples. To heat the samples
evenly, they were slowly heated to the different set temperature at the rate of 10 °C/min, kept at a constant tem-
perature for 4 h, and then cooled to room temperature naturally in the furnace to prepare the coarse sandstone
samples treated at different temperatures, as shown in Fig. 2.

Test methods.  Acoustic wave test A UTA-2000A acoustic wave tester was used to test the acoustic wave vari-
ation mechanism of the coarse sandstone samples treated at different temperatures.

Brazilian split test An RMT-150B electrohydraulic servo test system was used, and the test device is shown in
Fig. 3. The test device mainly adopts the steel wire split method. The diameter of the steel wire washer was 2 mm,
a5 mm displacement sensor measures the axial displacement of the samples, and a 100 kN force sensor measures
the radial load of the samples. The loading process in the test adopts displacement control, and the samples were
loaded at a loading rate of 0.002 mm/s until they fail, and three samples were tested at each set temperature.

A D8-ADVNCE X-ray diffractometer was used to analyze and obtain the main mineral components of the
coarse sandstone samples treated at different temperatures.
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Figure 3. RMT-150B electrohydraulic servo rock test system.
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Figure 4. Relationship between the treatment temperatures and the mass change rate of the coarse sandstone
samples.

The Brazilian split mechanism. According to the Boussinesq analytical solution of the concentration
force acting on a semi-infinite body in elastic mechanics, a force was applied to both ends of the diameter of the
Brazilian disk samples and deducted from the stress generated around the disk samples because of the concen-
tration force. In this way, the horizontal tensile stress at the center point of the disk samples was obtained, which
was used as the tensile strength of the samples. Through theoretical derivation, the maximum tensile stress act-
ing on the center of the samples when it fails can be obtained as follows:

2P
wDL

where P is the load (kN), D is the diameter of the disk samples (mm), L is the height of the disk samples (mm).

(1)

oy =

Experiment results and analyses

Apparent color variation of samples. Figure 2 shows that the color of the coarse sandstone samples
changes significantly after different heat treatments. The color of the samples at room temperature was dark gray.
When the treatment temperature was below 500 ‘C, with the increase in temperature, the color of the samples
gradually changes from dark gray to brownish red. As the temperature increases above 500 “C, the color of the
samples changes to pink; the higher the temperature was, the darker the red color. It was caused by oxidation of
the sample due to the high temperature. There were no visible cracks or disintegrations on the samples surfaces,
and they were still intact.

Effect of temperature on the mass change rate of samples. The internal mineral components of
the coarse sandstone samples treated at different temperatures were thermally decomposed, and their ther-
mal decomposition degrees differ. The mass change degree of the coarse sandstone samples treated at different
temperatures was characterized by the mass change rate (the percentage of the mass reduction of the samples
after different high-temperature treatments to the mass of original samples). The relationship between the mass
change rate of the samples and the treatment temperature is shown in Fig. 4. The sample mass change rate was
positively correlated with the treatment temperature. When the treatment temperature was below 900 °C, the
mass change rate of the samples increases gradually with increasing treatment temperature. The average increase
in the mass change rate of the samples treated at each set temperature was 0.53%, 0.83%, 1.02%, 1.23%, 1.37%,
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Temperature No 25 100 200 300 400 500 |600 700 800 900
1# 3306 | 3210 |2764 |2697 |2440 |2067 | 1640 | 1616 | 1383 |1261
2# 3293 | 3245 |2801 | 2740 |2470 |2222 | 1641 |1646 | 1442 | 1316
v/(m/s) 3# 3230 | 3269 |3003 | 2809 |2586 |2342 |1651 |1659 | 1463 |1361
Average value | 3276 | 3241 |2856 |2749 |2499 |2210 |1644 |1640 |1429 |1313

Table 1. Longitudinal wave velocities of the coarse sandstone samples treated at different temperatures.
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Figure 5. Relationship between the longitudinal wave velocity of coarse sandstone samples and its treatment
temperature.

1.84%, 2.05%, 2.53%, and 2.64%. With increasing treatment temperature, the water evaporation phenomena
in the samples turn into the mineral thermal decomposition and recrystallization in the samples, causing the
sample mass to continue to decrease.

Longitudinal wave velocity. The longitudinal wave velocities of the coarse sandstone samples treated at
different temperatures are shown in Table 1.

With increasing treatment temperature, the longitudinal wave velocity of the samples decreases slowly. Com-
pared with the samples at 25°C, the longitudinal wave velocities of the samples treated at the different tempera-
tures decreased by 1.08%, 12.84%, 16.11%, 23.74%, 32.54%, 49.83%, 49.94%, 56.38%, and 59.94%, respectively.
This indicates that the microstructure and mineral composition of the coarse sandstone samples change. The
cementitious substances inside the samples were damaged, and their stiffness was reduced, making the longi-
tudinal wave velocity significantly decrease. The longitudinal wave velocity was a comprehensive macroscopic
manifestation of microscopic factors such as rock deformation and failure and the distribution of cracks. The
generation of tiny cracks inside the samples reduces its longitudinal wave velocity?*. The relationship between
the longitudinal wave velocity of the samples and the treatment temperature is shown in Fig. 5.

Figure 5a shows that the longitudinal wave velocity of the coarse sandstone samples decreases gradually with
incrsasing treatment temperature. When the treatment temperature was 200 °C and 600 °C, the longitudinal wave
velocity of the samples reduces significantly. As shown in Fig. 5b, the longitudinal wave velocity of the samples
and the treatment temperature satisfy the quadratic function fitting relationship, as shown in Eq. 2.

Vp = 3.3382 x 107*T% — 2.7683T + 3443.14 )

where V is the longitudinal wave velocity (m/s), T is the treatment temperature (°C).

Damage characteristics. The longitudinal wave velocity of the coarse sandstone samples reflects the dam-
age characteristics of the samples. Therefore, the ratio of the longitudinal wave velocity of the samples at different
treatment temperatures to that of the samples at 25 °C was used as the damage variable D. In this way, the dam-
age evolution characteristics of the samples were obtained as shown in Eq. (3).

D(T) =1—-Vpr/Vyo 3)
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Figure 6. Relationship between the damage variable and the treatment temperature.

where D(T) is the damage variable at temperature T, V,;; is the longitudinal wave velocity at temperature T (m/s),
Vi is the longitudinal wave velocity at 25 °C (m/s).

According to Eq. 3, the damage variable-treatment temperature relationship curves were drawn, as shown
in Fig. 6.

Figure 6 shows that the relationship between the damage variables of the samples treated at different tem-
peratures and the treatment temperature satisfies a linear function as shown in Eq. 4. The correlation coefficient
was more than 96%, and the fitting effect was excellent.

D = 0.0008T — 0.0472. (4)

Deformation characteristics. The tensile stress—compressive strain curves of the coarse sandstone sam-
ples treated at different temperatures are shown in Fig. 7. The abscissa was the ratio of the total compressive
deformation value in the loading direction to the diameter of the samples (average compressive strain).

The tensile stress—compressive strain curve was roughly divided into the following stages: compaction, elastic-
ity, plasticity, and failure. Compaction stage: The tensile stress—compressive strain curve was concave upward,
and the micropores inside the samples were compacted and closed under the load. Elastic stage: The tensile
stress—compressive strain curve approximates a straight line, showing the elastic properties of coarse sand-
stone. Plastic stage: As the load increases, the coarse sandstone’s interior gradually breaks down, and the tensile
stress—compressive strain curve was concave. Failure stage: The load reaches the ultimate capacity of the coarse
sandstone, forming a crack that runs through the center of the disc samples. The coarse sandstone loses its bear-
ing capacity due to its instability and failure, and the stress drops rapidly.

Figure 8 presents the relationship between peak compressive strain and temperature of coarse sandstone
sample. With increasing temperature, the peak compressive strain of the coarse sandstone samples fluctuates, but
shows a decrease as a whole. Compared with the normal temperature at 25 “C, the peak compressive strain change
rate of coarse sandstone at each temperature was 17.17%, 4.81%, 12.04%, 0.13%, 23.51%, 22.34%,— 13.57%, 0.61%,
and -8.07% (the "-" means decrease). Due to the anisotropy of coarse sandstone samples, the internal damage
characteristics of samples after high temperature were different, which makes the tensile strength was different,
and its deformation characteristics also change accordingly.

The elastic modulus was the most important and characteristic mechanical property of coarse sandstone.
It was the characterization of the deformation difficulty of the sample, that is, the slope of the straight line in
the stress—strain curve. Figure 9 presents the relationship between the elastic modulus and temperature of the
coarse sandstone sample.

Figure 9 shows that the elastic modulus of the coarse sandstone fluctuates with increasing temperature. The
elastic modulus increases with increasing temperature after the temperature above 400 °C. Compared with the
average elastic modulus of the sample at 25 °C at normal temperature, the average elastic modulus of the sample
after 100 °C, 200 °C, 300 °C and 400 °C increases by 11.96%, - 15.75%, 21.30% and 18.53%, respectively. When
the temperature exceeds 400 C, the elastic modulus of the high-temperature coarse sandstone sample decreases
rapidly with increasing temperature, and the elastic modulus of the coarse sandstone sample basically tends to
be stable after experiencing high temperature from 700 to 900 °C. Compared with the normal temperature of
25 °C, the average elastic modulus of the samples after high temperature treatment at 500 °C, 600 °C, 700 °C,
800 °C and 900 °C decreases by —22.68%, —27.86%, —37.49%, 5.91% and —10.21%, respectively.

Mechanical strength characteristics. The relationship between the tensile strength of the coarse sand-
stone samples treated at different temperatures and the treatment temperature is shown in Fig. 10. The tensile
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Figure 7. The tensile stress—compressive strain curves of the coarse sandstone samples treated at different
temperatures.

strength of the samples #2and #3 treated at 100 “C was higher, and the tensile strength of sample #1 treated at
600 ‘C was lower than that of the other samples at the same treatment temperature. The tensile strength of the
samples treated below 500 ‘C increases with increasing temperature. Compared with the average tensile strength
of the samples at 25 °C, that of the samples treated at 100 °C, 200 °C, 300 °C, 400 °C, and 500 °C increases by
19.2% and 8.5%, 22.6%, 31.3%, and 28.7%, respectively.

The tensile strength of the samples treated over 500 C decreases with increasing treatment temperature.
Compared with the samples at 25 “C, the average tensile strength of the samples treated at 600 ‘C, 700 “C, 800
°C, and 900 ‘C decreases by -1.1%, — 53.5%, — 47.3%, and — 56.9%, respectively. This indicates that the treatment
temperature below 500 ‘C has a strengthening effect on the tensile strength of the samples; the treatment tem-
perature above 500 ‘C has a weakening effect on that of the samples.

Mineral component. The main mineral components of the coarse sandstone samples treated at different
temperatures are shown in Table 2. The main mineral components of the samples treated at 25~ 700 °C were
quartz and anorthite. The contents at 25 °C were 62% and 38%; at 100 °C, 67% and 33%; at 200 °C, 63% and
37%; at 300 °C, 66% and 34%; at 400 °C, 71% and 29%; at 500 °C, 69% and 31%; at 600 °C, 48% and 52%; and
at 700 °C, 37% and 63.8%, respectively. The inner minerals of the coarse sandstone treated at 800 “C undergo a
polycrystalline transformation, which results in anorthite disappearance and soda anorthite generation. At this
time, the quartz and soda anorthite content was 31% and 69%, respectively. The quartz and sodalite contents
of the samples treated at 900 °C were 23% and 77%, respectively. Quartz was the main mineral component of
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Figure 8. Relationship between the peak compressive strain and the treatment temperature of coarse sandstone
samples.
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Figure 9. Relationship between the elastic modulus and the treatment temperature of coarse sandstone
samples.

coarse sandstone, and its variation characteristics were consistent with the tensile strength variation trend of the
samples.

Energy characteristic. During the loading process, the loaded coarse sandstone samples continuously
accumulate energy. The cumulative energy value was determined by the area enclosed by the deformation curve
and the abscissa of the coordinate axis.

WiZ/ pidui (5)
0

In Eq. (5), Pis the load, and u is the radial load compression deformation (mm). The integral in Eq. (3) was
calculated according to the concept of a definite integral and using the load-deformation curve of the measured
samples:

1
Wi = E(Pi+1 + pi) (Uit1 — i) (6)

where # is the sampling number of the axial load-deformation curve during the test, i is the sampling point, and
p and u were the corresponding load and deformation at the sampling point, respectively. Due to the size differ-
ence of the samples, the energy accumulated per unit (called the energy rate W) was calculated as shown in Eq. 7.
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Figure 10. The relationship between the tensile strength of the samples and the treatment temperature.

Temperature/°C | Chemical reaction | Composition/(%) | Temperature/°C | Chemical reaction Composition/(%)

SiO, 62 S0, 69
25 500

(Na,Ca)AI(Si,Al);04 | 38 (Na,Ca)AI(Si,Al);Oq 31

Sio, 67 Si0, 48
100 600

(Na,Ca)Al(SLAD,0; |33 (Na,Ca)AL(S1,AL),04 52

Sio, 63 Si0, 37
200 700

(Na,Ca)Al(Si,Al);04 | 37 (Na,Ca)Al(Si,Al);04 63

$iO, 66 S0, 31
300 800

(Na,Ca)Al(Si,AD;O; | 34 (Nag 54Cap 16)Aly 16515405 | 69

Sio, 71 Si0, 23
400 900

(Na,Ca)Al(S,Al);04 | 29 (Nay5,Cag 1) Al 1Sy 5,05 | 77

Table 2. Main mineral composition of coarse sandstone after high temperature treament.

l n

In Eq. (7), D and L were the diameter and height of the samples, respectively. The energy analysis in this
manuscript refers to the energy per unit area (energy rate) (J/m?).

Figure 11 shows the tensile strength-temperature-energy relationships of the #1 coarse sandstone samples
treated at 25 °C, 100 °C, 200 "C, 400 ‘C, 600 “C, and 800 ‘C. The tensile strength—temperature-energy relationship
of the coarse sandstone samples treated at different temperatures was roughly the same. As the load increases, the
compressive deformation of the samples increases gradually, and the cumulative energy also increases accord-
ingly. When the load reaches the peak strength, the energy rate also reaches the maximum value. The sample
rupture was accompanied by energy consumption, and then the load decreases rapidly. Compared with the sam-
ples at 25 C, the cumulative energy of the coarse sandstone samples treated at different temperatures increases
by 33.14%, 16.45%, 26.81%, 27.66%, 45.34%, 18.16%, —55.70%, — 45.39%, and — 57.30%, respectively.

The relationship between the cumulative peak energy and the treatment temperature of the coarse sandstone
samples treated at different temperatures is shown in Fig. 12. With increasing treatment temperature, the prepeak
cumulative energy of the samples first increases and then decreases, reaching a maximum value at 500 °C. The
higher the cumulative energy was, the more rupture surfaces were needed to release the energy. Therefore, a large
number of macroscopic cracks were generated in the samples. The energy consumption index was consistent
with the macroscopic damage characteristics.

Discussion

The tensile strength and longitudinal wave velocity of the coarse sandstone samples treated at different tempera-
tures have different degrees of change and have a certain degree of correlation. The relationship between the
tensile strength and the longitudinal wave velocity was expressed as shown in Eq. (8):
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where o, is the tensile strength (MPa), V, is the longitudinal wave velocity (m/s), x and y are constants.
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The coarse sandstone samples was damaged after heat treatment, which reduces the longitudinal wave velocity
and changes their tensile strength. The relationship between the tensile strength of the coarse sandstone samples
and their longitudinal wave velocity is shown in Fig. 13.

The tensile strength of the coarse sandstone samples treated at different temperatures and their longitudinal
wave velocity satisfies a quadratic function fitting relationship, as shown in Eq. (9):

o1 = 1.36 X 107°V, +7.16 x 107°V,, — 6.0007

)
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Figure 13. The relationship between the tensile strength and the longitudinal wave velocity.
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Figure 14. Relationship between prepeak energy and tensile strength of the coarse sandstone samples.

where g, is the tensile strength (MPa), V is the longitudinal wave velocity (m/s).

Energy was continuously accumulated inside the coarse sandstone samples during the loading process. When
the energy accumulates to a certain level, it was released suddenly, which will leads to instability and failure of the
samples, and their stress drops rapidly. The relationship between the prepeak cumulative energy of the samples
and their tensile strength is shown in Fig. 14.

The prepeak energy of the coarse sandstone samples and their tensile strength satisfy a linear function fitting
relationship, as shown in Eq. 10:

Wpre = 304.207 — 68.999 (10)

where W, is the prepeak cumulative energy (J/m?),0; is the tensile strength (MPa).

Conclusion

In this paper, Brazil splitting experiments at different temperatures (room temperature 25 °C and high tempera-
tures of 100 ~ 900 °C) were carried out on the coarse sandstone from a coal seam roof crossed by the Shihuoshan
tunnel in Xinjiang, China. The physical and mechanical characteristics of the samples thus were studied, and
the following conclusions were drawn:

After heat treatment, the color of the coarse sandstone samples gradually changes from dark gray to brownish
red-pink; the higher the treatment temperature is, the darker the sample color. Microcracks and mineral compo-
sition changes occur in the coarse sandstone samples after heat treatment, which decreases the longitudinal wave
velocity of the samples. The longitudinal wave velocity of the coarse sandstone samples decreases as a quadratic
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function of the treatment temperature. With the increase in the longitudinal wave velocity, the tensile strength
of the samples first increases and then decreases, changing as a quadratic function relationship.

After heat treatment, the tensile stress—strain curve of the coarse sandstone was divided into compaction,
elasticity, plasticity, and failure stages. The energy was continuously accumulated in coarse sandstone before its
failure, and it was released suddenly after the failure. With the increase in treatment temperature, the cumulative
energy in the prepeak stages first increases and then decreases, reaching a maximum value at 500 °C. The prepeak
energy and the tensile strength of the coarse sandstone samples satisfy a linear function fitting relationship.
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