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Influence of variable velocity slip
condition and activation energy
on MHD peristaltic flow of Prandtl
nanofluid through a non-uniform
channel

M. G. Ibrahim?! & M. Y. Abou-zeid?**

This study is carried out to analyze the problem of mixed convection magnet nanoflow of Prandtl

fluid through a non-uniform channel with peristalsis. The external influences of activation energy and
non-constant velocity slip are given full consideration. The mentioned fluid is expressed as a governing
equations system, and then these equations are converted with non-dimensional parameter values to
a system of ordinary differential equations. The converted system of equations is solved in terms of y
and then graphs and sketches are offered using the generalized differential transform method. Graphs
and results for volume friction as well as velocity profile, concentration, and temperature distributions
are obtained. Results show development in the velocity profile of fluid distribution through high values
of the non-constant velocity slip effect. The present study is alleged to deliver more opportunities to
advance the applications of the drug-carrying system in hypoxic tumor areas with aid of identifying
the flow mechanisms.

Lately, the important applications of non-Newtonian fluids in diverse fields have prompted investigators to study
these kinds of fluids. Thus, the impact of thermal radiation on MHD Maxwell nanofluid is reported by Mahmood
etal.!. They noticed that the rise in the temperature-dependent thermal conductivity parameter leads to elevate
nanofluid temperature. Reddy and Makinde? introduce a new analytical study of buoyancy forces on the influx of
non-Newtonian fluids. In their investigation, they found that the volume fraction boosts with an enhancement in
thermophoresis parameter Nt. As well, researchers, focus their concern on studying the implementations of non-
Newtonian fluids in the existence of nanoparticles. Such as oil refinement implementations®*, implementations
of physiological systems®, biomedical applications®, drug delivery systems”®, rheumatoid arthritis’, and digestive
system'. Prandtl fluid is deemed an important kind of non-Newtonian fluid. It's known as a pseudo-plastic visco-
inelastic non-Newtonian fluid. Therefore, several studies included this kind of fluid. So, Akram et al.!! analyzed
the hybrid influences of magnetic field and thermal convection on Prandtl nanofluid. In their illustration study,
they observed that the velocity dwindles when y € [0, 0.3] whilst, it escalates when y € [0.3, 1.2]. Over and above,
many other analytical studies discuss the diverse applications of non-Newtonian nanofluids'*-%.

Energy has an indispensable significant role in several implementations, like physical, engineering, and chemi-
cal areas. Thus, it has attracted the interest of investigators. In general, activation energy is the energy that must
be applied to a chemical or nuclear system of latent reactants leading to a chemical reaction, or other physical
phenomena. Moreover, in 1889, the term was coined by Arrhenius*’. Shafique et al.*! discussed the boundary
flow containing a rotating frame in the existence of activation energy. In their discussion, they observed that the
activation energy is an increasing function in the fluid temperature. Gowda et al.*? studied a velocity distribu-
tion for the boundary layer influx in the existence of activation energy impact. Several studies include various
implementations of this significant energy*~%.

The slip velocity is known as the difference in velocities between liquids in the vertical inflow of two-phase
combinations through a pipe. Over and above, slip velocity in heart valves comes on top of its validation®.
Nisar et al.”® analyzed the influences of both slip and activation energy on the peristaltic influx of Eyring Powell
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Figure 1. Physical flow model.

nanofluid. They observed that the velocity escalates with an enrichment in the slip parameter. Akbar and
Nadeem®' propose a new model for Jeffrey’s fluid in the existence of slip impacts. They noticed in their study
that the pressure rise elevates with an enhancement in the slip parameter. The slip velocity is considered in some
studies because of its importance in artificial heart valves. Supplementary, see>*1%26-28 In the current study, the
variable slip velocity is studied to assure its significant role in heart valves*-*°.

Solutions to the diverse systems of equations are introduced with divergent classical techniques that are
not convenient for innovation in this study. Whilst, a credible procedure utilized to solve the highly non-linear
system of ordinary differential equations is named the generalized differential transform method (GDTM)*.
This method proved to be effective in treating several kinds of equations. Also, the approximate solutions can
be obtained with an error rate of up to 1071% when this semi-analytical method is applied®’, and divergent in
GDTM has been appropriately contained. This current analytical study displayed a new generalization to the
differential transform method to get a better solution to Prandt] nanofluid model. Several researchers studied
this method, see®**°.

The novelty of this study is to illustrate the impacts of variable velocity slip and activation energy on MHD
Prandtl nanofluid. The fluid inflows through a non-uniform channel. Distributions of velocity, temperature,
concentration, and nanoparticle volume fraction are obtained by GDTM. Solutions/results are obtained with-
out any perturbation/restrictive suggestion using GDTM. In the present paper, we construct the main results;
both the nanoparticle’s volume friction €2 and the concentration ¢ have an opposite behavior compared to the
temperature behavior except that they increase or decrease with the increase of Sc. Physically, our model cor-
responds to the transport of the gastric juice in the small intestine when an endoscope is inserted through it.
The formulation of the problem is introduced in "Formulation problem" section: the method of solution for the
resultant system of equations is presented in "Method of solution" section. Numerical discussion and analysis
of results are discussed in "Results and discussion” section. In "Conclusion” section involves the essential sum-
marized remarks of this study.

Formulation problem
Incompressible two-dimensional MHD peristaltic flow of Prandtl nanofluid in a non-uniform channel is delib-
erated. The fluid velocity c in the x — axis coordinates, with a width b. The induced magnetic field is neglected
while the uniform magnetic field is applied with strength By perpendicular to x — axis see Fig. 1.
Ao 2
y=h(@) = £41 (%) £ bsin =

Aq (56) = Ag + mx, where A; (&),AO, %,b,t, ¢, 2 and m are the width of the channel, the value of half-width at
the inlet, the axial space, the amplitude wave, the time, the velocity of propagating wave, the wavelength, the
non-uniform parameter, respectively. Indeed, at m = 0 the channel wall will be a uniform channel. In two-
dimensional, the axial velocity of flow is V= [U (X R 1?,?) R A4 <X R ?,?) s 0} .

The Prandtl fluid is offered as in'"**:
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where A and B are the constants of the Prandtl fluid tensor.
Rosseland’s approximation is designated as:

_ —4o*aT! ;

qr = 3k dy (3)
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The equations of motion of incompressible flow in a two-dimensional laboratory frame ()A(, f/') are as

follows:
au oV
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Here f,g, Bes ,BT, %> S T C Pp> T Dg, Pfo> DT, (,oc)p, DCT’ Dy, (pc)¢, TC, and 4 7 are the body force, the
acceleration due to gravity, the fluid volumetric solutal expansion, the fluid volumetrically thermal expansion,
fluid heat capacity, the stress tensor of Prandtl fluid, the flow temperature, concentration and nanoparticle volume
fraction, the base fluid density, the fluid density at Ty, the nanoparticle heat capacity, the density of the particles
respectively, the Brownian diffusion, the thermophoresis diffusion, the sort diffusively, the solutal diffusively,
DuFour diffusively, the material time derivative, respectively.

As we recognize, (X, Y) describes the unsteady flow in a fixed frame, but (x, y) refers to the steady wave frame
motion. The non-dimensional relation between the wave and fixed frame is as follows:

p(xy) (XYt)x:)A(—ct,y:f/,u:U—c,v:\A/, (10)
Levy the dimensionless parameters as follows:
X = E )= byT, f= %,f/ = C,u = %’ﬁ,v— —8%,8 = ho is the wave number, p PMM is the pressure,
b .
Re = Cpf % is the Reynolds number, Q = T ? is the nanoparticle fraction, 6 = 5 TTO is the temperature,
T — 1—
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is Prandtl number, Le =
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G, = is the thermal Grashof numbers, G, =

28 (pp—ry )03 (11— ?0)

is the nanoparticle Gra-

shof numbers, G = is the solutal Grashof numbers, Ln = DLB is the nanofluid Lewis number,

Hoc
(p0),Dr (T1=To (p), D (T1—To
;= # is the thermophoresis parameters and N;, = y is the Brownian motion param-
0s
T3
eter, R = ‘é‘}; gcof is the thermal radiation parameter, B, = E.Eckret number x P,.

After dropping pars, using the long wavelength and low Reynolds number, dimensionless parameters, Egs.
(4)-(9) in wave frame becomes:

ap N AN ) Iy B
8x+8y< (8)/ ) +o ayz)—i-Gc(p—i—GtG—G,Q M*Co (ﬂ)(y+1)_o, (11)

Scientific Reports |

(2022) 12:18747 | https://doi.org/10.1038/s41598-022-23308-4 nature portfolio



www.nature.com/scientificreports/

ap
= =0,
% (12)
920 30 g 2y’ 9y oy
1+R PN, B, R ==
R TR T <ﬁ1(3y2> T ) oy 13)
13
+ o (22 gy W +5829—o
rivt 3)/ ay rayz — U
%0 9%0
£ — (pf + D)pe T 45, 52 =0 (14)
Ne 320 N 1’ 0 5
Ny ay? oy =

Eliminate pressure from Eqs. (13) and (14) yields
@ (o } 0 9 0 9
— l/j+ﬂ1 ’v + G + Ge—o — Gp— — M2Co s(B)° — —1//+ =0, (16)
ay? 7 ay? dy? dy dy dy dy L\ dy
Here, the tensor of the present non-Newtonian fluid (Prandtl fluid) is as follows:
3 2
B (%Y Y
S —, 17
= ( o ) ol 17)

2
o= AB ,and B = B b are the parameters of Prandtl fluid.
Therefore non-constant Veloc1ty slip is occupied to sightsee the performance of mucus and secretion of layers.
The velocity restraints are clear as*:

U — U, = &sy, (18)

In which U;, portrays the wall velocity, sy, stress tensor mechanisms, & non-constant velocity slip parameter.
No slip constraints are taken by £ = 0.

%y
1//—087}/2—0,9=0,¢=0,Q=0aty=0 (19)

2 3 2
w—q,w+€<ﬁ1(3y‘ﬂ) +UE;):/2/>=—1,0=1,(p=1,Q=1uty=1+mx+ﬁ28in[2nx], (20)

Method of solution

The fluid model of the high non-linear differential Egs. (12-15) nominated overhead is converted with GDTM

as in*>™5, and then the recurrence relations can gain the series solutions of velocity, temperature, concentra-

tion, and volume fraction solutions. Accordingly, results/graphs are calculated for distributions of flow velocity,

temperature, concentration, and nanoparticle fraction versus different values of a physical parameter of interest:
Let,

y(t,f,f’,...,f<n>) —o. 1)
Subject to the initial equations
FO©0) = dk=0,...,n—1. (22)
The function f(t) is expressed by a finite series and can be written as:

N
fy=>_Ft — to)®, vt € D. (23)

k=0

The GDTM series solution for a system ((12-15)) can be obtained as,

N
= Wkl (24)
n=0
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Figure 2. Graph of axial velocity u for different values of f;.
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Figure 3. Graph of axial velocity u for different values of &.

N
0(y) = [kly" (25)
n=0
N
o(y) = @kly" (26)
n=0
N
Qy) = _Tkly" 27)
n=0

Now, the skin friction coefficient 7,, the heat transfer coefficient (Nusselt number) Nu and the mass transfer
coefficient (Sherwood number) Sh at the wavy wall of the outer tube, are defined, respectively, by

2\ 3 2
v = ﬁ(ﬂ) DA | R
6 \ dy? dy? s dy

The expressions for 7,,, Nu and Sh have been obtained by substituting from Eqs. (24)-(26) into Eq. (28) respec-
tively, and they have been evaluated numerically for several values of the parameters of the problem, using the
software Mathematica package. The obtained results will be discussed in the next section.

9
sh= 2%

i ay 28)
=

y=h

Results and discussion
In this section, the computational results are evaluated for this problem by using the Wolfram MATHEMATICA
package ver. 13.1.1. The next values of humans small intestine parameters are utilized*
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Figure 4. Graph of axial velocity u for different values of m.

Figure 5. Graph of temperature 6 for different values of Nt.

m = 0.5, 8, = 0.1 cm/min, 4 = 8.1 cm.

Based on Eq. (27), Figs. 2 and 3 elucidate the non-material parameter f; influence and the parameter of
non-constant velocity slip & on the axial velocity u, respectively. It is appreciated from Figs. 2 and 3, that the
axial velocity upturns as B rises, while it declines as £ growths in the interval y €[0, 0.6]. otherwise, it rises by
snowballing £ and declines as 1 grows. So, the performance of u in the interval n € [0, 0.6], is in contradictory
manner of its behavior in the interval n€ [0.6, 1.2]. It is also noted that the axial velocity for small values of §;
and large values of £ increases by increasing y to a maximum value (to a critical point of y : y = y,) subse-
quently, it declines. The effects of S and o on u are found to be similar to the effects of g, in Fig. 2. Moreover,
Fig. 3 depicts that the non-constant slip parameter has a dual role in phenomena on the velocity distribution.
As per the newton’s law of viscosity, velocity distribution is considered a cumulative function in shear stress. The
impact of divergent-convergent parameter m on the velocity profile u as a dimensionless coordinate function of
yis shown in Fig. 4. It is found that the axial velocity declines by aggregate values of m. Also, the result in Fig. 3
agrees with those obtained by®.

Figures 5 and 6 offer the influences of the thermophoresis parameter Nt and the non-constant slip velocity
parameter £ on the temperature profile against the transverse coordinate y, respectively. It is observed that the
temperature increases by increasing Nt, whereas it decreases by increasing values of &. Also, the distribution of
temperature the profile is continue optimistic and negative for little values of Nt and great values of £, there is a
semi-linear relation between the axial velocity and the dimensionless coordinate y. The result in Fig. 5 shows that
the improving values of thermophoresis get the nanoparticle-enhanced temperature. Both the sinusoidal layer
thickness and nanoparticles concentration boundary thickness are enhanced through this result.

The lowest amount of energy that allows a chemical reaction to occur is mentioned by activation energy. The
effects of both activation energy parameter E, and non-uniform parameter m on the concentration distribution
¢ as a function of the radial coordinate y is shown in Figs. 7 and 8, respectively. It is found that the concentra-
tion distribution increases by increasing E, and it decreases as m increases. Figure 9 illustrates the behavior
of the concentration distribution ¢ with the radial coordinate y for various values of Schmidt number Sc. It is
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Figure 6. Graph of temperature 6 for different values of &.

Figure 7. Graph of concentration ¢ for different values of E,.
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Figure 8. Graph of concentration ¢ for different values of m.

obvious that in the interval y €[0, 0.84]; the concentration distribution increases by increasing Sc, otherwise it
decreases by increasing Sc. So, the performance of fin the interval y €[0, 0.84], is contradictory manner of its
performance in the interval y €[0.84, 1.2] except that the curves are night boor hood to respectively other in the
second interval, called, straight the channel boundary, then those acquired in the first interval. The influences
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Figure 9. Graph of concentration ¢ for different values of Sc.

Figure 10. Graph of nanoparticles volume friction €2 for different values of &.
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Figure 11. Graph of nanoparticles volume friction Q2 for different values of ;.

of Gr and o on the concentration are found to be parallel to the influence of m given in Fig. 8, but figures are
excluded here to save space.

The variance of the nanoparticles volume friction €2 versus y for distinct values of and the variable velocity slip
parameter £ and the non-material parameter f; is portrayed in Figs. 10 and 11, respectively. It is observed that
the volume fraction of nanoparticles amplify with the growth in the value of &, while it decreases as B increases.

Scientific Reports |

(2022) 12:18747 | https://doi.org/10.1038/s41598-022-23308-4 nature portfolio



www.nature.com/scientificreports/

05 0.6
15 15
£ 01 057 058 op1
os N\ f o8 M=15 ,
M=0.1 / 085 y i
{ ik 3 091 o1 A
084 083 £
057 ) 0z8 057
050 og2 082 / Wi
. > as 08 y - / a8 a8 fai 09
/ ULy &/ ok
) 081 083 055
ot osg 093 05 050 aea 08 052 258
o0t 05t 084 058 058
0859
0.63 062 051
081 9% 054 bs? Bee 057 R AN o
- 053 048
052 082 054 = s
5% 1)) 081 083 ‘ M
X 058 N X2 i 52/ BA8 055 044 R 054
o5t D44 082 0.8 035 042
0.56. 05 2 047
055 048 “ 055 024 041 043 038 5%
054 20 28 7 037 037 03 048 e,
05 046 041 048 048 o0 2 028 s
045 :
oer 082 0 v oz %%
o3 ‘ 035, 032 034 Q 04
o032 045 s & 02 035
04z 038 046 = 038 . o 038 027 025
2 . o4z &
23 0 04z 028 a 02 020
: = 037 021 N 038 025 023 028 02 031
028 S 7 S 018
031 027 ‘ o16 028 029 038 03t 032 28 018 024 4]
22 033 3 0.28
028 02 027 013 018 821
= 010, 016 021 ofz
& 5 os 2 —om o ow 018 = = 008 35
o o1l o013 0% = 017 o1z 000
044 o1 012 008 01 014 506 008 on
[EE 0.06 - 008 007 g
007 007 005 004 007 oot
903 008 504 - 008 : 002 oo
ons 00z o Lz eo1| loot o0 o 801
0 5 0 5 2 05 1.0 15 20
Figure 12. Streamlines behavior against different values of Hartmann number (M)
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Figure 13. Streamlines behavior against different values of Prandtl fluid parameter (8;).

Contour lines distribution are graphed versus different numbers of (M), and (8;) by Figs. 12 and 13. Figure 12
elucidates that the number of bolus/trapped zones growths with at high numbers of M, It’s portrayed from
Fig. 13 that the behavior of the circulating bolus shrinkages under the result of high numbers of 8;. Physically,
the fluid particles become more free in boluses through ejaculation, the number of trapped bolus growth bases
the velocity of fluid upturns.

Table 1 presents numerical results for the skin friction coefficient 7., Nusselt number Nu and Sherwood
number Sh for various values of Prandtl number Pr and the parameters of Prandtl fluid j;. It is clear from Table 1
that an increase in Pr increases the values of both Ty and Nu, while Sh decreases. Furthermore, an increase in
Bi1 gives an opposite behavior to Pr. Moreover, the result in Table 1 are in agreement with those obtained by*°.

Conclusion
In the present study, a non-constant slip velocity effect on magneto Nano peristaltic flow of Prandtl fluid with heat
and mass transfer in a non-uniform channel with sinusoidal deformation is treated semi-numerically. External
influences like radiation, Ohmic heat, and viscous dissipation are considered. The fluid equations converted with
non-dimensional values to a system of ordinary system of differential equations ODEs. The converted system
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Pr

B | Te Nu Sh

0.2

0.1 0.01648194 | 0.60245875 | 0.71687739

0.4

0.1 0.02414264 | 0.62437264 | 0.71073276

0.6

0.1 0.03183231 | 0.64674878 | 0.70445326

0.8

0.1 0.03954870 | 0.66959093 | 0.69803765

1.0

0.1 0.04728954 | 0.69290279 | 0.69148469

2.0

0.1 0.08628082 | 0.81663030 | 0.65661820

5.0

0.1 0.20378439 | 1.26268139 | 0.529901510

0.1

0.0 0.41842978 | 0.71894782 | 0.683548140

0.1

0.1 0.04728954 | 0.69990279 | 0.691484696

0.1

0.3 | —0.44366200 | 0.69741969 | 0.692416354

0.1

0.5 | —0.87226902 | 0.69491969 | 0.699777176

0.1

0.7 | —1.25184782 | 0.69001969 | 0.705913064

0.1

0.9 | —1.59019230 | 0.68981969 | 0.710234493

Table 1. Values of t,,, Nu and Sh for various values of Pr and S;.

of equations is solved in terms of y and then graphs/sketches are offered using GDTM. The present analysis can
serve as a model which may help in understanding the mechanics of physiological flows**~**. The numerical
results indicate the following:

1
()

The axial velocity u rises or declines with the growth each of 81, §, Nt, and Da, whereas it declines as m
growths.

The axial velocity w for small values of 81, §, Nt, becomes larger with growing the radial coordinate y and
reaches the maximum value (at a finite value of y: y=y,) after which it declines.

The temperature 6 advances in high values of 81, Nt, and ¢ parameters however it attenuations as both &
and m grow.

Solutions/results are obtained without any perturbation/restrictive suggestion using GDTM.

Both the nanoparticle’s volume friction €2 and the concentration ¢ have an opposite behavior compared to
the temperature behavior except that they increase or decrease with the increase of Sc.

In future work, the influences of emerging parameters on the pressure drop across the channel will be
improved in the next paper.

Data availability
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request.
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