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Open pollution routing problem 
of logistics distribution in medical 
union based on differential search 
algorithm
Xiaoxiao Quan1,2, Yongsheng Pang3, Jiansheng Chen3, Xianghua Chu3* & Lina Shangguan1*

Medical care is a guarantee of people’s daily life. Improving healthcare contributes to people’s well-
being. However, healthcare resources are characterized by uneven distribution. Financially well-off 
areas will have higher quality health care resources. Most of the medical resources are concentrated 
in public general hospitals, however, primary care institutions can hardly meet the growing needs of 
people. To solve this problem, Medical Union achieves efficient deployment of resources by integrating 
various medical institutions in the same area. In the process of logistics integration of the medical 
union, the scale of logistics distribution expands accordingly. Transportation vehicles have high 
operating costs and produce greenhouse gases in the process of distribution. The optimization of the 
driving path of logistics distribution vehicles can reduce the operating cost, fuel consumption and 
carbon emission. To solve this kind of decentralized and complex vehicle routing problem, this paper 
proposes a pollution routing problem model considering electrical vehicle usage, customer’s soft time 
window expectation, open path and carbon cost. A modified Differential Search Algorithm with the 
comprehensive learning strategy and dynamic Cauchy variation strategy is advanced to solve the 
problem. Results show that the improved algorithm has good solving performance, and verifies the 
rationality of the proposed model, which will help to reduce carbon emissions and save the logistics 
and operating costs of medical devices.

Medical services are necessary to ensure a healthy life for people. However, the quantity and quality of medical 
resources available to people in different regions are not always the same, due to the different financial situa-
tions in different regions. In China, high-quality medical resources are concentrated in large public hospitals, 
but primary care institutions in communities cannot meet the demand for medical care. As a result, the medical 
union have been proposed to address the uneven layout of medical resources.

The sharing and deployment of supplies is a topic worth examining in a medical resource sharing program. 
Especially during the pandemic, large amounts of testing supplies are urgently needed in areas where cases have 
been identified. Since the medical union is trans-regional and scattered in distribution, some problems arise from 
gradual implementation of integrated management. To be specific, as logistics materials are more extensively 
distributed, massive fossil fuel has to be consumed to guarantee supply of those trans-regionally transported 
cargo. Carbon emission resulting from the process is affected by both cargo quantity and transportation routing. 
Therefore, optimized routing for logistics vehicles can not only bring down various distribution costs but also 
reduce fuel oil consumption and carbon emission.

Out of the consideration, how to plan a vehicle routing that can both save energy and reduce emission so 
as to cut down medical union operating costs has become a focus of much attention. It can be considered as a 
Vehicle Routing Problem (VRP). The VRP was first proposed by Dantzig and Ramser1 to find the best route for 
the vehicles and minimize general costs. However, in addition to the regular transportation costs, the level of 
tolerance of healthcare professionals for delayed delivery has to be considered in the medical setting. The soft 
time window constraint should be taken into account in the VRP.

In this study, the Mixed Vehicles Open Pollution Routing Problem with Time Window (TWMOPRP) is 
advanced. It takes into account such factors as EV, soft time window, open routing and carbon emission cost. 
TWMOPRP aims to minimize general cost while cutting down carbon emission, which is an NP-hard problem. 
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What’s more, a modified Differential Search Algorithm (MDSA), a kind of swarm intelligent optimization algo-
rithm, is proposed to solve the TWMOPRP. For the characteristics of the VRP problem, MDSA introduces two 
strategies. The results of simulation experiments showed that the TWMOPRP is in line with the reality and 
MDSA has a satisfactory solving performance.

Related work
Medical resource integration.  Resource consolidation is a hot topic in healthcare today, especially at a 
time when local government budgets are limited. A tiered approach allows for the optimal allocation of resources 
at all levels of health and maximizes the use of medical resources2. The horizontal and vertical integration mod-
els are based on different forms of health care resource delivery. The horizontal integration model is the further 
integration of health care resources, while the vertical integration model is a combination of different levels and 
types of health care resources3.

There are a lot of studies about the integration of medical resource. According to Kodner and Spreeuwenberg4, 
health care resource integration is a partnership between the medical and health care sectors that needs to be 
achieved through the development of a mode for financing, service delivery, management, and medical capacity. 
While Vondeling5 defines health care resource integration as the planning, management, and delivery of a tightly 
integrated and coordinated set of systems to individual consumers through a range of organizations, collabora-
tive professionals, and informal health care workers. Nowadays, a gradual shift occurred in the goal and focus 
of medical resource integration. The value chain is integrated by health as the goal, and the service process is 
structured in patient-centered.

The medical union breaks the original technical and administrative barriers through different levels and 
types of medical institutions, and finally integrates medical resources such as people, finance, materials and 
information into a common interest6. Therefore, the implementation of the construction of medical union is an 
important way to optimize the integration of medical resources. The study of medical union can provide some 
reference for the improvement of the theoretical system and the decision of governmental system innovation.

Open pollution routing problem.  As people are increasingly concerned about global climate change, 
researchers begin to consider greenhouse gases arising from oil-fueled vehicles in driving when examining tra-
ditional VRP and attempting to minimize cost while cutting down carbon emission. Based on VRP, Bektas and 
Laporte7 proposed Pollution Routing Problem (PRP), discussing the effect of the different influencing factors 
on carbon emission.

From then on, an increasing number of variables are incorporated into modeling so that the model could 
be as close to practical conditions as possible. Franceschetti et al.8 built a time-related PRP model and offered 
emission-reducing suggestions for solving speed limit issue in traffic jams. To find trade-offs between fuel con-
sumption and driver times, Demir et al.9 proposed a bi-objective variant of the PRP and validated that significant 
reductions in carbon emissions can be achieved without major compromises in driving time. Furthermore, Koc 
et al.10 explored the impact of the heterogeneous fleet of vehicles on transportation costs and carbon emissions.

In 1981, the first study of the Open VRP was conducted by Schrage11. Open VRP means vehicles do not return 
to their original yard immediately after delivery. Various algorithms were proposed to solve the problem. Taran-
tilis et al.12 tried threshold accepting approach and found it is effective for fleet planning in real-life. Branch-and-
cut algorithm also accepted to the problem and can provided a useful lower bound for large instances13. Fleszar 
et al.14 used a variable neighborhood search algorithm and obtained good performances in sixteen standard 
benchmark problem instances. What’s more, meta-heuristic algorithms, such as particle swarm optimization15, 
tabu search16 and ant colony optimization17, were also proven to be an effective and robust solution methods. 
What’s more, Hosseinabadi et al.18 proposed the OVRP_GELS and found it show a good performance than other 
existing algorithms.

Though having included fuel oil consumption or carbon emission based on VRP, previous studies on PRP 
are largely limited to gas vehicle (GV) in modeling. Few of them involve increasingly popular electric vehicle 
(EV). In recent years, the government has offered strong support for EVs. Lower after-subsidy retail price has 
attracted logistics enterprises to purchase EVs to carry out logistics business. Moreover, less environment pol-
lution of EVs also satisfies “saving cost and reducing emission” demand put forward by supervisory authorities.

In the VRP study on EV, Liao et al.19 established an EV-VRP model involving carbon transaction cost to 
discuss difference in carbon emission between GV and EV. Schneider et al.20 considered the impact of the use 
of recharging stations on the routing problem. While Keskin and Çatay21 built the mathematical model for the 
electric VRP and found that the partial recharges can improve the solutions. Abdallah and Adel22 investigated the 
effect of variable speed on the VRP problem and argued that variable speed can solve the limitation of time win-
dow or distance. Therefore, each of the above-mentioned factors is also considered in the modeling of this paper.

Differential search algorithm.  Differential Search Algorithm (DSA)23 was proposed by Civicioglu to 
solve the conversion problem from geocentric right-angle coordinates to geodetic coordinates. It is a sort of 
swarm intelligence algorithm that simulates Brownian movement-like migrating activity in biotic communi-
ties. The previous study validated that DSA could be applied to global optimizing problems with better solving 
accuracy and convergence speed than many classical algorithms24.

Moreover, some researchers have applied DSA to solve some practical problems. Gui et al.25 proposed a 
hybrid differential search algorithm (HDSA) to optimize the medical image alignment problem and compared 
the effectiveness with the standard algorithm. Chu et al.26 advanced a new model of cross-training with learning 
and forgetting effects, and presented an adaptive DSA to solve the problem of worker assignment across multiple 
units. Ma et al.27 built a dynamic resource allocation model based on cost optimization and SLA constraints and 
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designed an improved DSA to accurately predict the load. Al-Fakih et al.28 presented an improved binary DSA 
for QSAR classification of multiple series of antibacterial compounds with Candida albicans inhibitors. DSA can 
be found to be used effectively in various fields, which also confirms its applicability and validity.

To improve the DSA for various problems, researchers proposed some new strategies to improve search 
capabilities and combined different techniques to avoid premature convergence. Liu29 proposed four search 
schemes to speed up the convergence by searching the new space of the global optimization problem. To improve 
the convergence speed and solution quality, Guha30 introduced a learning method based on proposed opposi-
tion. Chen et al.31 used a Latin hypercube sampling method for initialization and combined DSA with simplex 
methods for search. Furthermore, the low-frequency oscillation problem was solved by combining the search 
direction based on random permutation of the original population with DSA32. By introducing different search 
strategies helps to improve the performance of algorithm on different problems33, so two strategies for DSA are 
considered and their effectiveness is experimentally confirmed in this paper.

Problems description and model building
Problems description.  Defined on a directed graph G = {N, A}, TWMOPRP is composed of a set of nodes 
N = {0, 1, 2, …, n} and a set of inter-nodal arcs A. Among the nodes, node 0 indicates distribution center. Sup-
pose a logistics distribution company owns several EVs and GVs which both have a capacity of Q. Due to shorter 
range per charge, EV cannot completely substitute GV. Therefore, logistics companies prefer the combination of 
GV and EV in the short run. The client set N0 = N\{0} is composed of n clients, each of which i ∈ N0 has demand 
qi and soft distribution time window [ai, bi]. Distribution outside time window would impair both parties’ actual 
benefits and thus incur matching penalty cost. GV is a source of carbon emission in driving. In consideration of 
the possible release of carbon emission policy by central government, carbon emission cost may be converted to 
carbon cost. By comparison, EV has no such expenditure. In case of open routing, after completing a distribu-
tion task, vehicles won’t return to the original distribution center but head to the nearest distribution center to 
start a new task or take a break. Based on traditional PRP, TWMOPRP takes into account more factors related to 
logistics distribution process so that the model could be better applied to actual application.

Model hypotheses and symbol description.  TWMOPRP is preconditioned on the following hypoth-
eses:

1.	 Since the model considers only a small period of time that starts with departure from distribution center 
and ends with completion of distribution, only one distribution center is designed.

2.	 Such information as client demand and distribution time window remains known and constant during 
distribution.

3.	 Each client can only be accessed once and optimal distribution time window is known. Distribution vehicle 
should strive to complete the distribution within the time window specified by client, and the client also 
accepts the distribution outside the time window.

4.	 Logistics company owns a certain number of GVs and EVs that could meet distribution demand.
5.	 Vehicle runs at a constant average speed, there is no slope to be considered along the distribution route and 

there is no unexpected situation that could affect distribution efficiency such as traffic jam.
6.	 Cargo loaded on vehicle along the trip could not exceed maximum capacity, but the vehicle could run on 

full load.
7.	 EV departs from distribution center with full charge and electricity consumed during cargo handling at client 

site is negligible. No charging or power switching is conducted during distribution trip.

Table 1 details the variables and parameters involved in the TWMOPRP model proposed in this paper.

PRP model with GV only. 
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where Eq. (1) is an objective function that is made up of four items, namely vehicle transportation cost, car-
bon cost, driver salary and time window penalty cost. Equations (2)–(9) are constraints. Equations (2) and (3) 
mean each client is and can only be accessed once. Equation (4) means vehicle keeps same freight volume when 
accessing client. Equations (5)–(7) are to make sure max vehicle load is always above client demand during 
transportation. Equation (8) is to figure out the time span from accessing no. i client to reaching no. j client of 
the vehicle. Equation (9) is a decision variable. When xCijk = 1 , the no. k GV will depart from client i to j. If the 
value is 0, it does not move.

In this paper, integrated fuel emission model proposed by Barth et al.34 is employed to determine fuel oil 
consumption rate FR (unit: g/s) of GV. The model is demonstrated using the following formula:

where Pt indicates engine traction power, Pa indicates additional engine power demand which is usually sup-
posed to be 0.

Suppose GV runs along arc (i, j) with a distance of di,j, vehicle runs at an average speed of vi,j, carbon price is 
T Yuan/kg, the carbon emission cost on this trip will be:

(6)fij ≥ 0, ∀i, j ∈ N0, i �= j;

(7)
∑

i∈N

∑

j∈N0

qjx
C
ijk ≤ Q, ∀k ∈ K;

(8)tj = ti + si +
dij

v
, ∀i ∈ N , j ∈ N0;

(9)xCijk ∈ {0, 1}, ∀i ∈ N , j ∈ N0, i �= j, k ∈ K

(10)Pt = (Ma+Mg sin θ + 0.5CdAρv
2 +MgCr cos θ)v/1000

(11)FR = ξ(kNV + (Pt/ε + Pa)/η)/µ

(12)Cij = cFR
dij

vij
T

Table 1.   Variables and parameters used in the model.

Symbol Description

N Set of all nodes

N0 Set of client nodes

K Set of vehicles owned by company

di,j Distance from client i to j

v Average running speed of vehicle

si Service hours at client i

ti Time when vehicle arrives at client i

Sj All time required by vehicle to arrive at last client j

Emax Max battery capacity of EV

σ Power consumed by EV for each km

ej Residual power of EV at client j

ETi Earliest time permissible for vehicle to arrive at client j

LTi Latest time permissible for vehicle to arrive at client j

Q Max. vehicle load

qi Demand of client i

fij Freight of vehicle from client i to j

C1 GV’s transportation cost for unit distance

C2 EV’s transportation cost for unit distance

T Tax price for unit carbon emission

P Driver’s hourly salary

pe Unit penalty cost coefficient for earlier arrival than expected

pl Unit penalty cost coefficient for later arrival than expected
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TWMOPRP model with mixed vehicles.  TWMOPRP model takes into account the scenario of intro-
ducing EV into cargo transportation. Different from GV, EV is set with lowest electric quantity threshold in the 
model. When vehicle’s actual electric quantity is lower than this threshold, it should go to nearest distribution 
center for charging or replacing. Thus, in assigning distribution tasks, the model takes into consideration the 
power consumption of EV so that EV has residual power higher than safety threshold after completing single 
task. TWMOPRP model is shown below:

where Eq. (13) is an objective function, Eqs. (14)–(25) are constraints. Equations (14) and (15) represent each 
client is and can only be accessed once and is to be served by one vehicle model. According to Eq. (20), EV departs 
from distribution center with full power. In Eq. (21), when shifting from client i to j, EV consumes power for 
driving purposes only. Equation (22) means EV doesn’t consume power when serving client i. Equation (23) 
constrains the lowest power consumed for driving vehicle. Equation (25) is a decision variable. When xEijk = 1 , 
the no. k EV will depart from client i to j. If the value is 0, it does not move.

Because EV uses electricity exclusively, they do not produce direct carbon emissions while driving. Consider-
ing that it is still dominated by thermal power generation in China, the carbon emissions generated during power 
generation should be taken into account in the carbon emissions of EV. Suppose it runs along arc (i, j) with a 
distance of di,j and the electricity emission factor is e, the carbon cost on this trip will be:

Solving algorithms
Differential search algorithm.  DSA simulates the spontaneous migratory process of biotic communities 
in natural world to obtain richer resources. Adopting two steps “look for optimal location and midway tem-
porary stay”, it aims to find the optimal habitat. In DSA, Xi (i = 1, 2, …, N) indicates no. i biological organism, 
xi,j(j = 1,2,…,D) indicates location of no. i biological organism on no. j dimension, and several bio-organisms 
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could form a Superorganism. According to the algorithm, N indicates number of bio-organisms within the 
space, while D indicates dimension of actual problem. DSA works in the following process:

In the first place, several bio-organisms are randomly initialized in terms of their locations on all dimensions:

where rand() is a random number within [0,1] range. Those bio-organisms could form a superorganism. After 
being initialized, Superorganism = [Xi] = [xi,j] would be generated with a new habitat based on:

where donor indicates the new direction after random change of original individual sequence with following 
definition donor = [Xrandom_shuffling(i)]; Scale indicates movement step size generated with one gamma random 
inventor as defined below:

Finally, the bio-organism would evaluate whether the new location is more fertile than the original one so 
that it could choose forwarding to a new habitat or keeping still according to a Greedy Policy in Eq. (30). With 
changing locations of bio-organisms, superorganism gradually approach global optimal location until the algo-
rithm’s terminal condition is met.

Algorithm improvement strategy.  Employing Brownian movement-like search strategy, traditional 
DSA has higher randomness and thus wider algorithm search scope. However, it also makes it hard for the algo-
rithm to achieve convergence in later stage. Out of this consideration, in this paper, two strategies are introduced 
to improve DSA’s solving capacity.

Comprehensive learning strategy.  Liang et al.35 proposed Comprehensive Learning Strategy that could modify 
Particle Swarm Optimization Algorithm by updating speed based on historical optimal data of other particles. 
The strategy could maintain colonial diversity and avoid being caught in local optimal. In this paper, Compre-
hensive Learning Strategy is introduced into DSA to learn after individual historical optimal or other’s historical 
optimal with probability choice. MDSA generates new habitat using:

where fi = [fi(1), fi(2), …, fi(D)] indicates the object available to be learnt by no. i bio-organism, pbestfi indicates 
a set of learning objects with established order. On each dimension, it could be itself or other bio-organisms, 
which are decided by probability value Pr. Pseudocode of Comprehensive Learning Strategy is demonstrated 
in Algorithm 1 in which fit() indicates fitness of habitat, whereas randi() indicates a random integer generated 
from uniform discrete distribution.

(27)xij = lbj + rand(ubj − lbj)

(28)Si = Xi + Scale(donor − Xi)

(29)Scale = randg[2rand1](rand2 − rand3)

(30)Xi,T+1 =

{

Xi,T , f (Xi,T ) < f (Si,T )
Si,T , f (Xi,T ) ≥ f (Si,T )

(31)Si = Xi + Scale(pbestfi − Xi)
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Dynamic Cauchy mutation‑based evolutionary strategy.  Yao and Liu36 came up with a sort of evolutionary strat-
egy based on Cauchy Mutation to strengthen colonial diversity of algorithm and get rid of local optimal, but it 
has common search performance when implemented in local small neighborhood. To cope with this problem, 
in this paper a dynamic Cauchy mutation strategy is suggested to speed up the convergence of algorithm in the 
later stage. The strategy is defined as below:

where Xt
g ,d  is the optimal fitness value, cauchy(δ) is a random number generated with Cauchy distribution func-

tion with ratio parameter δ being 1, and α indicates step size in search by algorithm as defined below:

where t indicates the present number of iterations and T indicates the general number of iterations.

Modified DSA.  The aforesaid two improvement strategies are applied to traditional DSA algorithm in order 
to prevent hard convergence and local optimal solution of algorithm. MDSA proposed in this paper has the fol-
lowing solving process (Fig. 1).

Experiments and analysis
Experiments setting.  To verify the effectiveness of TWMOPRP model and MDSA algorithm proposed 
in this paper, we have generated three different sizes of simulation data with Solomon example, as well as their 
demand and time windows in random. They have 10, 30, and 50 simulated clients. Distribution center is sup-
posed to be located at the center of a 80 × 80 km rectangle and all clients are to be within the distribution range. 
Assume that all the vehicles start their delivery tasks from 8:00 a.m. and the moment is recorded as zero minute. 
The detail of clients and the parameters used can be found in the supplementary file S1.

Results and interpretation.  Comparison of algorithms.  To validate the performance of MDSA, three 
other algorithms, ABC, AMBSO and CLPSO, are selected to conduct a comparative analysis. ABC37 is an opti-
mization algorithm with a swarm as the base population, which has a fast convergence rate and a strong ability 
to get rid of local optimal solutions. AMBSO38 is the improved version of the brainstorm optimization algorithm, 
another swarm intelligence algorithm inspired by the human problem-solving process, with two complementary 
strategies. While CPLSO35 is the modified edition of Particle Swarm Optimization algorithm with comprehen-
sive learning strategy.

Those algorithms are set to work on a colony of 100 and for 1,000 iterations at most in solving TWMOPRP. 
The other parameters use the recommended values from the original literatures. The experiments are imple-
mented on Matlab 2016b. Each experiment is repeated 30 times and the average value was used as the final result. 
The results of the comparison are shown in Table 2.

It is not difficult to find that MDSA stands out in all indicators when compared with the other three algo-
rithms. Its total cost in problem solving is about 11% lower, its carbon emission is about 30% lower and its solving 
process is about 26% faster than others. Figure 2 illustrates convergence of all algorithms in solving TWMOPRP, 
according to which MDSA is the quickest in search and best in solution quality. Findings suggest MDSA is suit-
able for solving complicated VRP.

Analysis of factors affecting carbon emission.  To explore the effect of EV, vehicle running speed, carbon price 
and driver salary on carbon emission arising from logistics distribution, this paper employs MDSA to solve 
GV-only PRP model and mixed TWMOPRP model, respectively. Each solving process is repeated 30 times and 
average value of each indicator is taken as the final result in analysis. Experimental findings are listed below.

(1)	 Effect of vehicle model in use.

Since EV faces several unfavorable constraints such as limited battery capacity and charging in use, whether 
GV should be entirely replaced with EV still needs further discussion. The results of the effect of various vehicles 
are shown in Table 3.

When EV is introduced, both total cost and time window cost decline slightly, and carbon emission decreases 
more significantly. The carbon emission directly resulting from EV is lower, so the carbon cost from single distri-
bution is also lower. EV could help bring down total carbon emission in logistics and meet the demand of saving 
energy and reducing emission when being used in freight distribution. In addition, it could also indirectly cut 
down operating cost of the medical union.

(2)	 Effect of vehicle speed.

A study by Bektas and Laporte7 indicates speed of distributing vehicle could affect its carbon emission when 
there is time window limit. Furthermore, vehicle speed could also affect distribution cost and customer satis-
faction. Therefore, it is critical to choose a proper speed during distribution. The results of the effect of various 
speeds are shown in Table 4.

(32)Xt′

i,d = Xt
g ,d + αcauchy(δ)

(33)α = 1− rand
t
T
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The table above makes it clear that, when vehicle runs at 40 km/h, highest level of carbon emission as affected 
by driver salary and distribution is witnessed. As speed keeps rising, all indicators are found to rise first and 
then fall. They appear to be better when vehicle speed is 60 km/h. Figure 3 shows the carbon emission arising 
from vehicles running at various speeds. As shown in the figure, over high or low speed brings in more carbon 
emissions. For this reason, when vehicle runs at a proper speed during the trip, it could meet the requirements 
of energy saving and emission reduction. In further study, the effect of limited speed on distributing routing plan 
due to traffic jams and so on may be examined when carbon emission is taken into account.

(3)	 Effect of carbon price.

Carbon price is a decisive factor in affecting carbon emission cost as thus total distribution cost of medical 
union. Reasonable setting of carbon price is conducive in guiding logistics companies to offer distribution ser-
vices with low carbon emission means. Nevertheless, the external effect of carbon price varies with its specific 
levels. In this paper, an analysis of the effect of carbon price on all indicators is performed. Corresponding find-
ings are listed as below. The results of the effect of various carbon prices are shown in Table 5.

Figure 1.   Schematic diagram of MDSA algorithm.
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When carbon price is raised, carbon emission decreases significantly, but other costs such as time window 
and driver rise slowly. It is infeasible to raise carbon price alone, because it may cause an increase in several other 
costs of enterprises as well as logistics distribution costs of the medical union. In the meanwhile, levying carbon 
emission cost is to guide companies to use EV in executing distribution tasks. However, EV use in freight trans-
portation is still met with some inconveniences. Excessive EV using may undermine satisfaction with the medical 
union as well as the distribution company’s production efficiency. As a result, the government is suggested setting 

Table 2.   The performances of different algorithms in solving TWMOPRP.

Problem Algorithm Total cost (Yuan) Carbon emission (kg) CPU processing (s)

10 clients

MDSA 886.84 123.10 65.34

ABC 994.63 187.27 87.81

AMBSO 963.68 156.84 79.01

CLPSO 1026.38 173.36 85.91

30 clients

MDSA 1637.59 225.18 114.02

ABC 1817.49 319.08 156.26

AMBSO 1735.82 275.11 138.61

CLPSO 1857.58 330.04 152.83

50 clients

MDSA 2321.47 327.77 161.03

ABC 2899.01 458.62 184.39

AMBSO 2674.93 432.67 227.92

CLPSO 2744.24 485.06 209.25

Figure 2.   Comparison of algorithms in convergence.

Table 3.   The effect of various vehicles.

Model used Total cost (Yuan) Time window cost (Yuan) Carbon emission (kg)

Mixed 1628.52 199.36 264.65

GV 1632.53 206.17 281.44

Table 4.   The effect of various speeds.

Speed (km/h) Time window cost (Yuan) Driver cost (Yuan) Carbon emission cost (Yuan) Carbon emission (kg)

40 232.18 542.54 153.64 307.28

50 202.76 492.87 138.29 276.58

60 199.36 453.22 134.77 269.54

70 249.47 414.86 146.56 293.12
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a reasonable carbon price that benefits all involved parties based on the status quo of local logistics industry and 
EV industry so that logistics industry could be encouraged to save energy and reduce emissions.

(4)	 Effect of driver salary.

Driver is a major participant in logistics distribution tasks. Change in labor cost may cause logistics distribu-
tion companies to change their operating decisions. In this paper, we tentatively discuss the correlation between 
driver’s hourly salaries and carbon emissions. The results of the effect of various salaries are shown in Table 6.

We can easily discover that raising driver’s hourly salary could increase total distribution cost and carbon 
emission as well. The reason is that over-high labor cost makes logistics distribution companies more willing 
to use GV featuring longer mileage and more flexible energy supply in distribution. In the logistics distribution 
process, the medical union should take into account as many key indirect factors as possible, such as labor cost 
and tax, so that indirect costs arising from logistics distribution integration could be raised and medical union’s 
benefits could be maximized.

Conclusions
In this paper, Open VRP for medical supplies distribution in the context of medical union is discussed. Consider-
ing that the procurement of materials in medical institutions are preceded by medical services, a certain degree 
of delay in distribution is acceptable, but it causes problems for the material managers. Therefore, a soft time 
window constraint is taken into the TWMOPRP. In addition, with the growing call for "Net Zero", the logistics 
industry, as an industry that generates large amounts of carbon emissions, should take the lead in reducing 
greenhouse gas emissions.

Figure 3.   Effect of various speeds on carbon emission.

Table 5.   The effect of various carbon prices.

Carbon price (Yuan/kg) Time window cost (Yuan) Driver cost (Yuan) Carbon emission cost (Yuan) Carbon emission (kg)

0.1 195.78 445.25 56.75 567.50

0.5 199.36 453.22 137.98 275.96

1 215.27 459.48 232.83 232.83

6 219.96 482.27 997.29 166.22

10 226.72 511.70 1377.49 137.75

Table 6.   The effect of various salaries.

Driver’s hourly salary 
(Yuan) Time window cost (Yuan) Driver cost (Yuan)

Carbon emission cost 
(Yuan) Carbon emission (kg)

20 199.36 453.22 137.84 275.68

25 206.65 549.06 146.25 292.50

30 215.19 654.3 153.68 307.12
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On one hand, TWMOPRP introduces a penalty term for the cost of carbon emissions in order to reduce them 
when solving for a suitable route. On the other hand, considering the use of electric vehicles can also reduce 
direct carbon emissions and improve service satisfaction. After combining the above factors, the experimental 
results show that TWMOPRP has a strong rationality and is more in line with the realistic situation.

To solve TWMOPRP, this paper introduces a comprehensive learning strategy and a dynamic Cauchy Muta-
tion-based evolutionary strategy based on DSA, and proposes MDSA. These two strategies enhance the search 
capability of DSA and accelerate the convergence speed. Experimental results show that MDSA has better solu-
tion performance for TWMOPRP than other similar algorithms, and the convergence speed is reduced by about 
26%.

On the results of the MDSA solution, this study further analyzed the four influencing factors, and the follow-
ing conclusions were obtained. The using of EV, maintaining 60 km/h speeds and lower driver hourly salaries 
help reduce cost and carbon emissions. Setting a reasonable price for carbon emissions will help to reduce carbon 
emissions without putting a large burden on logistics companies.

In further studies, more factors of EVs should be considered into TWMOPRP, such as the time and speed of 
charging. In addition, Open VRP for a single yard is a simplified model, which is closer to the actual situation 
if multiple yards are considered. To get reasonable solutions, more strategies can be taken into consideration to 
improve the performance of DSA.

Data availability
The datasets used during the current study are available in the supplementary file and from the corresponding 
author on reasonable request.
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