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The minimality of mean square
error in chirp approximation
using fractional fourier series
and fractional fourier transform

OmarT. Bafakeeh?, Muhammad Yasir?, Ali Raza?, Sami Ullah Khan?, R. Naveen Kumar*,
M. ljaz Khan®*, Deyab A. Almaleki®, Nidhal Ben Khedher’:8, Sayed M. Eldin°® &
Ahmed M. Galal*%!

Chirps are familiar in nature, have a built-in resistance to noise and interference, and are connected to
a wide range of highly oscillatory processes. Detecting chirp oscillating patterns by traditional Fourier
series is challenging because the chirp frequencies constantly change over time. Estimating such types
of functions considering the partial sums of a Fourier series in Fourier analysis does not permit an
approximate solution, which entails more Fourier coefficients required for signal reconstruction. The
standard Fourier series, therefore, has a poor convergence rate and is an inadequate approximation.
In this study, we use a parameterized orthonormal basis with an adjustable parameter to match the
oscillating behavior of the chirp to approximate linear chirps using the partial sums of a generalized
Fourier series known as fractional Fourier series, which gives the best approximation with only a small
number of fractional Fourier coefficients. We used the fractional Fourier transform to compute the
fractional Fourier coefficients at sample points. Additionally, we discover that the fractional parameter
has the best value at which fractional Fourier coefficients of zero degrees have the most considerable
magnitude, leading to the rapid decline of fractional Fourier coefficients of high degrees. Furthermore,
fractional Fourier series approximation with optimal fractional parameters provides the minimum
mean square error over the fractional Fourier parameter domain.

Chirps often occur in nature because of the Doppler effect™2. Chirps can be found®™ both in nature, such as wave

physics, mechanics, vibrations, biology, medicine® Moreover, manufactured systems such as radar and sonar. The
radar echo of a moving target with constant acceleration is a chirp function. In mathematics, chirps are often
shown to exist in the forms of Weierstrass functions’ Riemann functions or Daubechies wavelets transforms of
higher order.

A mathematical extension of the conventional Fourier series is the fractional Fourier series. Every subject
where the traditional Fourier series is used has the potential to use it. The Fractional Fourier series is an elegant
series with applications®° in engineering, science, and technology. Pei et al. ° first introduced fractional Fourier
series and used it in the expansion of linear chirps. Later, Barkat and Yingtuo'! presented modified fractional
Fourier series that approximate generalized chirps with an arbitrary central frequency. Yu performed numerical
simulations of Gaussian chirp signals'? using fractional Fourier series expansions. Coetmellec" did fractional
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order Fourier analysis of chirped pulses and Brunel'* performed fractional order Fourier analysis of ultra-short

pulse characterization and SPIDER interferograms. A fractional Fourier transform is a mathematical develop-
ment of the conventional Fourier transform with a movable parameter, and it functions similarly to the conven-
tional Fourier transform. In order to solve specific integro—differential equations and partial differential equa-
tions of quantum physics, Wiener developed the fractional Fourier transform'® in 1929. Bultheel'® constructed
the mathematical theory of the fractional Fourier transformations by constructing its algebra and calculus. The
theory of the fractional Fourier transform on the space L,(R) was presented by McBride and Kerr!’, and its
implementations to partial differential equations were covered.

To sum up, the intention of this paper is twofold: First, to evaluate the fractional Fourier coefficients in closed
form to provide the mathematical proofs of results related to chirp approximation, and second, to prove the
minimality of mean square error in fractional Fourier series expansion of the linear chirps on fractional Fourier
parameter domain. We outline this paper and provide a short overview of the main results. In "Preliminaries”
section, we introduce chirps and exponential linear chirps. Then, we introduce fractional Fourier series and
fractional Fourier transform for the space of square-integrable functions. In "Main results" section is the main
section where we compute fractional Fourier coefficients by using the fractional Fourier transform method.

We also provide fresh findings about the fractional Fourier coefficients of linear chirps. We demonstrate
that when the fractional Fourier parameter is fixed, the maximum value of the zero-degree fractional Fourier
coefficient and the rapid decrease of the high-degree fractional Fourier coefficient are obtained. As a result, the
approximation of the fractional Fourier series has a minimal mean square error. We summarize the findings and
recommendations in "Conclusion” section.

Preliminaries

A chirp function is a function that advances in time while sweeping all frequencies across a predetermined
interval. A chirp can sweep frequencies in various ways (linear, quadratic, logarithmic, etc.). However, the most
used chirps are linear.

Definition Chirps are functions defined by.

u = F(x)e'®™®

where F, ® are amplitude and phase functions, respectively. Such that F(x), ®(x) € R.

When compared to a smooth amplitude function, F(x), with slow variations, the phase function ®(x) is highly
oscillatory, the variations of ®(x) and F(x) depend upon the following two conditions'® given below,
b(x)
b2 (x)

‘ F(x)
<< 1,

F(x)®(x)

and ‘

where ®(x) # 0. Both requirements given above are intended to define the concept of rapid oscillations within
a slowly shifting envelope.

Since the human perception of sound intensity is depicted as a logarithmic function. By replacing the phase
function F(x) in the above equation with the function of the form

F(x) = ey 50
and amplitude function ®(x) by a quadratic polynomial of the form
O (x) = —mix, 1 € R\{0}
the chirp becomes an exponential linear chirp, which is given below
2

_ _ 2
u=e TV, (T Ax

We consider the space L, [— g, %} of square-integrable complex-valued functions u that satisfy

lul?dt < oo

\NH

o~

We establish the inner product between both the two complex-valued functions u and v in the range

L, [—%, %] as follows

u, vy, = [ uvdx,

\NH

L

where v is the complex conjugate of v. Moreover, the norm u to be associated with is
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lul*dx = Vu,u

ur, =

\NH

I

The fractional Fourier Transform of u is defined as
o0
Fo(j) = / Ko (x,j)dx
—00

where 6 € R is the fractional Fourier order and Ky (x, j) is the kernel of transformation, defined by

1 0 t(x2+“z)cot6—tjxcsc0
\ e\ 2 if 0 # nmw

Ky (x,]) = (Séx —]) 0 =2nm
8(x +j)

x+j 0+m =2nm

where 6 is the Dirac delta function.
The function u can be retrieved by applying inverse fractional Fourier transform defined as

“= / Fo()K_o (%)) di.

If 6 = 0 the fractional Fourier transform of the function u(x) is signal is itself if @ = 7 it becomes Fourier
transform. The reconstruction of the chirp signal to minimize the error by finding the best fractional Fourier

parameter is increasing. We introduce the fractional Fourier series for the space of L, [—%, %] The standard
Fourier basis is replaced by the basis containing the chirp signal.

Definition Let the fractional Fourier basis for the functionu € L, [—%, %} is defined by.

{@n0 (x) 1 n € Z},

2
) sin@ + 1 cosO —Lcot9{%+%(ﬂ%”sin9) }—Hz%nx
$nso (X)) =\ ———————¢€
T

on —%,% .Let 0<6 < % be the fractional Fourier domain. The fractional Fourier coefficients

{Cro:neZ,0<6< Z } of u computed by taking the inner product of chirp basis functions.
@np(x)and chirp u as

where

T
2
Cnﬁ: /u‘pn,ﬂ(x)dx

N

The fundamental chirp function ¢, g (x) Fourier series is therefore described by

u= Z Cn,@‘pn,@ (x).

nez

The traditional Fourier series is a particular case of fractional Fourier series for 6 = 7.

Main results

The fractional Fourier coefficients are integrals with integrands as quadratic exponentials over a finite interval.
Therefore, the fractional Fourier series on a finite interval is dealt with through numerical methods!®13!°, Frac-
tional Fourier coefficients can be represented in the form of complex error functions. The error functions are
special functions of mathematical physics that do not have any closed form. It is not straightforward to prove
results mathematically. That is why the mathematical results on fractional Fourier series over a finite interval
have been less available in the literature. We use the fractional Fourier transform method, which has introduced
by S.C Pei'® to evaluate fractional Fourier coefficients.

. . . —rvx? i . . N
Lemma 1 Consider a linear chirp u = e~""* e~"**"_Then the absolute value of fractional Fourier coefficients is.
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—273n2v

2( 72,2 2
€T (71 v + (2w A—cot 9) )

C - =
‘ ng’ T 2 1 ] 2
Ve + 72w A — cot0)

Proof The fractional Fourier coefficients for the chirp u(x) are derived from the values obtained of the fractional

Fourier series'’.
27 sin @ 2T
Cno = T Fo nT sin 6

Using the definition of fractional Fourier transform, we have

o0
=4/ 27 sin 6 / e‘”""ze_‘”szg X, nm sinf |dx
T T
—00

Replacing u(x) and Ky (x, 217 sm@) we write C, g as

Cop = /27‘[sm9/ o2 ﬂn/vx /I—LCOtG ﬂCOt@[% %(anme) ]+t27”nxdx 3.1)

Simplification and collecting like terms, we write (3.1)

oo
i — n2sinf
Cnﬁ _ / sin @ TL cos6 el(T> / e(—nv LJT)+2 cot@)x —Ln*xd‘x (32)

—00

For sake of simplicity, we take

sin —tcosf (%) | 27
B={/———e\ " Jir=gav,s=7mA— —cotO,andt = n—.
T 2 T

Then (3.2) can be written in the simple form

o]

Cn@ —B / e*(H»Ls)xsztxdx (3 3)

—00

Applying completing square method to the exponent of the integrand in (3.3)

oo
42 ot 2
Cpp = Be®ri / [("”J””W) dx (3.4)
—00

We apply the substitution method to compute the integral. Let

dn
= x/r +1s + ———.Thendx =
= 2/r+1ts Vs

Now integral (3.4) becomes,

—2 )
e 4+ —i2 T
Cnp = B— e dn = Be®r+o .
Jr+is r+1us
—00

Since Cy. g is a complex-valued, we use the property of complex-valued functions to write

2
2 IBPx 07
|Cuol|” = et . (3.5)

Since

sin? 0 + cos2 6 1

|B|? = e Tandr +sf=ntvi 4 - (271) — cot6)>.

Substituting 7, s, tandB in (3.5), we have
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Figure 1. For the chirpu = e vmxt gl T e graphs of the ‘ Cup ‘ using 4 = 0.75 over —15 < n < 15 (A) over
the domain 0 < 6 < 6,; & 0.209 (B) For 0.209 ~ gy < 6 < 7

Figure 2. For the chirpu = e™"7" =745 the three-dimensional plot of | Cuyp | takingy = 0.17, 4 = % over
—15<n <15
—273n2y
T2 (n2v2+l(2nl—cot9)2)
2 T e 4
|Cuo|” = T (3.6)

w22 + i(Zn/l — cot§)?

We use an optional fractional Fourier parameter 6, given by

1
Oopt = tan”! (| —
27,

inthe0 < 6 < Z the domain of fractional Fourier parameters. Using the 6,,; parameter for the fractional Fourier
transform. The fractional Fourier coefficient of zero degrees has an absolute value that is of the most significant
magnitude. As a result, there is a rapid decline in the absolute amount of the fractional Fourier coefficients of
great degree. Figure 1 depicts the behaviour of fractional Fourier coefficients }Cn,g | for different fractional Fourier
parameters.

The three-dimensional behavior of fractional Fourier coeflicients } Cup | fractional Fourier parameter domain
0 < 6 < Zis shown in Fig. 2.

Theorem 1 establishes that the absolute value of fractional zero-degree Fourier coefficients has the most
significant magnitude.
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2 —umix

_ 2 . ) . .
VX e , then zero-degree fractional Fourier coefficients have maxi-

Theorem 1 Consider a linear chirpu = e
mum value. Mathematically.

C =0
argma |Cuo|
Proof We prove the theorem for n € R. Since Z C R, the result holds for n € Z. Let.

2
Un) = |Cppl”
Then by Lemma 1, we write

—2n3n2\)
172 (n2u2+l(2n/‘.—cote)2)
T 4
U(n) = T (3.7)
\/ﬂ2v2 + i(er/l — cot)?
It is sufficient to prove.
’;—g = 0forn =0.
i < O0forn > 0.
Tg > O0forn < 0.
Differentiating U(n) in (3.7) concerning “n”, we have
—213n2y
dU T eTz(nzvz-%-%(Zn/'.—cow')Z) _2773\)
T 1 N\ v+ ien—wo?) )
\/n2v2+1(27r)v—cot9) (7202 + [ @i — cot6)?)

Now setting

auv 0

dn
we write.

—273n2y
72 (n2v2+l(zn/¢—cote>2) 3
T e 4 =21’y
T ( 5 2)(2n):0 (3.8)
\/n2v2 + i(ZW —cotf): \ T+ 1Qm 2 — cot0)

From (3.8), we see that n = 0. Here we conclude that ‘2—5{ > 0forn < 0and ‘% < O0forn > 0.

We have proved that the absolute value of the fractional Fourier coefficient of zero degrees has maximum
magnitude. Now we prove in Theorem 2 to show that the maximum absolute value of the fractional Fourier
coeflicient occurs when 6 = ;.

) . ) —vrx? —imix? . ) ) ;
Theorem 2 Consider a linear chirp u = e™"™* e~"**"_ The zero-degree fractional Fourier coefficient has a maxi-
mum value when 0 = 0,p;.

.ie.,

1
argmax |C0,9| = Oopr where Oppr = tan~! ( - )
0<f<1 27 A

Proof Let.
V(@) = |Copl?

From Lemma 1, taking n = 0in (3.6), we have

V) = T 1
T \/n2v2 + i(27r), — cot A)? (3.9)
It is sufficient to prove.
{‘;—‘é = 0for 0 = Oyp;.
i < 0for 6 > Gy
> 0forf < Oopt-
Differentiating V' (0) in (3.9) with respect to 6,
av. 7w 1 (27w A — cot A) csc? 0
==|-- (3.10)

a4 T

[N

4 (nzyz + i(Zn/l - cot@)z)

Now setting

Scientific Reports|  (2022) 12:19188 | https://doi.org/10.1038/s41598-022-23560-8 nature portfolio



www.nature.com/scientificreports/

Mean Square Error

Mean Square Error
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Figure 3. For the chirpu = ™7 ¥ gmimia? the graph of mean square error in the fractional Fourier series
approximation of exponential chirps for N = 3 and (A) by taking A = 0.75 for various values of v (B) by taking

V= ﬁ for various values of 4.
av
a0
We have

(2mJ — cot @) csc? 6

=0 (3.11)

~IS

1
1 3
4 (w22 + L2rd - cot6)?)?

From (3.11), we see that

(27 ) — cot®) csc? 0.

Since csc?20 #0on0 < 6 < 7. Therefore

1
(27 — cot0) = 0orf = tan™ ! i Oopt-

v 0 when 27 ) t0 > 0orf > tan™ ! ! 6
—_— << wnen Liw /. — CO > or > lan —_— =
do 27, opt

Now from (3.10), we see that

—d 0 when 27 2 t0 < 0orf < tan~! LN 0,
> L — <0o0rf < tan =
10 when 21 co 0 a 30l opt

The minimal mean square error is produced by the partial sums of fractional Fourier series with the best pos-
sible fractional Fourier parameters while approximating linear chirps. The following sentence describes the best
approximation: Think about a linear chirp

2 2
U= e VX efmix ,
the complex exponentials ,,¢ and the L norm |- 13 [l. We take all basis {¢n : 7 € Z} with0 < 6 < Z and from
the corresponding partial sums Sy ¢, where

SNo(X) =Y Cup(X)Pnp ()

[n|<N

The partial sum Sy g is the best match to u on [— %, %] for high N thanks to a parameter 6,; in the fractional

Fourier parameter domain 0 < 6 < 7. The fractional Fourier series estimate of chirps’ mean square error is
depicted in Fig. 3

We prove Theorem 3 to show that mean square error attains the minimum value at & = 6,,; when linear chirp
is approximated by fractional Fourier series for sufficiently large values of N.

) ) ) S S g . . . . )
Theorem 3 Consider a linear chirpu = e~""* e~ **". Then mean square error in fractional Fourier series approxi-

mation holds the following property.
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1
arg min |[u—3S = Opps where Opp =tan ' [ — |.
g0§05g || N,HHLZ opt opt 7

Proof By using Parseval’s identity, we write.

u—SNoL, = Z |Cn,9|2
[n>=N+1]

Let
Y(0) = |Cuol?

2 we express Y (0) in the following form

From Lemma 1, using value of | Cup

2342y
T2 (n2v2+ % (Zfr)VfcotO)z)

Y6) =

~I

\/712\)2 + %(27[}, — cot6)?

It is sufficient to prove.
;—; = 0for 0 = Op;.
i > 0for 6 > Oypr.
T < 0for6 < Opr.

Differentiating Y (9) in (3.12) concerning 6, we get

(3.12)

—273ny
dy ;" (Prieniwn?) m — cot ) csc? 6 { 1 + w3nty }
T 3 1 1 2
a9 T (r2v? + %(27.”1 _ cot@)z) 2 4 T?(n?? 4 ;2w — coth)?)

After simplification of like terms, we have

—2m3n2y

q0 413 3
4o 4T (n2v2 + %(27{/1 - cot@)z) 2

Now setting
a 0
do

We have

—273n2v

4T3 w22 + i(Zn)v — coth)?

3
(w202 4 127 ) — cot§)?)?

From (3.13), we see that

—2m3n?y
Ve + 5 (27 A—co T
eT2<772‘2+111(2 06)?) £0 and csc® # 0ond < 6 < 3
Therefore
1
27A—cotd =0 and T? (_nzvz — Z(Zni — cot9)2> +4m3n*v =0
Now
27l —cotd =0 gives 0 = tan”! 1 =6,

. =0 8 - o)

and

e (x4 fani—coto?) (2ml — cot @) csc? 6 {Tz (—m2v? — i(2n/1 — cot0)? + 4m3n?v)

dy P s ) (r ) — cotf) csc? 0 | T2 (—m?v? — 1272 — cot ) + 4m3n?v)
w22 4 %(27‘[& — cot6)?

1
T? (—nzyz — Z(er — cotG)z) +473n?v =0 gives |n| =

4 175,14

From (3.13), we see that

T \/4n2v2 + (27 — cot§)?
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dy T (40202 + () — cot8)?
—— > Owhen2m ) —cot >0 for |n| > — w2v2 + (27w A — cot ) .
do i o
This gives
1 T 47202 + 27/ — cot6)?
-1
0 > tan (m) =0Oppr for |n|> 4]_[\/ - )
Again from (3.13) we see that
Y T 47202 + 27/ — coth)?
- < 0when27t/l—C0t9< Ofor |n|>7 weve + (2 cot0) .
do o o

This gives

T

4

\/4712\)2 + @2n i — cot)?

v

1
6’<tan_1 (zn—)) = 0Oopt for |n|>

We proved the theorem for }C,,,g 2 consequently, it holds for

ST [cusl

[n|=N+1
Therefore
2 2
lu—Snollf, = > |Cugl
[n|>N+1

Hence

arg min||u — SNgllL, = Oopt

0<05%

Conclusion

To sum up, the objectives we obtained in this work are listed below:

Utilizing fractional Fourier series and fractional Fourier transform, we looked at the characteristics of frac-
tional Fourier coefficients of linear chirps.

We demonstrated that the 6,y approach outperforms the conventional Fourier series method in the linear
chirps approximation by setting the fractional Fourier parameter to a constant value.

The analysis has discovered that using the optimal fractional Fourier parameter 6 oy, zero-degree fractional
Fourier coefficients attain maximum, and consequently, large-degree fractional Fourier coefficients have the
fastest decay.

We have demonstrated that the fractional Fourier series is helpful for chirp analysis and achieves minimal
mean square error in the fractional Fourier parameter domain.

Data availability
All the data are clearly available in the manuscript.
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