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The minimality of mean square 
error in chirp approximation 
using fractional fourier series 
and fractional fourier transform
Omar T. Bafakeeh1, Muhammad Yasir2, Ali Raza2, Sami Ullah Khan3, R. Naveen Kumar4, 
M. Ijaz Khan5*, Deyab A. Almaleki6, Nidhal Ben Khedher7,8, Sayed M. Eldin9 & 
Ahmed M. Galal10,11

Chirps are familiar in nature, have a built-in resistance to noise and interference, and are connected to 
a wide range of highly oscillatory processes. Detecting chirp oscillating patterns by traditional Fourier 
series is challenging because the chirp frequencies constantly change over time. Estimating such types 
of functions considering the partial sums of a Fourier series in Fourier analysis does not permit an 
approximate solution, which entails more Fourier coefficients required for signal reconstruction. The 
standard Fourier series, therefore, has a poor convergence rate and is an inadequate approximation. 
In this study, we use a parameterized orthonormal basis with an adjustable parameter to match the 
oscillating behavior of the chirp to approximate linear chirps using the partial sums of a generalized 
Fourier series known as fractional Fourier series, which gives the best approximation with only a small 
number of fractional Fourier coefficients. We used the fractional Fourier transform to compute the 
fractional Fourier coefficients at sample points. Additionally, we discover that the fractional parameter 
has the best value at which fractional Fourier coefficients of zero degrees have the most considerable 
magnitude, leading to the rapid decline of fractional Fourier coefficients of high degrees. Furthermore, 
fractional Fourier series approximation with optimal fractional parameters provides the minimum 
mean square error over the fractional Fourier parameter domain.

Chirps often occur in nature because of the Doppler effect1,2. Chirps can be found3–5 both in nature, such as wave 
physics, mechanics, vibrations, biology, medicine6 Moreover, manufactured systems such as radar and sonar. The 
radar echo of a moving target with constant acceleration is a chirp function. In mathematics, chirps are often 
shown to exist in the forms of Weierstrass functions7 Riemann functions or Daubechies wavelets transforms of 
higher order.

A mathematical extension of the conventional Fourier series is the fractional Fourier series. Every subject 
where the traditional Fourier series is used has the potential to use it. The Fractional Fourier series is an elegant 
series with applications8–10 in engineering, science, and technology. Pei et al. 10 first introduced fractional Fourier 
series and used it in the expansion of linear chirps. Later, Barkat and Yingtuo11 presented modified fractional 
Fourier series that approximate generalized chirps with an arbitrary central frequency. Yu performed numerical 
simulations of Gaussian chirp signals12 using fractional Fourier series expansions. Coetmellec13 did fractional 
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order Fourier analysis of chirped pulses and Brunel14  performed fractional order Fourier analysis of ultra-short 
pulse characterization and SPIDER interferograms. A fractional Fourier transform is a mathematical develop-
ment of the conventional Fourier transform with a movable parameter, and it functions similarly to the conven-
tional Fourier transform. In order to solve specific integro—differential equations and partial differential equa-
tions of quantum physics, Wiener developed the fractional Fourier transform15 in 1929. Bultheel16 constructed 
the mathematical theory of the fractional Fourier transformations by constructing its algebra and calculus. The 
theory of the fractional Fourier transform on the space L2(R) was presented by McBride and Kerr17, and its 
implementations to partial differential equations were covered.

To sum up, the intention of this paper is twofold: First, to evaluate the fractional Fourier coefficients in closed 
form to provide the mathematical proofs of results related to chirp approximation, and second, to prove the 
minimality of mean square error in fractional Fourier series expansion of the linear chirps on fractional Fourier 
parameter domain. We outline this paper and provide a short overview of the main results. In "Preliminaries" 
section, we introduce chirps and exponential linear chirps. Then, we introduce fractional Fourier series and 
fractional Fourier transform for the space of square-integrable functions. In "Main results" section is the main 
section where we compute fractional Fourier coefficients by using the fractional Fourier transform method.

We also provide fresh findings about the fractional Fourier coefficients of linear chirps. We demonstrate 
that when the fractional Fourier parameter is fixed, the maximum value of the zero-degree fractional Fourier 
coefficient and the rapid decrease of the high-degree fractional Fourier coefficient are obtained. As a result, the 
approximation of the fractional Fourier series has a minimal mean square error. We summarize the findings and 
recommendations in "Conclusion" section.

Preliminaries
A chirp function is a function that advances in time while sweeping all frequencies across a predetermined 
interval. A chirp can sweep frequencies in various ways (linear, quadratic, logarithmic, etc.). However, the most 
used chirps are linear.

Definition  Chirps are functions defined by.

where F,� are amplitude and phase functions, respectively. Such that F(x),�(x) ∈ R.
When compared to a smooth amplitude function, F(x), with slow variations, the phase function �(x) is highly 

oscillatory, the variations of �(x) and F(x) depend upon the following two conditions18 given below,

where �̇(x) �= 0 . Both requirements given above are intended to define the concept of rapid oscillations within 
a slowly shifting envelope.

Since the human perception of sound intensity is depicted as a logarithmic function. By replacing the phase 
function F(x) in the above equation with the function of the form

and amplitude function �(x) by a quadratic polynomial of the form

the chirp becomes an exponential linear chirp, which is given below
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The fractional Fourier Transform of  u is defined as

where θ ∈ R is the fractional Fourier order and Kθ

(

x, j
)

 is the kernel of transformation, defined by

where δ is the Dirac delta function.
The function u can be retrieved by applying inverse fractional Fourier transform defined as

If θ = 0 the fractional Fourier transform of the function u(x) is signal is itself if θ = π

2  it becomes Fourier 
transform. The reconstruction of the chirp signal to minimize the error by finding the best fractional Fourier 
parameter is increasing. We introduce the fractional Fourier series for the space of L2

[

−T
2 ,

T
2

]

 The standard 
Fourier basis is replaced by the basis containing the chirp signal.

Definition  Let the fractional Fourier basis for the function u ∈ L2

[

−T
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T
2

]

  is defined by.

where

on 
[
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2 ,

T
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]

. Let 0 ≤ θ ≤ π
2  be the fractional Fourier domain. The fractional Fourier coefficients 

{

Cn,θ : n ∈ Z, 0 ≤ θ ≤ π
2

}

 of u computed by taking the inner product of chirp basis functions.
ϕn,θ (x) and chirp u as

The fundamental chirp function ϕn,θ (x) Fourier series is therefore described by

The traditional Fourier series is a particular case of fractional Fourier series for θ = π
2 .

Main results
The fractional Fourier coefficients are integrals with integrands as quadratic exponentials over a finite interval. 
Therefore, the fractional Fourier series on a finite interval is dealt with through numerical methods10–13,19. Frac-
tional Fourier coefficients can be represented in the form of complex error functions. The error functions are 
special functions of mathematical physics that do not have any closed form. It is not straightforward to prove 
results mathematically. That is why the mathematical results on fractional Fourier series over a finite interval 
have been less available in the literature. We use the fractional Fourier transform method, which has introduced 
by S.C Pei10 to evaluate fractional Fourier coefficients.

Lemma 1  Consider a linear chirp u = e−πνx2e−ιπ�x2 . Then the absolute value of fractional Fourier coefficients is.
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Proof  The fractional Fourier coefficients for the chirp u(x) are derived from the values obtained of the fractional 
Fourier series10.

Using the definition of fractional Fourier transform, we have
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, we write Cn,θ as
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We use an optional fractional Fourier parameter θopt given by

in the 0 ≤ θ ≤ π
2  the domain of fractional Fourier parameters. Using the θopt parameter for the fractional Fourier 

transform. The fractional Fourier coefficient of zero degrees has an absolute value that is of the most significant 
magnitude. As a result, there is a rapid decline in the absolute amount of the fractional Fourier coefficients of 
great degree. Figure 1 depicts the behaviour of fractional Fourier coefficients 

∣

∣Cn,θ

∣

∣ for different fractional Fourier 
parameters.

The three-dimensional behavior of fractional Fourier coefficients 
∣
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2  is shown in Fig. 2.
Theorem 1 establishes that the absolute value of fractional zero-degree Fourier coefficients has the most 

significant magnitude.
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Figure 1.   For the chirp u = e−νπx2e−ιπ�x2T he graphs of the 
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Figure 2.   For the chirp u = e−νπx2e−ιπ�x2 , the three-dimensional plot of 
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Theorem 1  Consider a linear chirp u = e−νπx2e−ιπ�x2 , then zero-degree fractional Fourier coefficients have maxi-
mum value. Mathematically.

Proof  We prove the theorem for n ∈ R . Since Z ⊆ R , the result holds for n ∈ Z . Let.
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We have proved that the absolute value of the fractional Fourier coefficient of zero degrees has maximum 

magnitude. Now we prove in Theorem 2 to show that the maximum absolute value of the fractional Fourier 
coefficient occurs when θ = θopt.
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. i.e.,

Proof  Let.

From Lemma 1, taking n = 0 in (3.6), we have

It is sufficient to prove.
dV
dn = 0 for θ = θopt.
dV
dn < 0 for θ > θopt.
dV
dn > 0 for θ < θopt.
Differentiating V(θ) in (3.9) with respect to θ,

Now setting

argmax
n∈Z

∣

∣Cn,θ

∣

∣ = 0

(3.7)U(n) =
π

T

e

−2π3n2ν

T2
(

π2ν2+ 1
4 (2π�−cot θ)2

)

√

π2ν2 + 1
4 (2π�− cot θ)2

dU

dn
=

π

T

e

−2π3n2ν

T2
(

π2ν2+ 1
4 (2π�−cot θ)2

)

√

π2ν2 + 1
4 (2π�− cot θ)2

(

−2π3ν

T2
(

π2ν2 + 1
4 (2π�− cot θ)2

)

)

(2n)

dU

dn
= 0

(3.8)π

T

e

−2π3n2ν

T2
(

π2ν2+ 1
4 (2π�−cot θ)2

)

√

π2ν2 + 1
4 (2π�− cot θ)2

(

−2π3ν

π2ν2 + 1
4 (2π�− cot θ)2

)

(2n) = 0

argmax
0<θ≤ π

2

∣

∣C0,θ

∣

∣ = θopt where θopt = tan−1

(

1

2π�

)

.

V(θ) =
∣

∣C0,θ

∣

∣

2

(3.9)V(θ) =
π

T

1
√

π2ν2 + 1
4 (2π�− cot �)2

(3.10)
dV

dθ
=

π

T



−
1

4

(2π�− cot �) csc2 θ
�

π2ν2 + 1
4 (2π�− cot θ)2

�
3
2







7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19188  | https://doi.org/10.1038/s41598-022-23560-8

www.nature.com/scientificreports/

We have

From (3.11), we see that

Since csc2 θ  = 0 on 0 ≤ θ ≤ π
2  . Therefore

Now from (3.10), we see that

The minimal mean square error is produced by the partial sums of fractional Fourier series with the best pos-
sible fractional Fourier parameters while approximating linear chirps. The following sentence describes the best 
approximation: Think about a linear chirp

the complex exponentials ϕn,θ and the L2 norm �·L2� . We take all basis 
{

ϕn,θ : n ∈ Z
}

 with 0 ≤ θ ≤ π
2  and from 

the corresponding partial sums SN ,θ , where

The partial sum SN ,θ is the best match to u on 
[

−T
2 ,

T
2

]

 for high N thanks to a parameter θopt in the fractional 
Fourier parameter domain 0 ≤ θ ≤ π

2  . The fractional Fourier series estimate of chirps’ mean square error is 
depicted in Fig. 3

We prove Theorem 3 to show that mean square error attains the minimum value at θ = θopt when linear chirp 
is approximated by fractional Fourier series for sufficiently large values of N.

Theorem 3  Consider a linear chirp u = e−νπx2e−ιπ�x2 . Then mean square error in fractional Fourier series approxi-
mation holds the following property.
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Figure 3.   For the chirp u = e−νπx2e−ιπ�x2 , the graph of mean square error in the fractional Fourier series 
approximation of exponential chirps for N = 3 and (A) by taking � = 0.75 for various values of ν   (B) by taking 
ν = 1

200π
 for various values of �.
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Proof  By using Parseval’s identity, we write.
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This gives

Again from (3.13) we see that

This gives

We proved the theorem for 
∣

∣Cn,θ

∣

∣

2 , consequently, it holds for

Therefore

Hence

Conclusion
To sum up, the objectives we obtained in this work are listed below:

•	 Utilizing fractional Fourier series and fractional Fourier transform, we looked at the characteristics of frac-
tional Fourier coefficients of linear chirps.

•	 We demonstrated that the θopt approach outperforms the conventional Fourier series method in the linear 
chirps approximation by setting the fractional Fourier parameter to a constant value.

•	 The analysis has discovered that using the optimal fractional Fourier parameter θopt , zero-degree fractional 
Fourier coefficients attain maximum, and consequently, large-degree fractional Fourier coefficients have the 
fastest decay.

•	 We have demonstrated that the fractional Fourier series is helpful for chirp analysis and achieves minimal 
mean square error in the fractional Fourier parameter domain.

Data availability
All the data are clearly available in the manuscript.
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