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New optimum solutions 
of nonlinear fractional acoustic 
wave equations via optimal 
homotopy asymptotic method‑2 
(OHAM‑2)
Laiq Zada1, Rashid Nawaz1, Wasim Jamshed2*, Rabha W. Ibrahim3, El Sayed M. Tag El Din4, 
Zehba Raizah5 & Ayesha Amjad6

The second iteration of the optimal homotopy asymptotic technique (OHAM-2) has been protracted 
to fractional order partial differential equations in this work for the first time (FPDEs). Without any 
transformation, the suggested approach can be used to solve fractional-order nonlinear Zakharov–
Kuznetsov equations. The Caputo notion of the fractional-order derivative, whose values fall within 
the closed interval [0, 1], has been taken into consideration. The method’s appeal is that it provides 
an approximate solution after just one iteration. The suggested method’s numerical findings have 
been contrasted with those of the variational iteration method, residual power series method, and 
perturbation iteration method. Through tables and graphs, the proposed method’s effectiveness and 
dependability are demonstrated.

Newly, there has been increasing attention to consuming fractional calculus to describe complex systems. Frac-
tional derivatives are useful tools to model nonlinear phenomena since they allow us to capture the memory 
effects inherent in real systems. For example, the Riemann–Liouville derivative is widely used to model the 
evolution of viscoelastic materials. Fractional calculus also allows us to model the dynamics of complex systems 
that exhibit long-range interactions. In this regard, many researchers have well studied various schemes and 
aspects of partial differential equations (PDEs) and fractional order partial differential equations (FPDEs)1–5. 
However, recently much consideration has been paid to obtaining the solution of fractional models of physical 
concentration. Considering the views, the computational complexity involved in fractional order models is very 
crucial and it is difficult in solving these fractional models. Sometimes the exact analytical solution for each FPDE 
cannot be obtained using traditional schemes and methods. However, there are some schemes and methods 
that have proved efficient in obtaining an approximation to the solution of fractional problems. Among them, 
we draw the attention of readers to these methods and schemes6–16 which are used successfully. The Kerteweg 
de-Vries (KdV) equations play an important act in the application Zakharov-Kuznetsov (ZK) equations that 
analyzed the ionic-acoustic waves in magnetized plasma. It is an investigation of coastal waves in an ocean. The 
ZK equation was primarily found in the investigation of weak non-linear ion-acoustic waves in greatly attract 
losses plasma in two dimensions.

Recent works including the OHAM-2 are given by many researchers. Hashimet al.17 considered OHAM-2 for 
resolving numerous simulations of first-order fuzzy fractional IVPs. Olumide et al.18 studied the efficient result 
of the fractional-order SIR epidemic exemplary of childhood diseases with OHAM-2. Ahsanet al.19 presented a 
numerical result of a scheme of fuzzy fractional order Volterra integro-differential equation utilizing OHAM-2. 
Alshbool et al.20 assumed OHAM-2 to study the fractional Bernstein functioning matrices of Caputo types for 
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resolving integro-differential equations. Hussain et al.21 employed OHAM-2 with special types of polynomials 
to join the system of Boussinesq equalities. Moreover, the HPM is utilized for many applications in fractional 
calculus. Peker and Cuha22 applied HPM in the Kashuri Fundo transform of fractional heat transfer and porous 
media equations. Abdul-Rahim et al.23 analyzed the fractional epidemic model via HPM. Qayyum et al.24 con-
sidered the method HPM as an application of arbitrary order film movement of the Johnson–Segalman liquid 
system. Dubey and Chakraverty25 presented an optimal solution for fractional wave equations by employing 
HPM. Chen and Liu26 used the local HPM for resolving coupled Sine–Gordon formulas in the fractal Domain.

In the present work, we investigated the following fractional ZK equation of the form,

where F = F
(

η, y, τ
)

, α is the parameter describing the construction of the fractional differential (0 < α ≤ 1) , 
and θ ,ψ and ρ are arbitrary parameters7. P,Q, and R are integers, responsible for the behavior of weak non-linear 
ion acoustic waves in a plasma containing cool ions and warm isothermal electrons in the being of a systematic 
magnetic field27.

The literature has utilized a variety of strategies to find both exact and approximative solutions to the ZK 
problem. One of these is the Perturbation Iteration Method (PIA) algorithm, which is used to solve the fractional 
order ZK problem in series28. For a fractional system of nonlinear ZK equations, Prakash et al. used the Sumudu 
transform approach and a new iterative strategy29. Eslami et al. examined the exact solutions to the modified 
ZK equation in30.

The second iteration of the optimal homotopy asymptotic mode was utilized in a similar way to establish a 
rough solution to the fractional order ZK equation. V. Marinca introduced the Optimal homotopy asymptotic 
method of the first version and second version namely called OHAM-1 and OHAM-II and used it for various 
differential equations in the series of papers31–34. Later, Liaqat Ali et al. used the suggested approach to solve a 
fluid mechanics-related differential equation35. The reason behind the organization of this research work is in 
the view of the above-mentioned literature:

•	 Fractional order nonlinear Zakharov–Kuznetsov equations are considered to study with the help of the second 
version of the optimal homotopy asymptotic method (OHAM-II) which is not explored yet in the available 
literature.

•	 The proposed method (OHAM-II) has never been used before for any type of fractional order model in the 
literature.

•	 The proposed method provides a series solution after only one iteration for the FZK equation which is the 
beauty of this method.

•	 According to numerical findings, OHAM-2 is the greatest at producing better and more accurate outcomes. 
It takes a few steps and leads to an almost precise result.

The remaining paper is organized as follows: In “Preliminaries" section, we introduce some basic definitions 
and properties of fractional Calculus. We will use them throughout the paper. In “Methodology" section, we give 
the theoretical foundation of the proposed method. In “Application of the OHAM-2” section, two examples are 
presented to illustrate the effectiveness of the proposed method. Finally, we complete the paper in “Conclusion" 
section by introducing the conclusion of our results.

Preliminaries
In this portion of the research article, some fundamental meanings of fractional calculus, are presented. Like 
Riemann–Liouville, Grunwald Letnikov, Caputo, etc., which are related to our analysis.

Definition 2.1  R-L fractional integral

hence Ŵ denotes the gamma function defined as follows,

Definition 2.2  The subsequent mathematical statement yields the Caputo operator of order for a fractional deriva-
tive, for n ∈ N , η > 0 , g ∈ Cτ , τ ≥ −1.

Lemma 2.3  If n− 1 < α ≤ n with n ∈ N and  g ∈ Cτ with  τ ≥ −1, then

Dα
τ F + θ(FP)η + ψ(FQ)ηηη + ρ(FR)ηyy = 0,

Iαη g(η) =







g(η) if α = 0

1
Ŵ(α)

η

∫
0

(η − υ)α−1g(υ)dυ if α > 0,

Ŵ(ω) =
∞

∫
0

e−ηηω−1dη ω ∈ C,

Dαg(η) =
∂αg(η)

∂τα
=

{

In−α
[

∂αg(η)
∂τα

]

, ifn− 1 < α ≤ n, n ∈ N

∂αg(η)
∂τα

,
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One can get more details regarding fractional derivatives in13.

Methodology
In this section, the second version of the optimal homotopy asymptotic method has been protracted to fractional 
order PDEs. For this purpose, we consider the general nonlinear fractional order PDEs as,

Subject to I.C

 ∂
α

∂τα
  is the Caputo or Riemann–Liouville fractional derivative operator. A  is the differential operator and g(η, τ ) 

is the source term. The homotopy for (1) is, φ
(

η, τ ; p
)

: �× [0, 1] → R

In (4), the auxiliary function H(η, τ )  and embedding parameter p can be explored subsequently. We have 
added to Taylor’s series about p by

by Putting p = 1 in the above equation, we have

Putting Eq. (6) in Eq. (4) and comparing the co-efficient of the same powers of, p and omit the remaining. 
Now the zero-order solution is obtained from the following,

and the first-order solution is obtained from (8)

Before applying Iα the above zero-order and first-order problems, firstly, we discuss the auxiliary function 
present in the first-order problem. The nonlinear operator is typically expressed as:

where hi and g(η) and are known functions that are dependent upon the function N.

Remark 3.1  Where H(η, τ ,Ci) random supplementary functions contingent on the initial approximation F0(η, τ) 
and a number of the unidentified parameters Ci , i = 1, 2, 3...

Remark 3.2  The supplementary functions H(η, τ ,Ci) is not unique and is of the same form like F0(η, τ) or the form 
of N(F0(η, τ )) or the combination of both F0(η, τ) and N(F0(η, τ )).

IαIβg(η) = Iα+βg(η), β ,α ≥ 0.

Iαη� =
Ŵ(�+ 1)

Ŵ(α + �+ 1)
ηα+�, α > 0, � > −1, η > 0.

IαDαg(η) = g(η)−

n−1
∑

k=0

gk
(

0+
)ηk

k!
, for η > 0, n− 1 < α ≤ n.

(1)
∂αF(η, τ)

∂τα
= A(F(η, τ ))+ g(η)α > 0,

(2)∂α−kF(η, 0)

∂τα−k
= hκ (η).(κ = 0, 1, 2, ......, n− 1),

∂α−nF(η, 0)

∂τα−n
= 0, n = [α].

(3)∂kF(η, 0)

∂τ k
= gκ (η). (κ = 0, 1, 2, ......, n− 1),

∂nF(η, 0)

∂τ k
= 0, n = [α].

(4)
(

1− p
)

(

∂αφ(η, τ)

∂τα
− g(η, τ )

)

−H
(

η, p
)

(

∂αφ(η, τ )

∂τα
− (A(φ(η, τ ))+ g(η, τ )

)

= 0,

(5)φ(η, τ ,Ci) = F0(η, τ )+

m
∑

k=1

Fk(η, τ ,Ci)p
k i = 1, 2, 3, . . .

(6)F(η, τ ,Ci) = F0(η, τ )+

∞
∑

k=1

Fk(η, τ ,Ci) i = 1, 2, 3, . . .

(7)p0 :
∂αF0(η, τ)

∂τα
− g = 0,

(8)p1 :
∂αF1(η, τ ,C1)

∂τα
= H(η, τ ,Ci)N(F0(η, τ )),

(9)N(F0(η, τ )) =

m
∑

i=1

hi(η, τ )g(η),
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Remark 3.3  If F0(η, τ) or N(F0(η, τ )) a polynomial function like H(η, τ ,Ci) = C1η + C2η
2... and if a trigonometric 

functions then C1sinh(β)+ C2sinh(2β).... If in special case N[F0(η, τ )] = 0 then it is an exact solution of  (1).

Ritz technique, association mode, Galerkins’ technique, or least square process, by reducing the square resid-
ual error, can be used to determine the beliefs of unidentified parameters Ci.

where R is the residual assumed as follows,

Remark 3.4  Our suggested approach is independent of any model’s small or large parameters. Our effective tool 
has an auxiliary function that enables us to easily control and fine-tune the series solution’s convergence after just 
one iteration.

Application of the OHAM‑2
To expose the effectiveness and accuracy of the proposed method, we take the nonlinear high-dimensional FZK 
equations. For most of the computational work, we used the Mathematica 11 software package.

Example 1.  Consider the nonlinear fractional order FZK (3,3,3) equation in the following form,

Subject to I.C

where η is an arbitrary constant.

Using OHAM-2 formulation, we get the F0
(

η, y, τ
)

 from (7)

Apply the inverse operator Iα with initial condition both sides of (15), we have the following solution,

By substituting (16) into (14), the nonlinear operator becomes,

The first approximation F1
(

η, y, τ
)

 is given by (9),

The optimal supplementary function H is selected in the custom

Using (17) and (19) into (18), with using Iα both side of (18) we get,

(10)J(Ci) =
τ

∫
0

∫
�

R2(η, τ ;Ci)dηdτ ,

(11)R(η, τ ,Ci) =
∂α F̃(η, τ )

∂τα
− A

(

F̃(η, τ )
)

− g(η).

(12)∂αF(η,y,τ)
∂τα

+
∂F3(η,y,τ)

∂η
+ 2

∂3F3(η,y,τ)
∂η3

+ 2
∂3F3(η,y,τ)

∂ηy2
= 0, 0 < α ≤ 1

(13)F
(

η, y, 0
)

=
3

2
�sinh

(

1

6

(

η + y
)

)

,

(14)

L
(

F
(

η, y, τ
))

=
∂αF

(

η, y, τ
)

∂τα
.

N
(

F
(

η, y, τ
))

=
∂F3

(

η, y, τ
)

∂η
+ 2

∂3F3
(

η, y, τ
)

∂η3
+ 2

∂3F3
(

η, y, τ
)

∂ηy2
,

g
(

η, y, τ
)

= 0,

(15)
∂αF0

(

η, y, τ
)

∂τα
= 0,

(16)F0
(

η, y, τ
)

=
3

2
�sinh

(

1

6

(

η + y
)

)

.

(17)N(F0
(

η, y, τ
)

=
3

16
�
3cosh

(

η + y

6

)(

9cosh

(

η + y

3

)

− 7

)

.

(18)
∂αF1

(

η, y, τ
)

∂τα
= H

(

η, y, τ ,Cj

)

N
[

F0
(

η, y, τ
)]

.

(19)H
(

η, y, τ ,Cj

)

= C1cosh

(

η + y

6

)

+ C2sinh

(

η + y

3

)

+ C3cosh

(

η + y

3

)

+ sinh

(

η + y

6

)

.
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By adding (16) and (20), we obtain the first order approximate result for FZK(3,3,3) by the following 
expression,

With the domain 
∑

= [a, b] = [0, 1] the residual will be as

For finindg the Ci , we used the least sqarue method. Using the mathematical tenets of convergence control 
parameters from Table 1 and put in (21), we develop the first order approximate result for altered values of α 
for FZK (3,3,3).

For α = 1.0

For α = 0.75

For α = 0.5

Example 2.  Deliberate the subsequent FZK (2,2,2) equation as

with initial condition

where � is an arbitrary constant. For special case, when α = 1.0 the exact solution for FZK(2,2,2) is

The initial approximate F0
(

η, y, τ
)

 is obtained from (7)

(20)F1
�

η, y, τ
�

=
1

16Ŵ(1+ α)











3τα� cosh

�

η+y
6

��

−7+ 9 cosh

�

η+y
3

��





C1 cosh

�

η+y
6

�

+ C3

�

−7+ 9 cosh

�

η+y
3

��

sinh

�

η+y
6

�

+ C2 sinh

�

η+y
3

�

.















(21)F̃
(

η, y, τ
)

= F0
(

η, y, τ
)

+ F1
(

η, y, τ ,Ci

)

.

R
(

η, y, τ
)

=
∂α F̃

(

η, y, τ
)

∂τα
+

∂ F̃3
(

η, y, τ
)

∂η
+ 2

∂3F̃3
(

η, y, τ
)

∂η3
+ 2

∂3F̃3
(

η, y, τ
)

∂ηy2
.

F̃
(

η, y, τ
)

=
3

16
�
3τ

(

9cosh

(

η+ y

3

)

− 7

)

cosh

(

η+ y

6

)

+
3

2
�sinh

(

η+ y

6

)

0.282415sinh

(

η+ y

3

)

+ sinh

(

η + y

6

)

− 0.869888cosh

(

η+ y

3

)

− 0.18026cosh

(

η+ y

6

)

.

F̃
(

η, y, τ
)

= 0.204012�3τ 0.75
(

9 cosh

(

η + y

3

)

− 7

)

cosh

(

η + y

6

)

+
3

2
� sinh

(

η + y

6

)

(

sinh

(

η + y

6

)

− 0.963433 cosh

(

η + y

3

)

− 0.0871627 cosh

(

η + y

6

)

+0.291476 sinh

(

η + y

3

))

.

F̃
(

η, y, τ
)

= 0.211571�3τ 0.5
(

9 cosh

(

η + y

3

)

− 7

)

cosh

(

η + y

6

)

+
3

2
� sinh

(

η + y

6

)

(

sinh

(

η + y

6

)

− 0.700697 cosh

(

η + y

3

)

− 0.348631 cosh

(

η + y

6

)

+0.265905 sinh

(

η + y

3

))

.

(22)
∂αF

(

η, y, τ
)

∂τα
+

∂F2
(

η, y, τ
)

∂η
+

1

8

∂3F2
(

η, y, τ
)

∂η3
+

1

8

∂3F2
(

η, y, τ
)

∂ηy2
= 0, 0 < α ≤ 1

(23)F
(

η, y, 0
)

=
4

3
�sinh2

(

η + y
)

,

(24)F
(

η, y, τ
)

=
4

3
� sinh2

(

η + y − �τ
)

.

(25)
∂αF0

(

η, y, τ
)

∂τα
= 0,

Table 1.   Auxiliary convergence control parameters for different values of α for FZK(3,3,3).

α C1 C2 C3

0.5  − 0.34863102171153154 0.26590456732017476  − 0.7006972064317305

0.75  − 0.08716270059116164 0.291475794311555466  − 0.9634327396323357

1.0  − 0.18025964484745524 0.2824153038769191  − 0.8698875451125583
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Apply the inverse operator, Iα , with initial condition to (25), we have the following solution

By substituting (26) into (22), the nonlinear operator becomes,

The first approximation F1
(

η, y, τ
)

 is given by (10)

The optimal supplementary function H is chosen in the form

using (27)and (29) into (28), with using Iα both side of (28) we get,

By adding (26) and (31), we obtain the first order approximate result for FZK(2,2,2) by the succeeding 
appearance,

Following the procedure described in Sect. "Preliminaries" on the domain 
∑

= [a, b] = [0, 1] the residual 
will be as

For finindg the Ci , we used the least sqarue method. Using the mathematical values of convergence control 
parameters from Table 2 and put in (31), we get the first order approximate solution for different values of α for 
FZK (2,2,2).

For α = 1.0

For α = 0.75

For α = 0.5

Figure 1 shows 3D plots approximate verses exact solutions for the nonlinear fractional order FZK(3,3,3) 
equation when α = 1, y = 0.1 . Figure 2, displays the 2D schemes of the residual, obtained by the suggested 
technique for α = 0.5 to fractional order FZK(3,3,3) equation. Figure 3, displays the 2D designs of approxi-
mate solutions obtained by the suggested mode for different values of α while τ = 0.1, y = 0.2 to fractional 
order FZK(3,3,3) equation. Figure 4, shows the 3D plots obtained by the suggested process to fractional order 

(26)F0
(

η, y, τ
)

=
4

3
� sinh2

(

η + y
)

.

(27)N(F0
(

η, y, τ
)

=
8

9
�
2
(

5 sinh
(

4
(

η + y
))

− 4 sinh
(

2
(

η + y
)))

.

(28)
∂αF1

(

η, y, τ
)

∂τα
= H

(

η, y, τ ,Cj

)

N
[

F0
(

η, y, τ
)]

.

(29)H
(

η, y, τ ,Cj

)

=
8

9
�
2
(

C1 sinh
(

2
(

η + y
))

+ C2� sinh
(

4
(

η + y
))

+ C3� sinh
(

6
(

η + y
)))

.

(30)F1
(

η, y, τ
)

=
1

81Ŵ(1+ α)

[

64τα�4
(

−4 sinh
(

2
(

η + y
))

+ 5 sinh
(

4
(

η + y
)))

(

C1 sinh
(

2
(

η + y
))

+ C2� sinh
(

4
(

η + y
))

+ C3� sinh
(

6
(

η + y
)))

.

]

(31)F̃
(

η, y, τ
)

= F0
(

η, y, τ
)

+ F1
(

η, y, τ ,Ci

)

.

R
(

η, y, τ
)

=
∂α F̃

(

η, y, τ
)

∂τα
+

∂ F̃2
(

η, y, τ
)

∂η
+

1

8

∂3F̃2
(

η, y, τ
)

∂η3
+

1

8

∂3F̃2
(

η, y, τ
)

∂ηy2
.

F̃
(

η, y, τ
)

=
4

3
� sinh2

(

η + y
)

−
64

81
�
4τ
(

4 sinh
(

2η + y
)

− 5 sinh
(

4η + y
))

C1 sinh
(

2η + y
)

+ C2� sinh
(

4η + y
)

+ C3� sinh
(

6η + y
)

.

F̃
(

η, y, τ
)

=
4

3
� sinh2

(

η + y
)

− 0.859706τ 0.75�4(4 sinh
(

2η + y
)

− 5 sinh
(

4η + y
)

)C1 sinh
(

2η + y
)

+ C2� sinh
(

4η + y
)

+ C3� sinh
(

6η + y
)

.

F̃
(

η, y, τ
)

=
4

3
� sinh2

(

η + y
)

− 0.891559�4τ 0.5
(

4 sinh
(

2η + y
)

− 5 sinh
(

4η + y
))

C1 sinh
(

2η + y
)

+ C2� sinh
(

4η + y
)

+ C3� sinh
(

6η + y
)

.

Table 2.   Auxiliary convergence control parameters for different values of α for FZK(2,2,2).

α C1 C2 C3

0.5 0.1826815783837175 0.00000056068402941548  − 0.000004025045628479711

0.75  − 0.08716270059116164 0.29147579431155546  − 0.9634327396323357

1.0 0.1819133199878481 0.000035416800066512345  − 0.0000039960642082082315
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FZK(2,2,2) equation at α = 1 while Fig. 5 is the residual obtained by the proposed method for α = 0.75 to frac-
tional order FZK(2,2,2) equation.

Tables 1, 2, show the mathematical values of convergence control parameters, C1,C2,C3 for different values 
of α for FZK(3,3,3) and FZK(2,2,2) equations. Table 3, presents the comparison of absolute errors found by the 
suggested technique with PIA and RPS methods for FZK(2,2,2). Similarly, Table 4, shows the absolute errors 
obtained by the proposed method in comparison with PIA and RPS approaches for FZK(3,3,3) equation.

Tables 3 and 4 shows the comparison of absolute errors obtained by the OHAM-2 and PIA and RPS methods 
for FZK(3,3,3) and FZK(2,2,2), respectivley.

(a). Approximate solution 

(b). Exact solution. 

Figure 1.   3D plots found by the suggested technique for FZK(3,3,3) at y = 0.1 and α = 1.

Figure 2.   2D plots obtained by the planned process for FZK(3,3,3), Residual α = 0.5 at y = 0.2 and τ = 0.1.
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Conclusion
The OHAM-2 methods have been applied successfully to fractional order fractional Zakharov-Kuznetsov equa-
tions. The numerical results carried out through the proposed method have been verified by 3D and 2D graphs. 
From the obtained results, it is clear that the fractional-order results are convergent to integer-order solutions 
as fractional orders are convergent to integer order. The suggested technique has a higher grade of accurateness 
as associated with the other approximate analytical methods. From numerical results, Nonlinear differential 
equations are reduced to only two linear ones. The construction of the linear operators and the auxiliary func-
tions is done originally. We have great freedom to choose the numbers of the auxiliary functions and the optimal 
convergence-control parameter. The means least squares approach is used to calculate the parameter values. Our 
method leads to a very accurate result using only one approximation and allows us to control the convergence of 

Figure 3.   2D surfaces obtain for the approximate solution of FZK(3,3,3) for altered values of α when 
τ = 0.1, y = 0.2.

(a). Aprroximate solution 1.0

(b). Exact solution 1.0

Figure 4.   2D plots obtained by the suggested process for FZK(2,2,2) at y = 0.2 and τ = 0.1.
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the solution. We remark the construction and the properties of the linear operator L. Our procedure is effective 
and explicit and can be applied to any nonlinear dynamical system in the future36–42.

Data availability
All data generated or analyzed during this study are included in this published article. The datasets used and/or 
analysed during the current study available from the corresponding author on reasonable request.
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Figure 5.   2D surface shows the Residual obtain by the projected mode for FZK(3,3,3) for dissimilar values of α 
when τ = 0.1, y = 0.2.

Table 3.   Comparison of absolute errors obtained by the OHAM-2 and PIA and RPS methods when α = 1.0 
and � = 0.001 for FZK(3,3,3).

τ η y OHAM-2 Exact Abs error VIM28 Abs error RPS28 OHAM-I43 Abs error OHAM-2

0.2 0.1 0.1 0.0000500092 0.0000499592 5.00091 ×10−5 3.85217 ×10−7 4.9951 ×10−8 4.9952 ×10−8

0.3 0.1 0.1 0.0000500091 0.0000499342 5.00091 ×10−5 5.75912 ×10−7 7.49279 ×10−8 7.49279 ×10−8

0.4 0.1 0.1 0.0000500091 0.0000499092 5.00091 ×10−5 7.65352 ×10−7 9.99037 ×10−8 9.99039 ×10−8

0.2 0.6 0.6 0.000302004 0.000301953 3.02003 ×10−4 4.66389 ×10−5 5.08987 ×10−8 5.09189 ×10−8

0.3 0.6 0.6 0.000302004 0.000301927 3.02003 ×10−4 6.86314 ×10−5 7.63479 ×10−8 7.63782 ×10−8

0.4 0.6 0.6 0.000302004 0.000301902 3.02003 ×10−4 8.99046 ×10−5 1.01797 ×10−7 1.01837 ×10−7

0.2 0.9 0.9 0.00045678 0.000456728 4.56780 ×10−4 5.14241 ×10−4 5.212227 ×10−8 5.21609 ×10−8

0.3 0.9 0.9 0.00045678 0.000456702 4.56780 ×10−4 7.48450 ×10−4 7.81839 ×10−8 7.82412 ×10−8

0.4 0.9 0.9 0.00045678 0.000456676 4.56780 ×10−4 9.89139 ×10−4 1.04345 ×10−7 1.04321 ×10−7

Table 4.   Comparison of absolute errors obtained by the OHAM-2 and PIA and RPS methods when α = 1.0 
and � = 0.001 for FZK(2,2,2).

τ η y OHAM-2 Exact Abs error PIA28 Abs error RPS28 OHAM-I43 Abs error OHAM-2

0.2 0.1 0.1 0.0000540482 0.0000539388 3.85217 ×10−7 3.85217 ×10−7 2.71884 ×10−8 1.09476 ×10−7

0.3 0.1 0.1 0.0000540482 0.0000538841 5.75911 ×10−7 5.75912 ×10−7 4.07394 ×10−8 1.64171 ×10−7

0.4 0.1 0.1 0.0000540482 0.0000538294 7.65359 ×10−7 7.65352 ×10−7 5.42615 ×10−8 2.18837 ×10−7

0.2 0.6 0.6 0.00303796 0.00303651 4.66337 ×10−5 4.66389 ×10−5 6.83433 ×10−6 1.45741 ×10−6

0.3 0.6 0.6 0.00303796 0.00303578 6.86056 ×10−5 6.86314 ×10−5 1.02517 ×10−5 2.18589 ×10−6

0.4 0.6 0.6 0.00303796 0.00303505 8.98263 ×10−5 8.99046 ×10−5 1.36692 ×10−5 2.91423 ×10−6

0.2 0.9 0.9 0.0115419 0.011537 5.12131 ×10−4 5.14241 ×10−4 9.14704 ×10−5 4.87687 ×10−6

0.3 0.9 0.9 0.0115419 0.0115345 7.38186 ×10−4 7.48450 ×10−4 1.37206 ×10−4 7.31457 ×10−6

0.4 0.9 0.9 0.0115419 0.0115321 9.57942 ×10−4 9.89139 ×10−4 1.82943 ×10−4 9.75178 ×10−6
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