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New optimum solutions

of nonlinear fractional acoustic
wave equations via optimal
homotopy asymptotic method-2
(OHAM-2)

Laiq Zada?, Rashid Nawaz?!, Wasim Jamshed?**, Rabha W. Ibrahim?, El Sayed M. Tag El Din*,
Zehba Raizah® & Ayesha Amjad®

The second iteration of the optimal homotopy asymptotic technique (OHAM-2) has been protracted
to fractional order partial differential equations in this work for the first time (FPDEs). Without any
transformation, the suggested approach can be used to solve fractional-order nonlinear Zakharov-
Kuznetsov equations. The Caputo notion of the fractional-order derivative, whose values fall within
the closed interval [0, 1], has been taken into consideration. The method’s appeal is that it provides
an approximate solution after just one iteration. The suggested method’s numerical findings have
been contrasted with those of the variational iteration method, residual power series method, and
perturbation iteration method. Through tables and graphs, the proposed method’s effectiveness and
dependability are demonstrated.

Newly, there has been increasing attention to consuming fractional calculus to describe complex systems. Frac-
tional derivatives are useful tools to model nonlinear phenomena since they allow us to capture the memory
effects inherent in real systems. For example, the Riemann-Liouville derivative is widely used to model the
evolution of viscoelastic materials. Fractional calculus also allows us to model the dynamics of complex systems
that exhibit long-range interactions. In this regard, many researchers have well studied various schemes and
aspects of partial differential equations (PDEs) and fractional order partial differential equations (FPDEs)! .
However, recently much consideration has been paid to obtaining the solution of fractional models of physical
concentration. Considering the views, the computational complexity involved in fractional order models is very
crucial and it is difficult in solving these fractional models. Sometimes the exact analytical solution for each FPDE
cannot be obtained using traditional schemes and methods. However, there are some schemes and methods
that have proved efficient in obtaining an approximation to the solution of fractional problems. Among them,
we draw the attention of readers to these methods and schemes®~'® which are used successfully. The Kerteweg
de-Vries (KdV) equations play an important act in the application Zakharov-Kuznetsov (ZK) equations that
analyzed the ionic-acoustic waves in magnetized plasma. It is an investigation of coastal waves in an ocean. The
ZK equation was primarily found in the investigation of weak non-linear ion-acoustic waves in greatly attract
losses plasma in two dimensions.

Recent works including the OHAM-2 are given by many researchers. Hashimet al.'” considered OHAM-2 for
resolving numerous simulations of first-order fuzzy fractional IVPs. Olumide et al.'® studied the efficient result
of the fractional-order SIR epidemic exemplary of childhood diseases with OHAM-2. Ahsanet al.'® presented a
numerical result of a scheme of fuzzy fractional order Volterra integro-differential equation utilizing OHAM-2.
Alshbool et al.?* assumed OHAM-2 to study the fractional Bernstein functioning matrices of Caputo types for
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resolving integro-differential equations. Hussain et al.?! employed OHAM-2 with special types of polynomials

to join the system of Boussinesq equalities. Moreover, the HPM is utilized for many applications in fractional

calculus. Peker and Cuha?? applied HPM in the Kashuri Fundo transform of fractional heat transfer and porous

media equations. Abdul-Rahim et al.”* analyzed the fractional epidemic model via HPM. Qayyum et al.** con-

sidered the method HPM as an application of arbitrary order film movement of the Johnson-Segalman liquid

system. Dubey and Chakraverty® presented an optimal solution for fractional wave equations by employing

HPM. Chen and Liu®® used the local HPM for resolving coupled Sine-Gordon formulas in the fractal Domain.
In the present work, we investigated the following fractional ZK equation of the form,

DYF + 0(F") + Y (Fppy + p(ER)ypy =0,

where F = F (n, ¥ r) , o is the parameter describing the construction of the fractional differential (0 < o < 1),
and 0, ¥ and p are arbitrary parameters’. P, Q, and R are integers, responsible for the behavior of weak non-linear
ion acoustic waves in a plasma containing cool ions and warm isothermal electrons in the being of a systematic
magnetic field”.

The literature has utilized a variety of strategies to find both exact and approximative solutions to the ZK
problem. One of these is the Perturbation Iteration Method (PIA) algorithm, which is used to solve the fractional
order ZK problem in series?®. For a fractional system of nonlinear ZK equations, Prakash et al. used the Sumudu
transform approach and a new iterative strategy”. Eslami et al. examined the exact solutions to the modified
ZK equation in®.

The second iteration of the optimal homotopy asymptotic mode was utilized in a similar way to establish a
rough solution to the fractional order ZK equation. V. Marinca introduced the Optimal homotopy asymptotic
method of the first version and second version namely called OHAM-1 and OHAM-II and used it for various
differential equations in the series of papers®'~*. Later, Liaqat Ali et al. used the suggested approach to solve a
fluid mechanics-related differential equation®. The reason behind the organization of this research work is in
the view of the above-mentioned literature:

® Fractional order nonlinear Zakharov-Kuznetsov equations are considered to study with the help of the second
version of the optimal homotopy asymptotic method (OHAM-II) which is not explored yet in the available

literature.

® The proposed method (OHAM-II) has never been used before for any type of fractional order model in the
literature.

e The proposed method provides a series solution after only one iteration for the FZK equation which is the
beauty of this method.

® According to numerical findings, OHAM-2 is the greatest at producing better and more accurate outcomes.
It takes a few steps and leads to an almost precise result.

The remaining paper is organized as follows: In “Preliminaries” section, we introduce some basic definitions
and properties of fractional Calculus. We will use them throughout the paper. In “Methodology" section, we give
the theoretical foundation of the proposed method. In “Application of the OHAM-2” section, two examples are
presented to illustrate the effectiveness of the proposed method. Finally, we complete the paper in “Conclusion”
section by introducing the conclusion of our results.

Preliminaries
In this portion of the research article, some fundamental meanings of fractional calculus, are presented. Like

Riemann-Liouville, Grunwald Letnikov, Caputo, etc., which are related to our analysis.

Definition 2.1 R-L fractional integral

g ifa=0
o — n
g = iy S —v)*g(w)dv if a > 0,
0

hence I denotes the gamma function defined as follows,
oo
Fw) = fe " dy weC,
0

Definition 2.2 The subsequent mathematical statement yields the Caputo operator of order for a fractional deriva-
tive,forn e N,n > 0,g € C,,7 > —1.

D% (n)

oT® 9%g(n)
81—0( b

_ 9% _ {I"_D‘[W], imh—1<a<nneN

Lemma23 Ifn—1 <o <nwithn € Nand g € C,with t > —1, then
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g = 1"Pg(m), B.a=0.

, rgs+1
I*n* = “+D atl a>0,A>—-1,n7>0.

T Ta4Ai+1)
-1
ID%(n) = ()—nz: k(0+)n—k forn>0n—1<a<n
gmn) =8 : g K’ n > =n
=0

One can get more details regarding fractional derivatives in'>.

Methodology
In this section, the second version of the optimal homotopy asymptotic method has been protracted to fractional
order PDEs. For this purpose, we consider the general nonlinear fractional order PDEs as,

0%F(n, 1)

aea  — AFM.D) +ga >0, ey
Subject to I.C
0*~*F(1,0) 9*"F(n,0)
w :hK(T])(K 20,1,2, ...... ,n_l),w :O,Vl: [O[] (2)
9%F(n,0) d"F(n,0)
T :gl((n)' (K 20,1,2, ...... ,n— 1), T :0, n= [(X] (3)
)

% is the Caputo or Riemann-Liouville fractional derivative operator. A is the differential operator and g(, 7)

ig the source term. The homotopy for (1) is,¢(n,r;p) Q2 x[0,1] > R
%p(n, %Pp(n,
(1—p) (% —g(n,r)) —H(n,p) (% — (A(¢(n,7) +g(n,r)) =0, (4)

In (4), the auxiliary function H(n, ) and embedding parameter p can be explored subsequently. We have
added to Taylor’s series about p by

¢(1,7,C) = Fo(n,v) + »_ Fi(n,7,Cop*  i=1,23,... (5)
k=1

by Putting p = 1in the above equation, we have

o0
F(n,7,C) = Fo(n. ) + ) _Fk(n,1,C)  i=12,3,... ©)
k=1

Putting Eq. (6) in Eq. (4) and comparing the co-efficient of the same powers of, p and omit the remaining.
Now the zero-order solution is obtained from the following,

3%Fo(n, T)

0

pl: 2 g,

at¥ £ @

and the first-order solution is obtained from (8)

0°Fi(n,7,C
L 1;”%” = H(n, 7, CON(Fo(n, 7)), (8)

Before applying I* the above zero-order and first-order problems, firstly, we discuss the auxiliary function
present in the first-order problem. The nonlinear operator is typically expressed as:

N(Fo(n, 7)) = > hi(n, )g(n), 9)
i=1

where h; and g(n) and are known functions that are dependent upon the function N.

Remark 3.1 Where H(n, t, C;) random supplementary functions contingent on the initial approximation Fy(n, T)
and a number of the unidentified parameters C;,i = 1,2, 3...

Remark 3.2 The supplementary functions H(n, T, C;) is not unique and is of the same form like Fo(n, T) or the form
of N(Fo(n, 7)) or the combination of both Fy(n, t) and N (Fy(n, 7)).
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Remark 3.3 IfFo(n, ©) or N(Fo(n, T)) a polynomial function like H(n, v, C;) = Cin + Can?...and if a trigonometric
functions then Cysinh(B) + Cysinh(2p).... If in special case N[Fy(n, )] = 0 then it is an exact solution of (1).

Ritz technique, association mode, Galerkins’ technique, or least square process, by reducing the square resid-
ual error, can be used to determine the beliefs of unidentified parameters C;.

T

J(C) = ,OféRz(n, t; C)dndr, (10)

where R is the residual assumed as follows,

0*F(n, 1)

R(TLT’ Cl) = 97

A(F(, 7)) —g). (11)

Remark 3.4 Our suggested approach is independent of any model’s small or large parameters. Our effective tool
has an auxiliary function that enables us to easily control and fine-tune the series solution’s convergence after just
one iteration.

Application of the OHAM-2
To expose the effectiveness and accuracy of the proposed method, we take the nonlinear high-dimensional FZK
equations. For most of the computational work, we used the Mathematica 11 software package.

Example 1. Consider the nonlinear fractional order FZK (3,3,3) equation in the following form,

Z)ozFa(Z;y,r) + E)F3(6;7n,y,r) n 233F38(:3,y,t) n 233FZ£]Z,Z)/J) -0, 0O<a<1 (12)
Subject to I.C
3, . 1
F(n,9,0) = gﬁsmh(g(n +y)>, (13)
where 1 is an arbitrary constant.
3*F(n,y,7)
L(F(ny.c)) = SE0T)
aF3 (n,y,t) F (n,y, 1:) 3F (n,y,r) (14)
N(F(n,y,r)) = on +2 PR +2 oy ,
g(ny.t) =0,

Using OHAM-2 formulation, we get the Fy (1, y, 7 ) from (7)

3*Fo(n.y,7)

=0, 15
P (15)

Apply the inverse operator I* with initial condition both sides of (15), we have the following solution,

3. 1
Fo(n,y,r) = E/lsmh(g(n —l—y)>. (16)
By substituting (16) into (14), the nonlinear operator becomes,
3
N(Fo(n.y:7) = —),3cosh<7]7 +)/) (9cosh<777 +)/> — 7>. (17)
16 6 3
The first approximation Fy (1, y, 7 ) is given by (9),
3*Fi(n.y,7)
— = Hyn GN[Fo(n.y.7)]. (18)

The optimal supplementary function H is selected in the custom

H(n,y,r,Cj) = Clcosh(%) + CzSinh(?) + C3cosh(¥> + sinh(%). (19)

Using (17) and (19) into (18), with using I* both side of (18) we get,

Scientific Reports |

(2022) 12:18838 | https://doi.org/10.1038/s41598-022-23644-5 nature portfolio



www.nature.com/scientificreports/

o C C; G

0.5 —0.34863102171153154 | 0.26590456732017476 —0.7006972064317305
0.75 —0.08716270059116164 | 0.291475794311555466 | —0.9634327396323357
1.0 —0.18025964484745524 | 0.2824153038769191 —0.8698875451125583

Table 1. Auxiliary convergence control parameters for different values of « for FZK(3,3,3).

1

16 (1 + o)

31%) cosh (%) (—7 + 9cosh <”T+Y>
Fi(n.y7) = )

C; cosh (% +Cs <—7 + 9 cosh "%ry)) (20)

sinh (%) + C, sinh (’7”)

By adding (16) and (20), we obtain the first order approximate result for FZK(3,3,3) by the following
expression,

F(n.y,t) = Fo(my.7) + Fi(n..7,Ci). (1)
With the domain ) = [a, b] = [0, 1] the residual will be as

80‘15(17,)/,1) 31:“3(17,)/,1) 33F3(n,y,r) 33P3(n,y,t)
R(n.y.7) = pyrs + o +2 o +2 I

For finindg the C;, we used the least sqarue method. Using the mathematical tenets of convergence control

parameters from Table 1 and put in (21), we develop the first order approximate result for altered values of «
for FZK (3,3,3).

Fora = 1.0

~ 3
F(U:}’;r) = — 37 9cosh 1 +y — 7 Jcosh m + Asmh 1 +)’ 0.282415sinh N +y
16 3 6 2 6 3
+ smh('7 ; J ) - 0.869888cosh(¥) 0. 18026cosh(n - 24 )

Fora = 0.75

F(ny,7) = 0.2040123%7 (9 cosh ( ) ) (’7 ng) + 2“mh (%)

(sinh (” :y> — 0.963433 cosh ( . y> — 0.0871627 cosh ( ng) 40.291476 sinh (?))

Fora = 0.5

. 3
F(n,y,7) = 02115712%7%% (9cosh (%) ) osh (’7 ng) + 2 Asinh (%)

(sinh (” ng) — 0.700697 cosh (%ﬂ) — 0348631 cosh ("—?) 40.265905 sinh (" ;ry>>

Example 2. Deliberate the subsequent FZK (2,2,2) equation as

0°F(n,y,7)  0F*(n.yt)  19°F(ny,7)  10°F(n.p:7)
ae T an '8 a8 any?

=0, O<ac=<l (22)

with initial condition

4
F(n,y,0) = g/1sinh2(r; +7), (23)

where 4 is an arbitrary constant. For special case, when o = 1.0 the exact solution for FZK(2,2,2) is

4
F(n.y,7) = gi sinh® (n + y — 7). (24)
The initial approximate Fy (1, y, 7 ) is obtained from (7)

3*Fo(n.y,7)

=0, 25
5o (25)
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o C C; G

0.5 0.1826815783837175 0.00000056068402941548 —0.000004025045628479711
0.75 —0.08716270059116164 | 0.29147579431155546 —0.9634327396323357

1.0 0.1819133199878481 0.000035416800066512345 | —0.0000039960642082082315

Table 2. Auxiliary convergence control parameters for different values of « for FZK(2,2,2).

Apply the inverse operator, I, with initial condition to (25), we have the following solution

4
Fo(n,y,r) = gﬂ, sinh? (77 +y). (26)

By substituting (26) into (22), the nonlinear operator becomes,

8
N(Eo(n,y,7) = 5/12(5 sinh (4(n +y)) — 4sinh (2(n +))). (27)
The first approximation Fy (1, y, 7 ) is given by (10)

3*Fi(n.y,7)

Sa = H(n,y,7,C))N[Fo(n.y.7)]. (28)

The optimal supplementary function H is chosen in the form

8
H(n,y, T, Cj) = 522 (C1 sinh (2(77 +y)) + CyAsinh (4(77 +y)) + CsAsinh (6(77 +y))). (29)
using (27)and (29) into (28), with using I* both side of (28) we get,

1 641%2* (—4sinh (2(n +y)) + 5sinh (4(n +y)

BL(12:%) = Gir Ty | (G sinh (2(n + ) + Cassinh (4(n +y)) + Cosinh (6(n +5))). | G0

By adding (26) and (31), we obtain the first order approximate result for FZK(2,2,2) by the succeeding
appearance,

F(Tb}’,f) = Fo(’?,y) T) + F (77,)’,13 CI) (31)

Following the procedure described in Sect. "Preliminaries” on the domain = [4, b] = [0, 1] the residual
will be as

3F(n,y.7)  aF*(n.y7) N 19°F (1.y,7) N 19°F (1.y,7)

Ry )=
(n.57) ot on 8 on? 8 any?

For finindg the C;, we used the least sqarue method. Using the mathematical values of convergence control
parameters from Table 2 and put in (31), we get the first order approximate solution for different values of « for
FZK (2,2,2).

Fora =1.0

5 4, 64 ., .
F(n.y.7) = §As1nh (n+y) - ﬁ)" 7(4sinh (2 +y) — 5sinh (47 +y))
Cysinh (25 + y) + CyAsinh (4 + y) + CsAsinh (61 + y).
Fora =0.75

F(ny,7) = gx sinh? (n + y) — 0.859706t%7>/* (4 sinh (21 + y)
— 5sinh (47 + y))Cy sinh (27 + y) + Cy/Zsinh (47 + y) + CsAsinh (61 + y).
Fora =0.5

F(n,y, 1:) = g/'t sinh? (17 +y) —0.89155914¢%> (4 sinh (Zn +y) — 5sinh (4n +y))
Cysinh (21 + y) + CaZsinh (47 + y) + CsAsinh (67 + y).

Figure 1 shows 3D plots approximate verses exact solutions for the nonlinear fractional order FZK(3,3,3)
equation when o = 1,y = 0.1. Figure 2, displays the 2D schemes of the residual, obtained by the suggested
technique for o = 0.5 to fractional order FZK(3,3,3) equation. Figure 3, displays the 2D designs of approxi-
mate solutions obtained by the suggested mode for different values of « while 7 = 0.1, y = 0.2 to fractional
order FZK(3,3,3) equation. Figure 4, shows the 3D plots obtained by the suggested process to fractional order
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(a). Approximate solution

(b). Exact solution.

Figure 1. 3D plots found by the suggested technique for FZK(3,3,3) at y = 0.1and o = L

5.x108}

4.x107%

3.x1078

Residual

2.x107%

1.x10%

Figure 2. 2D plots obtained by the planned process for FZK(3,3,3), Residual @ = 0.5at y = 0.2and t = 0.1.

FZK(2,2,2) equation at @ = 1while Fig. 5 is the residual obtained by the proposed method for @ = 0.75 to frac-

tional order FZK(2,2,2) equation.

Tables 1, 2, show the mathematical values of convergence control parameters, Cy, C;, Cs for different values
of o for FZK(3,3,3) and FZK(2,2,2) equations. Table 3, presents the comparison of absolute errors found by the
suggested technique with PIA and RPS methods for FZK(2,2,2). Similarly, Table 4, shows the absolute errors

obtained by the proposed method in comparison with PIA and RPS approaches for FZK(3,3,3) equation.

Tables 3 and 4 shows the comparison of absolute errors obtained by the OHAM-2 and PIA and RPS methods

for FZK(3,3,3) and FZK(2,2,2), respectivley.
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0.0010
0.0008
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0.0002 |

0.0000 |
0 1 2 3 4

Figure 3. 2D surfaces obtain for the approximate solution of FZK(3,3,3) for altered values of @ when
=01,y =02

(a). Aprroximate solution a = 1.0

(b). Exact solution a = 1.0

Figure 4. 2D plots obtained by the suggested process for FZK(2,2,2) at y = 0.2and r = 0.1

Conclusion

The OHAM-2 methods have been applied successfully to fractional order fractional Zakharov-Kuznetsov equa-
tions. The numerical results carried out through the proposed method have been verified by 3D and 2D graphs.
From the obtained results, it is clear that the fractional-order results are convergent to integer-order solutions
as fractional orders are convergent to integer order. The suggested technique has a higher grade of accurateness
as associated with the other approximate analytical methods. From numerical results, Nonlinear differential
equations are reduced to only two linear ones. The construction of the linear operators and the auxiliary func-
tions is done originally. We have great freedom to choose the numbers of the auxiliary functions and the optimal
convergence-control parameter. The means least squares approach is used to calculate the parameter values. Our
method leads to a very accurate result using only one approximation and allows us to control the convergence of
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1.5x10%

Residual

Figure 5. 2D surface shows the Residual obtain by the projected mode for FZK(3,3,3) for dissimilar values of o

1.x1078

5.x107

whent = 0.1,y = 0.2.

T n |y | OHAM-2 Exact Abs error VIM?® | Abs error RPS?*® | OHAM-I* Abs error OHAM-2
02 |01 |0.1 |0.0000500092 |0.0000499592 |5.00091x10~> 3.85217x1077 | 49951 x10~8 4.9952 1078

0.3 |01 |0.1 |0.0000500091 |0.0000499342 |5.00091 x10~> 5759121077 | 7.49279x107% | 7.49279x10~8

0.4 |01 |01 |0.0000500091 |0.0000499092 |5.00091 x10~> 7.65352x1077 | 9.99037 x10™% | 9.99039 1078

0.2 |0.6 |0.6 |0.000302004 |0.000301953 | 3.02003 x10~* 4.66389x107° | 5.08987 x107% | 5.09189 1078

0.3 |0.6 |0.6 |0.000302004 |0.000301927 | 3.02003 x10~* 6.86314x10™> | 7.63479x107% | 7.63782x1078

04 |0.6 |0.6 |0.000302004 |0.000301902 | 3.02003 x10~* 8.99046 x10~° 1.01797 x10~7 | 1.01837 x10~7

02 |09 |09 |0.00045678 0.000456728 | 4.56780 x10~* 514241 x107% | 5.212227x107% | 5.21609x10%

03 |09 |09 |0.00045678 0.000456702 | 4.56780 104 7.48450 1074 | 7.81839x107% | 7.82412x1078

04 |09 |09 |0.00045678 0.000456676 | 4.56780 x 104 9.89139x10™% | 1.04345x1077 | 1.04321x1077

Table 3. Comparison of absolute errors obtained by the OHAM-2 and PIA and RPS methods when o = 1.0
and A = 0.001 for FZK(3,3,3).

T 7 |y |OHAM-2 Exact Abs error PIA* | Abs error RPS*® | OHAM-I* Abs error OHAM-2
02 |01 |0.1 |0.0000540482 |0.0000539388 |3.85217x1077 |3.85217x1077 |2.71884x107% | 1.09476x10~7
0.3 0. |0.1 |0.0000540482 |0.0000538841 |5.75911x1077 |575912x1077 | 4.07394x10~% | 1.64171x10~7
04 |01 |01 |0.0000540482 |0.0000538294 |7.65359x1077 |7.65352x1077 |5.42615x107% |2.18837x1077
02 |06 |0.6 |0.00303796 0.00303651 4.66337x107° | 4.66389x107° | 6.83433x107¢ | 1.45741 x107°
0.3 |0.6 |0.6 |0.00303796 0.00303578 6.86056 x10™> | 6.86314x107° 1.02517 107> | 2.18589 x10~°
04 |06 |06 |0.00303796 0.00303505 8.98263x107° | 8.99046 x10~° 1.36692 107> | 2.91423 x107¢
02 |09 |09 |0.0115419 0.011537 512131 x107% | 514241 x10™* | 9.14704x 107> | 4.87687 x107°
03 [09 |09 |0.0115419 0.0115345 7.38186 x10™% | 7.48450x10~* | 1.37206x10~* | 7.31457 x10~®
04 [09 |09 |0.0115419 0.0115321 9.57942x10™% | 9.89139x107* | 1.82943x10™* | 9.75178 x10~°®

Table 4. Comparison of absolute errors obtained by the OHAM-2 and PIA and RPS methods when o = 1.0
and A = 0.001 for FZK(2,2,2).

the solution. We remark the construction and the properties of the linear operator L. Our procedure is effective
and explicit and can be applied to any nonlinear dynamical system in the future®**2.

Data availability
All data generated or analyzed during this study are included in this published article. The datasets used and/or
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