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Conjugate heat transfer study

of various cooling structures

and sensitivity analysis of overall
cooling effectiveness

Runzhou Liu'3, Haiwang Li*3, Ruquan You'>", Yi Huang'? & Zhi Tao*3

The conjugate heat transfer of a turbine blade is influenced by several factors. To analyze the
influence of each factor, the published one-dimensional conjugate heat transfer model was improved
through theoretical analysis in this study. An overall cooling effectiveness equation containing three
dimensionless parameters (adiabatic film cooling effectiveness n, Biot number on the mainstream
side Bi,, and ratio between the heat transfer coefficients of the external and internal walls h,/h) was
obtained. The sensitivity of the overall cooling effectiveness ¢ to these three parameters was obtained
through a multi-parameter sensitivity analysis. The results showed that increasing n could improve

¢ the most effectively. The interactions between the dimensionless parameters were analyzed by
developing sensitivity charts. The results showed that increasing n from 0.4 to 0.5 could reduce

the sensitivity of ¢ to the other two parameters by approximately 15%, whereas increasing Bi; had
little effect on the sensitivity of ¢ to each dimensionless parameter. Increasing h /h; could improve

the sensitivity to . The above conclusions could also be applied to the plate film hole and plate
impingement effusion structures. The effects of different internal cooling structures and film hole
structures on the three dimensionless parameters were studied by performing numerical simulations,
which verified the accuracy of the one-dimensional conjugate heat transfer model in this study. The
results showed that the internal cooling structures had little effect on the distribution of n and Bi,. The
heat transfer coefficient on the coolant side could be effectively improved by installing film holes. The
film hole structures mainly affected ¢ by influencing the distribution of n.

Abbreviations

Bi Biot number (Bi=hd/k)
Diameter (mm)

Heat transfer coefficient (W/(m?K))
Blowing ratio

Pressure (Pa)

Wall heat flux (W/m?)

Thermal conductivity (W/m-K)
Reynolds number (Re=puD/u)
Thickness (mm)

Temperature (K)

Velocity (m/s)

Direction of the streamwise
Direction of the spanwise
Dimensionless distance
Direction of the vertical
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Greek symbols

a Film hole inclined angle (°)

7l Adiabatic film cooling effectiveness
¢ Overall cooling effectiveness

p Density (kg/m?)

0 Dimensionless temperature (6= (600 - T)/(600 - 303))
7 Dynamic viscosity (Pa s)

X Internal coolant warming factor
Subscripts

aw Adiabatic wall

c Coolant

c,exit  Fluid at film hole exit
¢,inlet  Fluid at coolant inlet

film Film

gap Gap distance
i Internal

imp Impingement
g Mainstream
w Wall

The thrust demand of modern aero-engines is increasing. According to the mechanism of gas turbines, an
important method of improving thrust is increasing the turbine inlet temperature. However, a higher turbine
inlet temperature presents a significant challenge for turbine blade design. The required turbine inlet tempera-
ture increase cannot be achieved simply by increasing the temperature tolerances of the materials. Therefore,
efficient turbine blade cooling systems have become of great interest in the field of turbine blade heat transfer.

At present, turbine blade cooling systems are mainly divided into internal and external cooling systems. To
evaluate external film cooling, the adiabatic film cooling effectiveness 7 is given by
Ty~ Taw
n= T,— T, (1)

Studies on film cooling have mainly been focused on film hole structures, the aerodynamic parameters of
the mainstream and coolant, etc. Zeng et al.! investigated the influence of the density ratio on # by performing
a numerical simulation. Gritsch et al.>* examined flat film hole structures, and their results showed that the
mainstream Mach number had little influence on the film cooling effectiveness. Ammari et al.* showed that the
density ratio of the coolant and mainstream had obvious effects on the heat transfer coeflicient. Drost et al.’
studied the influence of the mainstream Reynolds number Re, and turbulence intensity on film cooling using
transient liquid crystals. With the development of film-cooling technology, shaped holes have gradually been
applied in turbine blade design. Schulz et al.>® studied the film cooling effectiveness of cylindrical holes, fan-
shaped holes, laidback fan-shaped holes, and laidback holes under different mainstream Mach numbers and
turbulence intensity by conducting experiments and numerical simulations.

Impingement jets, serpentine passages with ribs, and pin-fins are the most commonly used internal cool-
ing structures’. Impingement jets constitute the most effective means of enhancing heat transfer; however, the
complexity of the structure increases the processing difficulty and weakens the strength. Therefore, impinge-
ment jets are generally used to cool the leading edges of guide vanes. To improve the heat transfer coefficient,
arib turbulator is usually arranged in a serpentine passage. Rib-fins are typically applied at the trailing edge to
improve the strength and heat transfer. Han et al.!""* performed detailed studies of typical impingement jets,
rib turbulators, dimples, and novel internal cooling structures. In 2014, Wright et al.'* summarized the internal
cooling results of the past decade and introduced new cooling design concepts.

The adiabatic film cooling effectiveness can be used to evaluate the external film cooling, and the Nusselt
number and pressure-loss coefficient can be employed to evaluate the internal cooling structure. Although the
above parameters can be utilized to evaluate film cooling and internal cooling, they cannot reflect the interac-
tion between the two cooling systems or the conjugate heat transfer. The temperature of the blade surface is an
important concern in turbine blade cooling systems and a direct reflection of conjugate heat transfer. The overall
cooling effectiveness ¢ is a dimensionless parameter that represents the blade surface temperature, which can
provide a direct reference for engineers. ¢ is defined as follows:

T, —T
o= @
g c

The overall cooling effectiveness considers the coupled effects of external film cooling, solid heat conduction,
and internal cooling, which is of great significance in the study of turbine blade heat transfer.

Bohn et al.'>'¢ studied the overall cooling effectiveness of a flat-film hole model by performing a numerical
simulation. The maximum turbine inlet temperature could reach 2000 K under actual engine conditions; there-
fore, it is difficult to conduct actual engine experiments under laboratory conditions. Hence, matching the
experimental results obtained under laboratory conditions with those acquired under actual engine conditions
is the focus of current studies. Bogard et al.'””~? made a significant contribution to the matching principle of ¢.
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Figure 1. Schematic diagrams of cooling plate. (a) Film hole cooling plate; (b) Impingement effusion cooling
plate.

The authors proposed a theory of dimensionless parameters that influence ¢ by establishing a one-dimensional
conjugate heat transfer model. The results showed that the Biot number Bi,, heat transfer coefficient ratio hg/ h;,

. . . . . . Te—Ty,i
adiabatic film cooling effectiveness #, and internal coolant warming factor ( iﬁn’ ) all affected the overall cool-

ing effectiveness. Bogard et al.' also experimentally studied the overall cooling effectiveness of the leading-edge
region, and discussed how to match Bi, and the heat transfer coefficient. Meanwhile, Xie et al.?’~? obtained the
matching principle of overall cooling effectiveness under different conditions by analyzing typical turbine blade
cooling structures and verified it through numerical simulations and experiments. The results showed that
matching the temperature ratio and thermal conductivity was the most accurate method of obtaining experi-
mental results under low-temperature conditions when the Reynolds numbers of the mainstream and coolant
were similar. Chavez et al.?** studied the effects of the mainstream flow angle and arrangement of film holes on
¢ after matching Bi,. A one-dimensional conjugated heat transfer model was used to predict ¢ accurately.
Thus, many scholars have investigated the conjugate heat transfer of turbine blades. Their research has mainly
involved the matching principle between laboratory and actual engine conditions and the effects of different
cooling structures on ¢. However, most studies have only investigated the effects of geometric and aerodynamic
parameters on ¢ after matching Bi, or temperature ratio. The aerodynamic and geometric parameters are very
complex and depend on the actual conditions of the turbine blades. After changing one parameter, ¢ also changes.
Therefore, the coupled mechanism of film cooling, solid heat conduction, and internal cooling on ¢ cannot be
obtained simply by studying the effects of the aerodynamic or geometric parameters. In this study, ¢ was sim-
plified to an equation containing three dimensionless parameters by improving the published one-dimensional
conjugate heat transfer model. These three dimensionless parameters are the adiabatic film cooling effectiveness
(17), Biot number on the mainstream side (Bi,), and heat transfer coeflicient ratio (hg/h;), which are related to the
film cooling, solid heat conduction, and internal cooling, respectively. Sensitivity analysis was conducted to obtain
the coupled effects of these three parameters on ¢. Subsequently, the effects of different aerodynamic parameters
and cooling structures on the three dimensionless parameters were studied by numerical simulation. Finally, the
accuracy of the improved one-dimensional conjugate heat transfer model was verified through numerical simula-
tion. In this study, three dimensionless parameters are constructed between the overall cooling effectiveness and
aerodynamic/geometric parameters, which makes the investigation of conjugate heat transfer more systematic. At
the same time, this study also verifies the accuracy of one-dimensional conjugate heat transfer model. The results
show that the model and sensitivity charts can play an auxiliary role in the early stage of turbine blade design.

Analogy theory analysis
One-dimensional conjugate heat transfer model. Film cooling and impingement effusion are two
common cooling methods used in current turbine blades. Therefore, a film cooling plate and an impingement
effusion plate were used as the analysis objects to establish a one-dimensional conjugate heat transfer model, as
shown in Fig. 1. Bogard et al.'” made outstanding contributions to a one-dimensional conjugate heat transfer
model and defined # as follows:

Ty — Taw

Nstandard = m, (3)
where T ,,;, denotes the coolant temperature at the outlet of the film hole. Evidently, T, ,;; cannot can be directly
applied in turbine blade design. First, T, ,,; changes with the geometry of cooling structures. Adopting this
parameter in the definition of 7 will negate the significance of modelling overall cooling effectiveness. Second, it
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was difficult to obtain the coolant temperature at the outlet of the film hole accurately. In contrast, T, (coolant
temperature at the inlet of the cooling structure) is commonly used in turbine blade design and does not change
with variations in the cooling structure. Therefore, # used in this study is defined as follows:

Ty — Taw

n= = - 4
Tg - Tc,inlet ( )

The boundary condition of the third kind is

aT
—i(a>w=h(Tw—Tf)> 5)

where 7 is the outer normal direction of the heat transfer surface, w is the surface of the solid material, and fis
the fluid. In this study, the heat transfer coefficient on the mainstream side £, is defined as follows:

qg = hg(Taw — Twy=t), (6)

where T, denotes the adiabatic wall temperature with film hole cooling. The heat transfer coefficient on the
coolant side (%;) is defined as

qi = hi<Tw,y:0 - Tc,inlet) (7)
According to the boundary conditions of the third type, the boundary conditions of the model in Fig. 1 are
as follows:
k%l}/:o = hi(lezo - Tc,inlet) (8)
_k%b/:t = hg(T|y:t - Taw) '
To simplify Eq. (8), the distribution of the dimensionless temperature can be expressed as
To — T
0= . ©)
Too - Tc,inlet

In addition, the dimensionless distance, Y =y/t, was defined. By substituting these dimensionless parameters
into Eq. (8), and combining it with Eq. (4), we obtain

30 hi ;i
v lv=0 = 7-Big(Oly=0 — 1)
{ Y he Ple (10)

20 |y—1 = Big(n — Oly=1)
The governing equation for the two-dimensional steady state without an internal heat source is given by
3T N T a1

axz - 9yt

In this study, the film hole plate and impingement effusion plate were simplified as one-dimensional heat
transfer models. Therefore, the governing equation is

T =0 12
By substituting Eq. (9) into Eq. (12), we obtain
%0
— = 13
72 (13)
The following conclusion can be drawn from Eq. (13):
8Gl = 89| = 0| 01 (14)
gy V=0 = Gy =1 = fly=1 Y=0-
By combining Egs. (10) and (14), we obtain
l1—n
Oly=1 =n+ (15)

1+ hg/hi + Big
When Y=1,0]|y—_;is

To = Tw

Oly=1= ————.
Too — Tc,inlet

(16)

Scientific Reports |  (2022)12:19271 | https://doi.org/10.1038/s41598-022-23948-6 nature portfolio



www.nature.com/scientificreports/

Parameter n Bi, hy/h;
Value 0.4 0.1 2

Table 1. Values of three dimensionless parameters under engine working conditions.

. o il 3 3
Partial derivative ﬁ ﬁ m
Value 0.677 —0.062 —0.062

Table 2. Specific partial derivatives with respect to each dimensionless parameter.

According to Egs. (2), (16) also represents the overall cooling effectiveness ¢. Therefore, the equation relating
overall cooling effectiveness ¢ to the three aforementioned dimensionless parameters (adiabatic film cooling
effectiveness 7, heat transfer coefficient ratio hg/ h;, and Biot number Big) under a one-dimensional steady state
without an internal heat source is given by

1—n

= g i+ Big

(17)

It can be observed from Eq. (17) that the overall cooling effectiveness is affected by three dimensionless
parameters, which also indicates that the temperature of the blade surface is affected by the coupling effect of
film cooling, solid heat conduction, and internal cooling. Compared with the previous study"’, after changing
the definitions of internal heat transfer coefficient (h;) and adiabatic film cooling effectiveness (), the coolant
warming factor y, which represented the coolant warming level from the inlet to the outlet of the film hole, was
excluded from the current equation. The definition of y is x = (Too — Teexit)/(Too — Tesintet) = N/Mstandard-
Therefore, the effect represented by y was included in the adiabatic film cooling effectiveness (7). This will make
the relationships between the temperature of the blade surface and film cooling, solid heat conduction, and
internal cooling clearer. The influence of each aspect will be corresponding to a dimensionless parameter (film
cooling (1), solid heat conduction (Bi,) and internal cooling (h,/h;)).

Sensitivity analysis of overall cooling effectiveness. Parameter sensitivity refers to the level at which
the dependent variable changes with respect to the independent variable. If the dependent variable changes
significantly, then the dependent variable has high sensitivity to and low robustness against this independent
variable. In other words, when the dependent variable changes to a certain value, high sensitivity means that the
independent variable needs to change less. To determine the effects of the independent variables on the depend-
ent variable, partial derivatives can be performed. The partial derivative of ¢ with respect to each dimensionless
parameter can be obtained by differentiating Eq. (17):

0 _yo 1 (18)
an 1+ hg/h; + Bi,
LU el
Big (1 hg/hi + Big)’ (19)
LA S 20
d(hg/hi) (14 hg/h; + Big)® (20)

Based on the simulation results obtained in this study and published previously?"?, the representative values
of each dimensionless parameter are listed in Table 1. According to Table 1 and Eqs. (18)-(20), we obtained the
specific partial derivative results shown in Table 2. The partial derivative with respect to # is positive, indicating
that it is positively correlated with ¢. Meanwhile, the partial derivatives with respect to Bi, and h,/h; are negative,
indicating that these two parameters are negatively correlated with ¢. The larger the partial derivative, the more
sensitive ¢ to this parameter. It can be observed that ¢ is the most sensitive to #, which indicates that improving
1 can most effectively improve ¢.

Through the above analysis, the relationship between ¢ and a single dimensionless parameter can be obtained.
In addition, it is necessary to determine whether there are interactions between the three dimensionless param-
eters. Therefore, sensitivity charts were developed for this study, as shown in Fig. 2, which presents the isosur-
faces of ¢ changes with three dimensionless parameters. When a dimensionless parameter remains constant,
the extracted 2-D sensitivity charts (contours of ¢) are shown in Fig. 3. As depicted in Fig. 3a, when ¢ increases
by 0.1, regardless of Bi,, # must be increased by 0.15. In other words, the curves are parallel to one another,
and the intervals between curves are equal. Thus,  does not affect the sensitivity of ¢ to itself. As shown by the
black arrow in Fig. 3b, if ¢ increases from 0.6 to 0.7, then # needs to be increased from 0.42 to 0.57 when hg/h,-
is 2. When h,/h; increases to 8, 7 must be increased from 0.55 to 0.66. The adiabatic film cooling effectiveness
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Figure 2. Isosurface of overall cooling effectiveness.
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Figure 3. Contours of overall cooling effectiveness.
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Sensitivity

n | hh; | Bi,
17 (1) - ! !
hfhi (1) |1 |1 1
Big (1) ~ |~ ~

Table 3. Multi-parameter sensitivity analysis results for overall cooling effectiveness. 1 (increase) | (decrease)

—(no effects) ~ (fewer effects).

must be increased by 0.15 and 0.11, respectively. Thus, the sensitivity of ¢ to 5 increases with increasing h/h;.
The slopes of all the curves in Fig. 3a are basically the same, indicating that Bi, hardly affects the sensitivity of ¢
to 1, which is because Bi, is much less than h/h;, and the effects on sensitivity can be ignored. Similarly, Fig. 3¢
demonstrates that Bi, does not affect the sensitivity of ¢ to itself or to h/h;. It can be seen from Fig. 3b that if ¢
increases from 0.6 to 0.7, h,/h; needs to be reduced by 1.0 when # is 0.4. When 1=0.5, h,/h; must be reduced by
2.5. Thus, an increase in # reduces the sensitivity of ¢ to h,/h;. The effects of 7 and h,/h; on Bi, are not evident in
Fig. 3, but the conclusions can be obtained from Egs. (18)-(20) and are summarized in Table 3.

The above analysis demonstrates that ¢ can be improved by improving 1 and reducing Bi, and h/h;. To keep
¢ constant, Bi, and h,/h; need to be reduced further with the increase of #, which makes the design and process
difficult. Therefore, these three dimensionless parameters must be properly selected to achieve the required
overall cooling effectiveness. In the early stage of turbine blades design, engineers can refer to Figs. 2, 3 to select
the appropriate dimensionless parameters. Next, the effects of the geometric and aerodynamic parameters on
the three parameters were studied by numerical simulation. The accuracy of the one-dimensional conjugate heat
transfer model was also verified.

Numerical simulation method

Numerical model and boundary conditions. In “One dimensional conjugate heat transfer model”
section, the flat-plate cooling structures were studied to obtain the relationship between the improved one-
dimensional conjugate heat transfer model and three dimensionless parameters. In order to obtain the influence
of aerodynamic/geometry parameters on the three dimensionless parameters, this study will be carried out by
numerical simulation. The simulation model adopted the flat-plate cooling structure matching with Fig. 1, as
shown in Fig. 4. The characteristic length was the film hole diameter of the basic case (D=2 mm). The geometry
and other dimensionless parameters were based on it. To study the effects of film hole diameter Dy, impinge-
ment hole diameter D,,,,, impingement hole layouts, impingement gap f,,,, film hole structure, and film hole
inclined angle a, these parameters were determined by classic published studies, as shown in Figs. 5, 6 and
7. There were four layouts of impingement holes, namely staggered, overlapped, span parallel and streamwise
parallel, as shown in Fig. 5. Four different rib turbulators were studied. The layout and geometry of the ribs are
shown in Fig. 6. Four typical shaped-holes were employed and the geometric parameters were shown in Fig. 7.
The other geometric parameters are listed in Table 4.

The all-numerical cases are listed in Table 5. Two cases (Ref-case #1: smooth internal channel without
impingement flow; Ref-case #2: smooth internal channel with impingement flow) were selected as references.
The left-most column of the Table 5 represented the variables of each case. For example, “gap distance” case was
used to study the effects of impingement gap distance. Therefore, only the gap distance changed compared with
Ref-case #2. The “rib turbulators” case represented that the model was equipped with four kinds of ribs shown in
Fig. 6 on the basis of Ref-case #1. The “layouts of impingement hole” case represented the change of impingement
hole layout based on the Ref-case #2, where Ref-case #2 case was the staggered layout. The case represented by
“film/impingement hole diameter” was based on Ref-case #1/2, and the film/impingement hole diameter was
changed. The “shaped-hole” case represented that the film hole structure and inclined angle were modified on
the basis of Ref-case #1. In the following sections, the label represents the change of the simulation model based
on these two reference cases, unless otherwise specified.

The matching principle of ¢ between laboratory conditions and actual engine conditions has drawn the
attention of many scholars. Liu et al.””** found that if Re,, the temperature ratio T,/T;, and blowing ratio M were
matched, ¢ under laboratory conditions was consistent with that under actual engine conditions. Thus, the
boundary conditions are listed in Table 6.

Figure 8 shows the specific boundary conditions of the numerical model. The mainstream and coolant inlets
were employed to set the mass flow conditions, and the outlet was utilized to set the pressure boundary condi-
tion. To simulate the effects of cross-flow, coolant flowed in from the side (blue), and part of it flowed out from
the other side. The other side was set as the mass flow outlet to ensure that the coolant flow rate satisfied the
blowing ratio requirement. The mainstream Reynolds number was defined as Re; = 2% The flow rate of the
coolant was determined using the equivalent blowing ratio M’. The standard blowing ratio was defined as

M= %_ In this study, M’ was defined as M" = %, where A, was the sum of the outlet areas of all the
g.inle

film ho'iegs and A, was the inlet area of the mainstream. The two sides of the mainstream channel were set as
periodic boundary conditions. The coupled surfaces between the fluid and solid domains were set as the “Inter-
face” with conservative heat flux in CFX 18.0. The other walls were set as adiabatic conditions. In the adiabatic
simulation model, only the fluid domain was solved to obtain the adiabatic film cooling effectiveness #. Thus, all
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Figure 4. Geometric parameters of impingement-film hole model. (a) Impingement effusion model; (b) Film-
hole model.
Cooling cell O Imipingement hole <==-< Film hole
RS ek s e ik e O
O O O
Ni== o ik S i S S>> -
O O O
COTED CRTIED COTED > o S
O O O
COTED CRTIED CDTED > i S
(@) (b)
=it = ik > St ok = S o o Ep
O O
=S5 S ik s ik e e
O O
COTIED (DT T e oep ep
O O
COTIED R R s ok < > S ot i < > S i < >
(©) (d)
Figure 5. Layouts of impingement hole (a): staggered, (b): overlapped, (c): span parallel, (d): streamwise
parallel).

walls were adiabatic. The thermal conductivity of the blade was 20-25 W/m K under actual engine conditions®’.
In order to match Bi, in this paper with the actual engine conditions, titanium alloy (10.6 W/m K) was selected
as the solid material. The fluid domain was an ideal gas with dynamic viscosity set as the Sutherland formula.
An empirical fitting correlation was adopted for the thermal conductivity k and specific heat capacity Cp of the
solid and fluid.
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Figure 7. Typical shaped-hole in film cooling model.

Parameters | Values
af°® 20, 30
Dﬁ,m/mm 1.5,2,3
D;ypp/mm 3,4,5
Lgqp/ MM 3,4,5,6
h,3/mm 1

Table 4. Numerical model geometric parameters.

by,

16 mm

Numerical methods and reliability. The commercial software ICEM CFD and ANSYS CFX were
employed to compute the unstructured mesh and solve the steady RANS equations, respectively. The meshes of

the solid and fluid domains were separately computed. It can be observed from previously published reports

30,32-34

that the SST k-w model is suitable for various complex flows. Shi et al.** studied the overall cooling effective-
ness of an impingement effusion cooling structure through numerical simulation and experiments, using the
SST k-w and RNG k-¢ turbulence models. The results showed that the overall cooling effectiveness obtained
by the SST k-w model was similar to the experimental results. In addition, this study combined the published
literature® to verify the turbulence models, as shown in Fig. 9. Therefore, the SST k-w turbulence model was
employed in this study. The inlet turbulence intensity was set as “Medium (Intensity =5%)” in the CFX software.
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Film hole diameter Dj;,/ | Film hole inclined angle | Imp-hole diameter D,/

Case mm al° mm Gap distance f,,,/mm
Ref-case #1 2 20 - -
Ref-case #2 2 20 4 4
Gap distance 2 20 4 4, 6,10, 14, 20, 30
Rib turbulators 2 20 - -
Layouts of impingement 2 20 4 4
hole

Film hole diameter 1.5,2,2.5 20 - -
5rpp1ngement hole 2 2 3,45 4

iameter

Shaped-hole 2 (cylinder hole section) 30 - -
Table 5. Specific parameters for each case.

Parameter Value(s)

T,/K 600

T.JK 303

/T, 198

Re, 2900, 3100, 3300, 3500, 3700

M 1

keotia/ (W/m-K) 10.6
Table 6. Boundary conditions.

5 Periodic
$ ymm'el< /1‘
>
Mass flow inlet Pressure outlet
(mainstream)
- N
Adiabatic
Interface
[ -~
Mass flow inlet
(coolant)

Figure 8. Boundary conditions of numerical model.

To prove the reliability of the simulation further, the published experimental results were utilized to verify the
grid computing and simulation methods, as shown in Figs. 10, 11. Firstly, the overall cooling effectiveness of Xie
et al.?® was verified. The results show that the numerical simulation is consistent with the experimental results
under different blowing ratios. The maximum error is 12% at x/D =8. When x/D is greater than 20, the error is
small. Figure 10b provides a schematic view of test Section®®. Xie et al.”® filled the insulation material around
the flat plate to reduce the effect of heat conduction and to match the boundary conditions of the simulation.
Although the insulation material can play a certain role, heat conduction still exists compared with the adiabatic
wall in the numerical simulation. The first half of the flat plate was heated by the channel; therefore, ¢ of the
experiments was lower than that of the simulation results. Overall, considering that 100% adiabatic conditions
could not be achieved in the experiments, the numerical simulation method used in this study could match the
experimental results and had high reliability. This study also verified the accuracy of numerical simulation with
internal cooling (ribs and impingement effusion), as shown in Fig. 11. Compared with the experimental results
of Wang et al.*® and Rao et al.¥, it could be seen that the numerical simulation accurately obtained the results
of Nu. The simulation overestimated the internal heat transfer with a maximum error 2%. Compared with the
results of overall cooling effectiveness, the numerical methods adopted in this study could predict the internal
heat transfer more accurately. In general, the numerical methods with SST k-w turbulence model in this study
have been verified in detail.

To satisfy the requirements of the SST k-w turbulence model (y*=1), the height of the first-layer grid was
0.008 mm. The prism was set at the couple wall to satisfy the requirements of the boundary layer grid. To elimi-
nate the effects of the grid on the simulation, the grid sensitivity was verified, as shown in Fig. 12. The results
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Figure 9. Validation of turbulence model.

A {[Fa— M= 0.9 (Simulation) i
: : H : X itot tube / Thermal couple
------ Film hole centerline ! {[—A—M=09 (Xie etal.) P
| : H {[—9— M= 0.46 (Simulation)
i[—e— M=0.46 (Xie et al.) IR window

Simulation model

Coolant

(I) 10 ‘ 2l0 ‘ 3I0 | 4IO | 5I0
x/D
(@) (b)

Figure 10. Comparison between numerical simulation and experimental results®®. (a) Laterally averaged
overall cooling effectiveness; (b) Schematic view of test Section?®.

for Cases 3 and 4 were similar. To save computing resources, the grids of the solid and fluid domains were set as
4.8 million and 20 million, respectively.

Results and Discussion

This section presents the contours of overall cooling effectiveness firstly. Then the laterally averaged and area
averaged results of adiabatic film cooling effectiveness, heat transfer coeflicient ratio, and Biot number for dif-
ferent cases will be given to analyze the overall cooling effectiveness. And the effects of the internal cooling
structures, film hole structures, and Re, on the three dimensionless parameters are also described. Finally, the
one-dimensional conjugate heat transfer model is verified.

Overall cooling effectiveness.  Figure 13 shows the overall cooling effectiveness of different internal cool-
ing and film hole structures for the film hole model. The results indicate that the rib turbulator can improve the
overall cooling effectiveness. The improvements of the 45° and 90° ribs are the most obvious, followed by that of
the dimple structure. When the film hole inclination angle « is increased to 30°, ¢ decreases significantly. With
the increase of Dy, ¢ gradually increases.

Figure 14 presents ¢ of the impingement-effusion model with different cooling structures. Compared with
the results in Fig. 13, the impingement flow can significantly improve ¢. The distribution of impingement holes
also influences the overall cooling effectiveness. In addition to the span parallel structure, the overlapped and
streamwise parallel structures will weaken the overall cooling effectiveness compared with Ref-case #2. With
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Figure 12. Grid number sensitivity.

the increase of impingement hole diameter D;,,,, the decrease in jet velocity weakens the heat transfer enhance-
ment. Therefore, the overall cooling effectiveness also gradually decreases. The overall cooling effectiveness
remains almost constant until the gap distance increases to 10D. The shaped-hole structures can also effectively
improve ¢, as evidenced by comparison of Fig. 13. The impingement effusion structure and shaped hole structures
improve ¢ by increasing the internal heat transfer coeflicient (h;) and adiabatic film cooling effectiveness (#),
respectively. By comparing Fig. 15a-d with Fig. 15e, it can be seen that the shaped hole structure can weaken the
Counter-rotating Vortex Pair (CVP), and this weakening effect is not due to the increase of the film hole outlet
area. Figure 15f depicts the streamline of the CVP when Dy, is 1.25D. The results demonstrate that the CVP is
not weakened with the increase of Dj;,,. Figure 16 shows the laterally averaged overall cooling effectiveness of
the film hole model under different Re,. With the increase of Re,, the enhancement of the heat transfer on the
mainstream side reduces the overall cooling effectiveness.

Effects of internal cooling structure.  According to Eq. (17), the overall cooling effectiveness ¢ is related
to the adiabatic film cooling effectiveness #, the heat transfer coefficient ratio h,/h; and the Biot number Bi,. This
section describes the effects of internal cooling structures, such as the gap distance, impingement hole diameter,
rib turbulator and impingement hole distribution on these three dimensionless parameters.

Figure 17 shows the contours of # and Bi,. The results showed that the internal cooling structures hardly
affected the distribution of #. Vast studies have proven that the interaction between the coolant and mainstream
causes complex vortical structures, such as Windward Vortices (WV), Counter-rotating Vortex Pair (CVP),
Horseshoe Vortices (HV). Among many vortical structures, the CVP is considered to be the dominant vortex that
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Figure 14. Contours of overall cooling effectiveness for impingement effusion model. (a) Ref-case #2; (b)
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can influence film hole cooling®®. Figure 18 presents the temperature distribution and streamlines of Ref-case #1
and the 45° rib case at the outlet of the film hole. The CVP is almost unaffected by the internal cooling structures;
therefore, adiabatic film cooling effectiveness is almost unchanged. Although the internal cooling structure
hardly affects the distribution of 7 (i.e., T,,,), it affects the heat flux g, and temperature T,, on the mainstream
side. According to Eq. (6) and the definition of Bi, (= h,0/k), the thickness of the film hole plate § is a small scale,
which weakens the influence of the internal cooling structure on the external heat transfer coefficient h,. There-
fore, the influence of the internal cooling structure on Big is also small, as shown in Fig. 17b. In summary, the
internal cooling structure has little effect on the distributions of 77 and Bi,. The key to improve the overall cooling
effectiveness by optimizing the internal cooling structures is to improve the internal heat transfer coefficient h;.

The above discussions analyze the influence of the internal cooling structure on external film cooling (1 and
Biy). According to Eq. (17), another dimensionless parameter that can determine the overall cooling effectiveness
is the heat transfer coefficient ratio h/h;. Figures 19, 20 presents the results of the heat transfer coefficient ratio
h/h; for the different internal cooling structures. The rib turbulator reduces h,/h;, as shown in Fig. 19. Because
rib turbulator hardly affects the # and Bi,, it increases the overall cooling effectiveness by reducing h,/h;.
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Figure 15. Contours of overall cooling effectiveness for different shaped hole structures. (a) Conical; (b) Fan-
shaped; (c) Laidback; (d) Laidback fan-shaped; (e) Ref-case #1; (f) Smooth (Dg,,=1.25D).

According to the definition of Bi, (=h,0/k), Bi, can represent the distribution of h,. A decrease in h,/h; can
improve ¢, as shown in Eq. (17). Therefore, under the premise that the internal cooling structures have little effect
on Bi,and #, it is important to improve ¢ by enhancing k; in regions where Bi, is high. As shown in Fig. 17, the
large Bi, region is mainly near the outlet of the film hole. Figure 20 shows h,/h; for cases with different impinge-
ment hole distributions and diameters D;,,,. The h,/h; value of the span parallel layout is the smallest, followed by
that of the staggered layout (Ref-case #2). The h,/h; gradually decreases with increasing D,,,,; thus, ¢ also gradually
decreases. As shown in Fig. 21, h,/h; remains constant until the gap distance increases to 10D.

The optimized internal cooling structure can improve the overall cooling effectiveness by enhancing the
internal heat transfer to reduce the heat transfer coefficient ratio h,/h;. The other two dimensionless parameters
1 and Bi, are insensitive to the internal cooling structure.

Effects of film hole structure. This section analyzes the effects of the shaped hole, film hole diameter Dy
and film hole inclination angle « on the #, h/h;, and Bi,. When the film hole structure changes, the coolant flow
rate remains constant. With the increase of the film hole diameter Dy, the velocity at the outlet of the film hole
decreases, reducing the penetration of the coolant. Therefore, the adiabatic film cooling effectiveness gradually
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Figure 17. Effects of internal cooling structures on 7 and Bi,.

increases, as shown in Fig. 22i-iii. If the coolant flow rate remains unchanged, the outlet area of the film hole
decreases when a=30° therefore, the velocity also increases. At the same time, « increases, which makes it
easier for the coolant to be lifted off and reduces 7. The interaction between the coolant and mainstream results
in a CVP. Meanwhile, the hot mainstream follows the CVP to increase the temperature of the flow near the
wall. According to the characteristics of the coolant jet, the key to improving # is to suppress the development
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Figure 19. Area-averaged hy/h; for film hole model with a=20°.

of CVP?. Fan-shaped holes can cause less penetration and wider lateral-coverage owing to the diffused exit, as
shown in Figs. 15, 22a. There is no diffused exit for the laidback hole, so it cannot result in wider lateral-coverage.
However, a forward expansion angle can produce less penetration. Therefore, the shaped holes can effectively
improve the adiabatic film cooling effectiveness, as shown in Fig. 22a.

Less penetration means lower Biot number Bi,””. With the increase of film hole diameter Dj,, and the decrease
of film hole inclined angle , the Biot number decreases. According to Fig. 23, the film hole structures have lit-
tle effect on the internal heat transfer coefficient ;. Therefore, the influence of the film hole structure on h/h;
is consistent with that on Bi, as depicted in Figs. 22b, 24. In summary, the optimized film hole structure can
improve # and reduce Bi, and h,/h;, but has little effect on h;.

Effects of aerodynamic parameters. This section discusses the effects of Re, on #, h/h;, and Bi,. As
shown in Fig. 25, the increase of Re, can lead to less penetration, and thus, # will also be improved. However,
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Figure 20. Contours of h/h; for impingement-effusion model (first two rows: different impingement hole
distributions; last row: different impingement hole diameter D;,,). (a) Ref-case #2; (b) Span parallel; (c)
Overlapped; (d) Streamwise parallel; (e) D;,,,=1.5D; (f) D;,,,,=2.5D.
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Figure 21. Area-averaged hy/h; for impingement-effusion model with different gap distances.

the overall cooling effectiveness is related not only to #, but also to another two dimensionless parameters. The
increase of Re, increases the heat flux on the mainstream side, as shown in Fig. 26. The mainstream Reynolds
number has little effect on the internal heat transfer coefficient h;. Therefore, with the increase of Re,, the Bi, and
h/h; also increase, as shown in Fig. 27. And this results in a decrease in overall cooling effectiveness.

Validation of one-dimensional conjugate heat transfer model. According to Table 2, the overall
cooling effectiveness is the most sensitive to the adiabatic film cooling effectiveness 7, whereas the sensitivities to
the Biot number and the heat transfer coeficient ratio are the same. However, according to Figs. 22, 24, the range
of h/h; is larger than that of Bi,. Combined with Table 3, this section will verify the following two key conclu-
sions: (1) with the increase of the heat transfer coefficient ratio h,/h;, the sensitivity of ¢ to # increases; and (2)
the increase of adiabatic film cooling effectiveness # reduces the sensitivity of ¢ to h/h,.
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Figure 22. Effects of film hole structures on # and Bi,.
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Figure 23. Laterally-averaged h; for different shaped film hole structures.

According to the above conclusions, the effects of the internal cooling structure on Biyand 1 can be ignored.
Thus, Ref-case #1 and Ref-case #2 can be considered that only the heat transfer coefficient hg/ h; is different. The
heat transfer coefficient ratio of Ref-case #2 is smaller than that of Ref-case #1 because of the impingement flow,
as shown in Fig. 28. It can be observed from Fig. 22 that the increase of film hole diameter Dy, can increase #.
Considering that the effects of the internal cooling structure on 7 can be ignored, it is considered that the increase
of 77 caused by the increase of Dy, is roughly the same for Ref-cases #1 and #2. As shown in Fig. 29, when Dy,
increases from 1.0D to 1.25D, the overall cooling effectiveness (at x/D =0) increases by 0.04 for Ref-case #2.
For Ref-case #1, the overall cooling effectiveness increases by 0.08. When # increases by the same amount, the
overall cooling effectiveness increases significantly for the case with a higher heat transfer coefficient ratio h/h;
(Ref-case #1). In other words, when the overall cooling effectiveness increases by the same amount, # is required
to increase less for the case with a higher heat transfer coefficient ratio (Ref-case #1). This confirms the first
conclusion. With the increase of heat transfer coefficient ratio h/h;, the sensitivity of overall cooling effectiveness
to the adiabatic film cooling effectiveness # increases.
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Figure 26. Contours of wall heat flux for Ref-case #1 with different Re,. (a) Re=2900; (b) Re=3700.
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Figure 29. Laterally-averaged ¢ for different cases.

As shown in Figs. 22, 24, 17 increases when « decreases from 30 to 20°. According to Fig. 17, Bi, and 7 are
almost unaffected by the impingement hole diameter D;,,. As depicted in Fig. 30, the decrease of h,/h; caused by
the decrease of D, is almost identical for «=30° and 20°. As illustrated in Fig. 31, as D,,,, decreases from 2D to
15D, ¢ increases by 0.036 and 0.028, respectively. This indicates that when h,/h; decreases by the same amount,
the increase of overall cooling effectiveness decreases with the increase of 7. In other words, the increase of adi-
abatic film cooling effectiveness # will reduce the sensitivity of overall cooling effectiveness to the heat transfer

coefficient ratio h,/h;. The second conclusion is also confirmed.
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Figure 31. Laterally-averaged ¢ for impingement-effusion model.

The above discussion qualitatively verifies the conclusions regarding the sensitivity of ¢. The sensitivity con-
clusions in Fig. 3 and Table 3 can provide a reference for the design of turbine blade cooling systems. To improve
the practicability of Eq. (17), it is necessary to verify the accuracy of this model. Table 7 lists the area-averaged
results of the three dimensionless parameters and the overall cooling effectiveness predicted by Eq. (17).

However, there must be deviations between the predictions obtained from Eq. (17) and the 3D numerical
simulation. According to the definition of the Biot number (B;=hé/A), this parameter characterizes the ratio
of the thermal conduction resistance to the convective heat transfer resistance. Therefore, the larger the Biot
number, the smaller the effects of thermal conduction. According to the definition of Bi, (=h,6/1), the deviations
of cases with higher A; is small. According to Table 2, the adiabatic film cooling effectiveness accounts for the
largest proportion in the overall cooling effectiveness compared with the other two dimensionless parameters.
Therefore, the deviations caused by heat conduction will increase in the region far from the coolant coverage,
and the prediction deviations will reduce for the cases with large adiabatic film cooling effectiveness. For Ref-
case #1, there are no rib turbulator and impingement flow to enhance the internal heat transfer. Simultaneously,
the coolant coverage is small because the exit is not diffused. Thus, the prediction deviation is too large to be
accepted. However, the deviation is significantly reduced for cases with shaped holes or impingement flow, with
a minimum error 4.3% for fan-shaped case. It indicates that the one-dimensional conjugate heat transfer model
has an ideal applicability for these cases.
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Parameter | Ref-case #1 | Laidback fan-shaped | Fan-shaped | Ref-case #2 | D;,,=1.5D |#,,=15D | Span parallel
n 0.119 0.495 0.468 0.113 0.115 0.113 0.1103

Bi, 0.106 0.094 0.115 0.106 0.105 0.114 0.099

helh; 3.636 3.25 3.897 0.886 0.666 1.01 0.875

Ppre 0.305 0.611 0.574 0.558 0.615 0.536 0.567

G imadation 0.508 0.658 0.60 0.628 0.663 0.617 0.638
Deviation 39.9% 7.1% 4.3% 11.1% 7.2% 14.0% 11.1%

Table 7. Validation of one-dimensional conjugate heat transfer model.

Conclusions

In this study, the published one-dimensional conjugate heat transfer model was improved, and an equation
relating ¢ to three dimensionless parameters (7, Biy, and h,/h;) was obtained. The effects of these dimensionless
parameters on the sensitivity of ¢ were also investigated using sensitivity charts. Simultaneously, flat film hole and
impingement effusion model were established, which included different internal cooling structures and film hole
structures. The effects of different internal cooling and film hole structures on three dimensionless parameters
were studied by numerical simulation, and the accuracy of the conjugate heat transfer model was verified. The
main conclusions can be summarized as follows.

(1) The adiabatic film cooling effectiveness is positively correlated with the overall cooling effectiveness, while
the Biot number and heat transfer coefficient ratio are negatively correlated with it. The overall cooling
effectiveness is the most sensitive to adiabatic film cooling effectiveness among the considered parameters;
therefore, increasing adiabatic film cooling effectiveness can improve the overall cooling effectiveness
effectively.

(2) The increase of heat transfer coefficient ratio can improve the sensitivity of overall cooling effectiveness to
adiabatic film cooling effectiveness. The Biot number has little effect on the sensitivity of overall cooling
effectiveness to the three dimensionless parameters. The increase of adiabatic film cooling effectiveness
reduces the sensitivity of overall cooling effectiveness to heat transfer coefficient ratio.

(3) The internal cooling structure has little effect on the adiabatic film cooling effectiveness and the Biot num-
ber. The impingent flow can significantly improve the overall cooling effectiveness by 20% compared to
the smooth case without impingement flow.

(4) The film hole structure has little effect on the internal heat transfer coefficient h; but can change the distribu-
tions of 7 and Bi,. Compared with the other shaped hole structures, a laidback fan-shaped hole can most
effectively improve ¢. When the coolant flow rate remains constant, the increase of the film hole inclined
angle can improve the adiabatic film cooling effectiveness, and reduce the heat transfer coefficient ratio
and Biot number.

(5) The increase of the mainstream Reynolds number Re, will increase hy/h; and Bi,.

(6) The one-dimensional conjugate heat transfer model proposed in this study can accurately predict the overall
cooling effectiveness for cases with impingement flow or shaped holes.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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