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The study of X-ray fluorescence (XRF) emission spectra is a powerful technique used in applications
that range from biology to cultural heritage. Key objectives of this technique include identification
and quantification of elemental traces composing the analyzed sample. However, precise derivation
of elemental concentration is often hampered by self-absorption of the XRF signal emitted by light
constituents. This attenuation depends on the amount of sample present between the radiation
source and detection system and allows for the exploitation of self-absorption in order to recover a
sample topography. In this work, an X-ray-tracing application based on the use of multiple silicon drift
detectors, is introduced to inversely reconstruct a 3D sample with correct topographical landscape,
from 2D XRF count rates maps obtained from spectroscopy. The reconstruction was tested on the
XRF maps of a simulated sample, which is composed of three cells with different size but similar
composition. We propose to use the recovered 3D sample topography in order to numerically compute
the self-absorption effects on the X-ray fluorescence radiation, thereby showing that a quantitative
correction is possible. Lastly, we present a web application which implements the suggested
methodology, in order to demonstrate its feasibility and applicability, available at: https://github.
com/ElettraSciComp/xrfstir.

X-ray fluorescence (XRF) spectroscopy is a versatile and well-established investigation tool for qualitative detec-
tion and quantification of elemental distributions within different types of samples!. As such, this technique
finds a wide range of applications, spanning from fields such as archeology? cultural heritage**, geology® and
biology®’. Systems that are based at synchrotrons often constitute the most advanced technological examples of
these applications, having at their disposal a series of features, such as variable spot size below the micrometer
and high particle flux®?, that allow for finer analysis of complex samples.

The XRF radiation, which is generated within the constituent atoms of a sample by the photoelectric absorp-
tion of the incident beam, is emitted isotropically in every direction. Despite this characteristic behavior, the
actual amount of XRF radiation emitted from a point source within the sample, may not be detected evenly
among the available silicon drift detectors (SDD). This inconsistency in count rates can be attributed mainly to
the self-absorption of the XRF radiation by the sample itself, which in turn depends on the difference in path
length encountered by the XRF photons when traveling from the production point within the sample to different
SDDs. In other words, the surface topography and the orientation of SDDs with respect to the sample surface
and incident beam direction is responsible for modulating the XRF signal observed by the single detectors'.
Depending on the severity in path length differences, the self-absorption effect could yield misleading results on
the actual mass and concentration of the element being examined!!. However, no straightforward solution has
yet been found, due to the fact that there is no explicit way to decouple the absorption effects due to the sample
topography and those due to its composition'>'.
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Over the years, different attempts have been made to introduce data analysis techniques capable of modeling
XRF behavior within the scanned samples, in order to also provide a basis for quantitative information retrieval
and correct for the self-absorption effect. For example, Monte Carlo algorithms have been implemented in order
to simulate the emission of XRF radiation and its detection'*'¢. Alternatively, data analysis methods have also
been implemented to correct for the angular dependence directly on the two-dimensional (2D) XRF maps that
are collected by the SDDs, through the use of the Fundamental Parameter (FP) Method!”~*. In particular, Trojek
2011 successfully demonstrated the application of the FP Method to reconstruct the 2D surface relief map of a
metallic object and reduce the effects of self-absorption on its XRF map'’. This was achieved through the use of
a single detector and knowledge of the angles between the source, the sample and the detector. However, this
method does not provide a three-dimensional (3D) way to analyze the self-absorption effect at various depths,
focusing primarily on the surface of the object and may not be appropriate for all scanned samples.

Steps towards a 3D characterization and correction of the problem, have been taken in more recent years
In particular, in a work by Malucelli et al."’ the authors implemented a multimodal approach employing XRF
Microscopy, Scanning Transmission X-ray microscopy (STXM) and Atomic Force Microscopy (AFM) on top
of the FP method. Here, for each pixel in the 2D XRF maps, the absorption of both the incident beam and XRF
radiation, is calculated by integrating the absorption term formulated in the FP method over the sample’s thick-
ness derived from the AFM?*2. The density map, also required in this process, is then derived from the STXM data.
By adopting this approach, the authors were successful in retrieving quantitative maps of molar concentration
of different elements contained within two cell types from information coming from 8 detectors pertaining to
the Low Energy XRF (LEXRF) system present at the TwinMic beamline Sincrotrone Trieste (Trieste, Italy)>.
However, the implementation of such multi-modal approaches may be impractical to adopt, as it requires differ-
ent types of image data acquisitions with different positioning and resolutions to be carefully registered together.
Furthermore, the self-absorption term pertaining to the XRF radiation, is calculated for each pixel by summing
together the emission within the corresponding sample volume and considering only a single possible path to
be undertaken by the emitted radiation to reach its respective detector. In this manner, it is not possible to fully
exploit the 3D topographic information of the sample and calculate for each 3D emission voxel, all the possible
paths leading the radiation to the detectors. As a consequence, the effective length of the paths traveled may be
underestimated by not considering gaps produced by valleys and hills in the topography, resulting in an inac-
curate quantification of the attenuation.

The presented study builds on the findings of a previous work by Billé et al.'’, in which an XRF simulation
framework was presented, to verify the effects of the self-absorption artifact on the elemental distribution of
XRF imaging of cells. It was shown how strongly the topographical effects can dampen the count rates of fluo-
rescence emission lines pertaining to light elements such as Carbon (C), Nitrogen (N) and Oxygen (O). In the
current work, we present a ray-tracing based method to inversely reconstruct a 3D sample with its topographi-
cal landscape, simply from 2D XRF maps acquired on multi-detector systems, together with an STXM map, an
average density value and a maximum thickness value for the sample. Once the 3D sample structure has been
reconstructed and its similarity with the actual simulated structure has been established, we propose to use it
in order to numerically calculate the self-absorption effects exerted by the sample on the XRF radiation at a 3D
level and show that a quantitative correction is possible.

20,21

Methods

We introduce a novel 3D Inversion Reconstruction (IR) algorithm, which derives a 3D sample topography start-
ing from 2D XRF images. The IR can be summarized into 3 main steps. First, we define a numerical simulation
approach that from a 3D sample of known shape and composition, derives the corresponding 2D XRF maps
that would be collected during a XRF experiment. Secondly, through the FP Method**, we obtain the sample’s
elemental composition information necessary to run the simulation directly from the 2D XRF maps. Lastly, an
in-house developed optimization approach based on ray-tracing, is employed to probe an ensemble of possible
3D sample topographies, and isolate the one minimizing the L1 norm between the actual experimental XRF
maps and the simulated ones.

XRF simulation. To numerically resolve the absorption effects of the sample, we first characterize the data
acquisition process for the SDD. The following considerations are based on the LEXRF detection system of
TwinMic Beamline in Elettra Synchrotron®, comprising a set of 8 SDDs with an incident energy E between 400
and 2200 eV. Analogous considerations can be made for similar systems carrying out low-energy XRF experi-
ments.

Figure 1 shows a typical XRF setup for one SDD. The incident radiation is aligned parallel to the z-axis of
the sample’s frame of reference, investing the sample for a certain exposure time and with a specific spot, whose
size defines the final image resolution of the XRF images. In this work the spot size was 1 pm? isotropic and the
incident intensity (Ip) was 10® photons/um? integrated over the entire time of exposure, mimicking the condi-
tions of a real experiment.

As radiation traverses the sample from its surface to the E]point of XRF radiation production, it is attenuated
following the Beer-Lambert’s Law of Absorption I = Tpe HsE0)rz where Iy is the incident beam’s intensity, 15 (Ep)
represents the total mass attenuation coefficient of the sample at the beam energy Ey, p represents the sample
density and z is the traveled distance within the sample. As the incident radiation invests the sample, an absorp-
tion profile ABSs = us(Ep) pdz is generated along the z—axis. Here, we propose to derive the sample thickness
map along the incident beam direction (z-map) in an iterative fashion, starting from a Scanning Transmission
X-ray Microscopy (STXM) map.
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Figure 1. XRF microscopy acquisition setup for a single SDD. The incident beam Io(red arrow) invests the
sample parallel to the z-axis and travels a distance z before being absorbed, thereby isotropically producing XRF
radiation, part of which is directed towards the SDD (blue arrows).

Not all elements absorb the incoming radiation equally. To retrieve the fraction of the radiation which is
absorbed via photoionization by every j-th element ABS;, we need to multiply ABS; by the mass fraction w; and
by the ratio of the photoionization cross-section of the j-th element (z;(Eo)) to jus at Ey*:

7;(Eo)
s (Eo)

We then take into account the solid angle fraction covered by each detector (2/47) and physical informa-
tion related to the emission process for XRF line i, such as the fluorescence yield wj, the transition probability

pij and the absorption jump ratio Jj, through the factor Y;;(Ey, E;) = (S2/47)wj pjj J;. We then compute the 3D
fluorescence emission matrix EM;; of any element j in the sample®:

ABS; = ABS; w;

=wj rj(Eo),o dz. (1)

Q
EMZ']'(Z, E) = ABS]‘Yi]‘(E(),Ei)I()e_MspZ =wjp ‘Ej(E()) (E)a)] Dij ]] Toe HsP%dz. (2)

During the acquisition, photons emitted from the same voxel can take « different linear paths of length 4,
towards the SDD. As it can be seen in Fig. 1, the differences in 8, depend on the portion of the sample traveled
by the photon and in turn by the sample’s topography. The probability P* 1 that an XRF photon of energy E;,
directed along a single path a, will be able to arrive unabsorbed at the SDD’s interface, is as follows:

P = e~ 1s(Ei)pda (3)

We construct the 3D response matrix of any SDD (XRF3p) by multiplying Eq. (2) by Eq. (3) for every voxel
and summing over all the possible « directions:

N,
o EM
XRF;3p = Z N g

a=1 o

PO(

Here N, represents the total number of a paths available to reach a given SDD. We divide EM;; by N to redis-
tribute photons among all available paths. As fluorescence emission is an isotropic phenomenon, we expect the
same number of photons to be emitted in all directions. EM;; is thus independent of the undertaken path and
can be moved outside of the summation:

Ny o
— EM- T _ EM.
XRF3p = EMj; O; N EM; K, (4)

where K is a 3D matrix representing the self-absorption effects exerted by the sample. K represents an average
of all P across all possible paths. Equation (4) is a numerical construction, built from the FP method, that can
be employed to simulate the 3D experimental response of any SDD, having provided the necessary information
on sample geometry and composition. Furthermore, one can move from the 3D response matrix for an SDD, to
its 2D analogous XRF,p, by summing Eq. (4) over the axis parallel to the incident beam:

XRFap =) EM;i K.

Following, it will be shown how to obtain the sample’s compositional information from 2D experimental
XRF maps. These will be then used to generate an ensemble of possible 3D sample topographies to be evaluated
through an iterative optimization procedure based on ray-tracing and Eqs. (2) and (4).

Deriving sample thickness map. We retrieve thickness information from the STXM data concurrently
acquired with XRF data. Through approximate knowledge of the average sample density, maximum sample
thickness and of the ranges of existence of both these quantities, it is possible to create an iterative procedure
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which at first generates a z-map according to the Law of absorption'®, by considering the product of 1s(Eg)p
initially constant. Successively, the algorithm identifies pixels where the derived thickness changes abruptly from
its nearest neighbors, by choosing a threshold according to the average rate of change observed throughout the
whole sample. These pixels are then adjusted iteratively in terms of both thickness and density.

Deriving compositional information for XRF simulation. The FP Method'*?’ can be employed at a
pixel level to retrieve the necessary compositional information, namely: w; and s at the different E; considered.
w; is calculated by first finding the mass of each element m;:
GiS
= N 5
To Y, (Bo, £ (Bo)Kip ®

where S is the surface area of the pixel, C; represents the cumulative counts of the emission line i recorded in
the XRF spectra, and Kpp is an absorption correction factor related to both the incident and XRF radiation, as
derived from the FP method:

1— *Ph(Ms(Eo)Cosec(9)+lls(Ez)ZNn M) 1— e—ph(us(Eo)cosec(9)+us(E,')(cosec(w))a)

Kpp = N = >
oh (;/.S(Eo)cosec(e) + s (DD 2 7‘:"5“(‘/’“)) ph (s (Eo)cosec(8) + pus(E;)(cosec(9)) )

where h is the total sample thickness along the z-axis for the pixel under consideration in the 2D XRF image,
0 is the angle at which the incident beam invests the sample and ¢ represent all the possible different a paths
available to reach the SDD. In the last passage of the equation, the term ZN"‘ % has been substituted with
(cosec(¢)),. For most setups, like the one treated in this work, the incident beam is perpendicular to the sample
and therefore the term cosec(f) = 1and can be omitted.

Once all masses in a pixel are known, a single wj is calculated by dividing the mass of said element m; by the
total mass 11 as follows, w; = m;/m;. The maps for us(Eo) and for s (E;), can then be calculated pixelwise, using
the elemental mixture rule*-2;

us(Ei) = ijjllj(Ei)> (6)

which takes into account the mass absorption coefficients of the single elements js known from universal tables,
and w;.

Wé propose to firstly retrieve the mass fractions w; by discarding Krp in Eq. (5). Successively, maps of 1s(Eo)
and us(E;) are calculated from Eq. (6) and employed by the ray-tracing IR algorithm to find a 3D topography.
This topography attempts to minimize the L1 norm between the experimental XRF maps and the XRF,p maps
obtained through simulation using the newly reconstructed sample and Eq. (4). At a second stage, we employ
the reconstructed sample topography to calculate the emission matrix EM;;, thereby attempting to retrieve the
correct cumulative counts for each emission line i, before self-absorption takes place.

Ray-tracing based inverse reconstruction. The presented IR algorithm exploits both complementary
and redundant information from the multiple detectors available to infer a sample topography. The general idea
is to:

1. iteratively derive a z-map from a STXM scan with the use of Beer-Lamberts Law, an average density value
and a maximum thickness value for the sample;

2. use the z-map to generate an ensemble of possible topographies. This is limited by a geometric constraint
imposing that along the beam’s axis the sample is continuous and free from gaps;

3. verify the goodness of each sample topography by calculating Eq. (4) and confronting the result of each
simulated XRF,p map with the actual data, by means of the L1-norm.

The z-map derivation is an iterative procedure that requires estimates of the average sample density and the
maximum sample thickness we can expect. In the first iteration we associate the most absorbing pixels in the
STXM with the maximum expected thickness. We then consider temporarily, the product of density and mass
attenuation coefficient as constant for every pixel. In this way we can calculate a thickness map for all the remain-
ing pixels. We then calculate over this thickness map the average slope present between each pixel and its nearest
neighbors. This value is used as a threshold to select those pixels which seem to change thickness too abruptly
with respect to the average change observed in the sample. All the identified pixels are then selected and their
thickness value is replaced with the average thickness value of its nearest neighbors. At the same time the linear
attenuation coefficient is re-calculated for these pixels from the STXM using the newly found thickness. A new
iteration can now begin and repeat the whole process until completion.

During the IR, each SDD reconstructs a topography independently of the other detectors. Subsequently, the
information from the different detectors is merged together to yield a single 3D representation of the sample.
Let us therefore consider a single SDD. Through the use of ray-tracing, each pixel in the XRF,;, maps is assigned
a value that quantifies fraction present between it and the center of the detector’s face, as shown in Fig. 2a. We
then select a seed pixel among the ones with the lowest amount of sample shielding from the detector (white
circle) and we identify all the pixels lying on the line going through this seed and the detector’s center, as shown
in Fig. 2b. We then pick a number of equally spaced pixels from this line (blue), in the direction moving away
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Figure 2. Coverage level map for the South-East SDD (a), showing the amount of sample in um present
between each pixel and the detector’s center. A first seed pixel, with minimal sample coverage (white circle) is
picked. Other seed pixels are identified along the line (blue) connecting the SDD’s center with this first seed (b).
The reconstruction process initializes through a first conical region of interest (c), which is resolved and fixed
before moving onto the next region (d).

from the SDD which is placed in the South-East corner of the image. For each of these new pixels a conical
region of interest (green) is identified, which encloses all the possible directions that an XRF photon can take to
hit the SDD’s active surface as shown in Fig. 2c. Within this green region, we then need to identify all the pos-
sible geometrical permutations there can be in placing the sample. This is accomplished by firstly recovering the
sample thickness map along z and expanding the sample in 3D, starting from a flat support in the xy plane and
then growing each pixel along z. Secondly, all viable permutations are generated by rigidly translating each pixel
in the green region along the z-axis in different combinations. The rationale behind this point is that among the
generated topography permutations there is also the correct 3D topography, or at least a close representation. The
only assumption made here to make a topography viable, is to have sample continuity along z. In other words,
the rigid translations that bring about gaps along z between adjacent pixels in the 2D conical region of interest
are not allowed. This is done in order to reduce the ensemble’s size and therefore ease the computational load.

Each 3D topography is then tested, by generating the elemental XRF,, maps through Eq. (4) and computing
the L1-norm map with respect to the corresponding XRF,, maps from the experiment. A score is assigned to each
candidate, which is equal to the pixel-wise sum of the L1-norm map. After all candidates have been validated,
the lowest scoring topography is fixed in 3D for the green region and the whole process is repeated in the next
conical region of interest in Fig. 2d (red region). This new conical ROI, will therefore partly contain an already
resolved portion of sample (green region), rendering the complete reconstruction process along the blue line
affordable in terms of computation. Once the reconstruction of a full blue line is finished, a new line is identified
which covers different portions of the sample and the whole process is repeated until completion.

In order to speed up the reconstruction, two different parameters were introduced in the algorithm: the per-
mutations threshold (8) and the Inverse Reconstruction oversampling parameter (IR,;). Regarding the former, it
determines the maximum number of candidate topographies that will be generated and tested inside the conical
regions of interest shown in Fig. 2¢,d. If for example, one such region has 10* total permutations available, by
setting & equal to 10°, the system will take a permutation in every 10 for testing. In this process the candidate
topographies are always sampled equidistantly from each other, in order to avoid selection biases. As for the latter
parameter, thanks to coverage level maps such as the one in Fig. 2a, it is possible to establish for each pixel what
is the most attenuated detector and normalize all coverage levels from the remaining detectors with this value.
If the normalized coverage level value of a detector for a specific pixel is smaller or equal to the selected IR,;,
then the pixel will be reconstructed for that detector, otherwise it will be excluded from the process (IR,s = 0
closest detector only, IR,s = 1all detectors). The last step to be considered before the final single 3D sample can
be derived, involves the merging of the different topographies computed independently from each detector. For
each pixel, we set the normalized coverage level values associated to each SDD, as the weights of a weighted
average. In this manner, the final 3D sample configuration is constructed in each pixel, by giving more weight
to the detectors which are least attenuated by the sample. The presented algorithm was developed in-house with
Python (Python Software Foundation) and the just-in-time compiler Numba.

Simulated sample. The sample simulated in this study consists of three hemispheres of radii 6, 9 and 12
um respectively to simulate cells of different sizes. The w; composition was based on the characteristic one of
human colon carcinoma cells LoVo'®, which consists of 61% C, 17% N and 16% O and average density value of
1.25 g/cm’. Three small regions of interest were chosen, in order to introduce an additional element, Magnesium
(Mg), with a wj of 4%. As required assumptions, the sample’s elemental composition is considered homogene-
ous along the z-axis and also the sample’s thickness along the same axis is considered to be continuous with no
interleaving gaps.

Quantitative evaluations. EM;; In Eq. (2) describes the XRF photons in every voxel source, prior to self-
absorption, allowing us to retrieve the mass of each element composing the sample. Calculating EM;; precisely
involves knowledge of both the sample’s 3D structure and the w; of all the elements therein. The latter could
be found by using the sample structure retrieved through the IR to compute Eq. (4) for different sets of mass
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Figure 3. Comparison of z-map (top row) and j5(Ep) p (bottom row), between the ground truth (left column)
and data recovered from STXM after 1000 iterations (right column).

fractions. The optimal set could then be chosen as the one minimizing the L1 norm between the XRF,p images
produced by varying the w; sets, and the experimental XRF maps. However, the generation of such a system to fit
w;j goes beyond the scope of this work. Here we simply show that knowledge of a 3D structure, as reconstructed
with the proposed algorithm, allows us to perform a quantitative correction of the elemental presence, provided
the correct wj are known.

Two EM;; matrices were calculated using the same 3D sample structure recovered through the IR: one with
the correct wj for all the elements (EM) and one with the incorrect w; using Eq. (5) by omitting Kgp (EM").
EM¢ and EM" are compared against the true emission matrix simulated (EM°) via Eq. (2), obtained using the
correct wj and the true 3D sample. The same comparison is carried out, on the XRF»p maps summed across all
detectors, having defined the image generated with: the correct mass fractions and IR sample structure (X XRF¢);
the incorrect mass fractions and the IR sample structure (£ XRF"); the correct mass fractions and the true 3D
sample matrix (X XRF®).

The statistical analysis consisted in determining the least square differences from the true images (AEM,,
AEM,., AXRF,, AXRF.). All images were summed along the z-axis before the analysis, which was then carried
out over 778 pixels constituting the entire 2D sample. Statistical significance in the difference of the mean values
was assessed through a paired t-test, after verifying the normality assumption, through the 1-sample Kolmogo-
rov-Smirnov test. Differences were considered to be significant for p <0.001.

Results

3D sample reconstruction. All necessary compositional information, such as the mass fractions of the
different elements w; present, the mass absorption coefficients of the elemental mixture making up the sample
at the different line energies 45(E;) and beam energy s (Ep), were derived through Egs. (5) and (6). The count
rate maps XRF® pertaining to the K,, emission line of Carbon, were chosen as the target images for the optimizer
of the ray-tracing IR algorithm. Carbon emission lines were chosen as an example since due to their low energy,
they are most subject to self-absorption. Thickness information was successfully extracted from STXM data
through the proposed iterative procedure, as can be observed in Fig. 3. After 1000 iterations the observed aver-
age percentage difference between the true z-map and the recovered one was —3.4+5.3%, while for 5(Ep) p the
difference was 2.9 +5.5%.

Figure 4 shows the comparison between various profiles of the actual artificial sample (top row) and the
reconstructed sample (bottom row). As it can be seen, most of the reconstructed sample already qualitatively
shows a good resemblance with the actual sample in terms of topographic features such as the slopes and val-
leys present when moving from one hemisphere to another. The overall similarity of the two structures is also
highlighted by the more quantitative evaluation of the volume percentage overlap which was found to be at 82%
with IR,s = 0.2 and 86% with IR,; = 1.

Cumulative counts correction. After the retrieval of a 3D sample structure through the IR, the exact
mass fractions of the elements present were employed in order to calculate XRF3p and XRF,p through Eq. (4)
for all SDDs. This was done in order to quantitatively evaluate the effects of the absorption correction based on
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Figure 5. XRF,p maps for the K, line of C of the XRF* data (a), XRF* data (b) and XRF¢ data (c) respectively,
displayed with the same logarithmic range. Each column displays images for all 8 SDDs comprising the LEXRF
system, namely the West (W), North-West (NW), North (N), North-East (NE), East (E), South-East (SE), South
(S) and South-West (SW) detectors.

the newly acquired 3D sample structure, which is derived from inexact mass fractions directly from the XRF
data. Figure 5a-c shows XRF,p maps of the cumulative counts for the K line of C for the XRF*, XRF* and
corrected data XRF° respectively, displayed with the same range. The XRF* and XRF¢ maps are both generated
using the same structure from the IR. While the former are obtained via the inexact mass fractions through
Eq. (5) by omitting the Kpp term, the latter are obtained using the exact mass fractions. The simulated data on
the other hand, is obtained by using the actual structure and mass fractions and is therefore used as the target
to be achieved by the correction. As it can be seen, the maps from the corrected structure qualitatively show a
good level similarity with the simulated data in terms of count rate, intensity and absorption features. The same
does not hold true for the uncorrected data which deviates more strongly from the simulated images, especially
in terms of count rates.

Figure 6a shows the sum of the count rates across all the SDDs for C, N and O, specifically for the line K,
and for the X XRF*, X XRF"* and £ XRF° data respectively. As it can be observed in the uncorrected maps, there
is a global and substantial drop in the count rates associated with all the elements. By directly confronting the
uncorrected images with the simulated ones it is evident that most of the count rates lost in the uncorrected
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Figure 6. Sum of the count rates in logarithmic scale, across all the SDDs of the ¥ XRF maps (a) and of the
EMj matrices (b), for elements C, N and O included in the simulation, specifically for the line K, and for the
simulated, absorption uncorrected and absorption corrected data respectively.

data, predominantly come from the central part of the cells. On the other hand the corrected maps overall show
count rates much closer to the simulated data. However, stronger deviation from the simulated intensities can
also be observed in regions of the corrected maps that correspond to a stronger deviation of the reconstructed
sample from the actual sample. Figure 6b shows the fluorescence emission matrices EM for line Ky, and for
the EM¥, EM® and EM* images of C, N and O, respectively. Similarly to Fig. 6a, we can appreciate the stronger
resemblance between the corrected and simulated data over the uncorrected and simulated data. Once again, the
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AZXRF, AZXRF, AEM, AEM,
C 3.76x10°£1.91x10°| 1.36x10°:1.33x10°| 29.09x10*+19.71x10*| 2.27x10*+1.45x 10"
N 734x10°£3.70x10°| 1.52x10°+1.35x10°| 13.48x10'+6.86x10*| 2.29x10%+1.46x 10*
0 1924x10°£9.56x10°| 3.99x10°£3.24x10°| 31.34x10*+15.60x10*| 5.73x10*+3.65x 10*

Table 1. Quantitative evaluation results. Results of the quantitative evaluation of the least squares differences
of the correct and incorrect images, from the simulated images. Reported values represent average
value + standard deviation.

uncorrected images systematically show lower count rates, especially as we move from the borders to the inner
parts of the cells. It is also interesting to notice that in Fig. 6a, the ¥ XRF* map of C shows a drop in signal within
the central part of the largest cell facing the other two cells, which is not observed in the homologous EM* map.

The quantitative evaluation regarding the average least squares difference of the uncorrected and corrected
maps from the simulated ones, was carried out on the X XRF maps and EM;; matrices for line K, of C, N
and O and is reported in Table 1. All t-tests resulted to be statistically significant to the 1-sample Kolmogo-
rov-Smirnov test and the paired sample t-test (p <0.001). Confirming the visual inspection of Figs. 5 and 6a,b,
the corrected images systematically demonstrated values close to the ground truth, both in the case of X XRF
(1.36x10°+1.33x 10° for C, 1.52x 10°+ 1.35x 10° for N and 3.99 x 10°+3.24 x 10° for O) and in case of EM;;
(2.27x10*+£1.45% 10* for C, 2.29x 10*+ 1.46 x 10* for N and 5.73 x 10*+3.65 x 10* for O) images.

Lastly, the performance of the IR was investigated across different intensities for I0 (from 10° to 10'°), dem-
onstrating a good level of robustness, with volume percentage overlap values ranging from 76 to 82%.

Discussion

Results seem to indicate that the proposed method recovered with good fidelity, the total volume of the analyzed
sample, which was attested at —4.2% with respect to the exact sample volume (4651 pm?). This figure is also in line
with the pixelwise average percentage difference found between the true thickness map and the one recovered
iteratively after 1000 steps from the STXM map, which was —3.4+5.3%. After recovering thickness information,
the IR algorithm was able to derive a 3D sample which overlapped with the original one by 82% in terms of vol-
ume with IR,s = 0.2. It was also found that precision in the reconstruction may be increased by choosing higher
values of this parameter. In this case for example, choosing IR,; = 1yielded a modest increase of 4% in precision.

The IR was robust against the inexact mass fractions which were derived directly from the data and deviated
on average from the correct ones by 53+ 5% for C, 15+ 6% for N and 12 +8% for O, respectively. This robust-
ness can probably be attributed to the optimization cost function, which consists of an L1 norm between the
count rates of the XRF experimental image versus the ones from the simulated image, for the specific pixel being
reconstructed. With this type of cost function, if the mass fractions being used are not exact, we will observe in
the simulated XRF maps a displacement in intensity which renders absolute quantification challenging. On the
other hand, since we are fixing the thickness and thus the available sample mass, we can expect the observed
intensity displacements to have a common order of magnitude throughout a given map, following a change in the
set of mass fractions. This translates into generating XRF simulated maps that have different absolute count rates
from the real images but have conserved intensity proportionality among pixels within each SDD. At the same
time, the intensity variation which is due to the topography variation only, while maintaining a fixed thickness,
operates at different orders of magnitude and can alter the aforementioned proportionality. The IR algorithm
developed for this study makes use of the intensity variation observed due to the topography variation once
thickness has been fixed and attempts to derive a 3D sample by recovering the intensity proportionality among
pixels rather than recovering exact count rates.

It was then verified whether the 3D reconstructed sample could be used as a way to calculate a 3D correction
for self-absorption of the XRF radiation. At a first glance, the individual XRF,p images reported in Fig. 5 and the
¥ XRF images in Fig. 6a, highlighted the strong resemblance between the corrected and simulated images. This
result was confirmed by the quantitative analysis reported in Table 1, where the average least squares difference
in the pixelwise count rates for ZXRF¢ resulted to be at most 1.36x 10°+1.33x 10° and 2.27 x 10*+ 1.45x 10*
for EM¢. Furthermore, by investigating into the XRF* of Carbon of Fig. 6a, it can be seen that the largest cell
demonstrates an absorption pattern moving towards the center of the image where the three cells meet. This
pattern is not observed instead in the EM* map of C in Fig. 6b, where the spherical symmetry in the signal is
well conserved. This found complementarity suggests firstly that for the energies (i.e. 277 eV for the K, line of
C) and spatial scales involved (i.e. um scale for cells) the absorption artefact is present and that a quantitative
correction of such effect can be feasible through the presented methodology. Overall, the quantitative analysis
seems to suggest that it is possible to employ the recovered 3D sample structure to numerically correct for the
self-absorption effects.

The results obtained in the self-absorption correction evaluation of this study are in good qualitative agree-
ment with the findings reported in a previous study by Malucelli et al.'. Namely, the recovery of the count rates in
the raw XRF maps of a human cell, which are strongly asymmetric prior to the correction due to self-absorption
and are modulated according to the position of their respective detector. The self-absorption correction proposed
by Malucelli et al. integrates the absorption term formulated in the FP method over the entire sample’s thickness
derived from the AFM, considering for each step of the integration, a single path defined by a single exit angle,
traveled equally by all particles. On the other hand, the presented method exploits Ray-Tracing in an attempt
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to accurately quantify all the paths traveled by the particles in each different voxel source. In this way, if gaps
or valleys are present between the source voxel and the detector, they are fully taken into account and do not
contribute to the attenuation of the XRF radiation. In other words, we argue that a true absorption correction
must be carried out at a 3D level as is suggested by Eq. (4).

In order to verify the robustness of the IR algorithm on datasets coming from different radiation sources,
including ones at lower energies than synchrotrons, a series of reconstructions were carried out on the same
simulated sample for a range of 10 values (between 10° and 10'° photons). It was found that the IR works well
also at lower 10 intensities (76% volume overlap with 10=10?). Furthermore, it was evaluated how varying the
oversampling parameter IRyg and the permutations threshold § would affect the reconstruction time of an
upscaled version of the simulated sample. This representation is exactly 2.5 times the size of the original sample
and is contained in a cubic grid of 100 x 100 x 100 pm®. It was found that when fixing § and using a value of 0.2
for the IRy, instead of 1.0, always yielded a 3D sample within 6% difference and up to a factor of 5 in speed gain.
At the same time, varying the 8 when fixing IR could yield a maximum gain factor of 3. By varying these two
parameters together, we could find a combination (IRys=0.2 and §=10*) that yielded a 3D sample of similar
precision (85% volume overlap with simulated sample) in just above 10 min.

The presented work also offers the basis for a 3D XRF simulation framework which can be used to simulate
the experimental outcome of synchrotron XRF experiments with virtually any acquisition geometry. The same
framework could also be used as the basis for developing a system capable of fitting different sets of mass frac-
tions over the STXM and XRF data provided for the IR. In this manner it would be possible in principle, after
having retrieved a 3D structure through the IR, to find an optimal set of mass fractions for the fixed thickness
chosen. Such a fitting system has not yet been developed and goes beyond the initial aims of this study which
involve recovering a 3D sample structure and showing that 3D self-absorption correction of XRF maps can in
principle be carried out through this structure. Future developments should therefore focus on the application
and evaluation of the proposed framework with actual XRF datasets for which the average density is known and
STXM data is available. At present, we are currently testing the IR algorithm on different types of samples that
could recently be acquired and that will be the object of future works.

Conclusion

In conclusion, through the presented IR algorithm based on ray-tracing and the use of multi-detector systems,
we aim to provide a novel methodology to retrieve a 3D representation of the sample with resolved topographical
landscape, from XRF data. Furthermore, we hope to have shown that starting from this sample representation
it is also possible to open the way for a quantitative correction of the self-absorption artifact at the 3D level.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable
request.

Code availability

We have provided a demo web application of the IR algorithm, where users can select from three simulated XRF
samples and experiment with the reconstruction parameters. The web application, together with usage instruc-
tions and anonymous login, can be found at: https://github.com/ElettraSciComp/xrfstir.

Received: 14 June 2022; Accepted: 9 November 2022
Published online: 22 November 2022

References

1. Rivers, M. L., Sutton, S. R. & Jones, K. W. X-ray microscopy IIL. Springer Ser. Opt. Sci. 67, 212-216 (1992).

2. Powers, J. et al. X-ray fluorescence imaging analysis of inscription provenance. J. Archaeol. Sci. 36, 343-350. https://doi.org/10.
1016/j.jas.2008.09.030 (2009).

3. Mantler, M. & Schreiner, M. X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom. 29, 3-17. https://doi.org/
10.1002/(SICI)1097-4539(200001/02)29:1%3C3::AID-XRS398%3E3.0.CO;2-O (2000).

4. Gianoncelli, A., Castaing, J., Bouquillon, A., Polvorinos, A. & Walter, P. Quantitative elemental analysis of Della Robbia glazes
with a portable XRF spectrometer and its comparison to PIXE methods. X-Ray Spectrom. 35, 365-369. https://doi.org/10.1002/
xrs.920 (2006).

5. Lintern, M., Anand, R., Ryan, C. & Peterson, D. Natural gold particles in Eucalyptus leaves and their relevance to exploration for
buried gold deposits. Nat. Commun. 4, 2614. https://doi.org/10.1038/ncomms3614 (2013).

6. Limburg, K., Huang, R. & Bilderback, D. Fish otolith trace element maps: New approaches with synchrotron microbeam X-ray
fluorescence. X-Ray Spectrom. 36, 336-342. https://doi.org/10.1002/xrs.980 (2007).

7. Kaulich, B. et al. Low-energy X-ray fluorescence microscopy opening new opportunities for bio-related research. J. R. Soc. Interface
6, S641-S647. https://doi.org/10.1098/rsif.2009.0157.focus (2009).

8. Kopittk, P. M. et al. Synchrotron-based X-ray fluorescence microscopy as a technique for imaging of elements in plants. Plant
Physiol. 178, 507-523. https://doi.org/10.1104/pp.18.00759 (2018).

9. Kaulich, B., Thibault, P, Gianoncelli, A. & Kiskinova, M. Transmission and emission x-ray microscopy: Operation modes, contrast
mechanisms and applications. J. Phys. Condens. Matter Inst. Phys. ]. 23, 083002. https://doi.org/10.1088/0953-8984/23/8/083002
(2011).

10. Bonizzoni, L., Maloni, A. & Milazzo, M. Evaluation of effects of irregular shape on quantitative XRF analysis of metal objects.
X-Ray Spectrom. 35, 390-399. https://doi.org/10.1002/xrs.926 (2006).

11. Bille, E, Kourousias, G., Luchinat, E., Kiskinova, M. & Gianoncelli, A. X-ray fluorescence microscopy artefacts in elemental maps
of topologically complex samples: Analytical observations, simulation and a map correction method. Spectrochim. Acta B 122,
23-30. https://doi.org/10.1016/j.sab.2016.05.012 (2016).

12. Geil, E. C. & Thorne, R. E. Correcting for surface topography in X-ray fluorescence imaging. J. Synchrotron Radiat. 21, 1358-1363.
https://doi.org/10.1107/S160057751401875X (2014).

Scientific Reports |

(2022) 12:20145 | https://doi.org/10.1038/s41598-022-24059-y nature portfolio


https://github.com/ElettraSciComp/xrfstir
https://doi.org/10.1016/j.jas.2008.09.030
https://doi.org/10.1016/j.jas.2008.09.030
https://doi.org/10.1002/(SICI)1097-4539(200001/02)29:1%3C3::AID-XRS398%3E3.0.CO;2-O
https://doi.org/10.1002/(SICI)1097-4539(200001/02)29:1%3C3::AID-XRS398%3E3.0.CO;2-O
https://doi.org/10.1002/xrs.920
https://doi.org/10.1002/xrs.920
https://doi.org/10.1038/ncomms3614
https://doi.org/10.1002/xrs.980
https://doi.org/10.1098/rsif.2009.0157.focus
https://doi.org/10.1104/pp.18.00759
https://doi.org/10.1088/0953-8984/23/8/083002
https://doi.org/10.1002/xrs.926
https://doi.org/10.1016/j.sab.2016.05.012
https://doi.org/10.1107/S160057751401875X

www.nature.com/scientificreports/

13. Smilgies, D.-M., Powers, J. A., Bilderback, D. H. & Thorne, R. E. Dual-detector X-ray fluorescence imaging of ancient artifacts
with surface relief. J. Synchrotron Radiat. 19, 547-550. https://doi.org/10.1107/S0909049512021164 (2012).

14. Scot, V., Fermandez, . E., Vincze, L. & Janssens, K. 3D extension of the Monte Carlo code MCSHAPE for photon-matter inter-
actions in heterogeneous media. Nucl. Instrum. Methods Phys. Res. B 263, 204-208. https://doi.org/10.1016/j.nimb.2007.04.205
(2007).

15. Hansson, M. & Isaksson, M. A Monte Carlo (MC) based individual calibration method for in vivo X-ray fluorescence analysis
(XRF). Phys. Med. Biol. 52, 2009-2019. https://doi.org/10.1088/0031-9155/52/7/015 (2007).

16. Trojek, T., Cechak, T. & Musilek, L. Monte Carlo simulations of disturbing effects in quantitative in-situ X-ray fluorescence analysis
and microanalysis. Nucl. Instrum. Methods Phys. Res. A 619, 266-269. https://doi.org/10.1016/j.nima.2009.11.079 (2010).

17. Trojek, T. Reduction of surface effects and relief reconstruction in X-ray fluorescence microanalysis of metallic objects. J. Anal.
At. Spectrom. 26, 1253-1257. https://doi.org/10.1039/C0JA00187B (2011).

18. Trojek, T. Reconstruction of the relief of an investigated object with scanning X-ray fluorescence microanalysis and Monte Carlo
simulations of surface effects. Appl. Radiat. Isotopes 70, 1206-1209. https://doi.org/10.1016/j.apradis0.2011.11.012 (2012).

19. Malucelli, E. et al. Quantitative chemical imaging of the intracellular spatial distribution of fundamental elements and light metals
in single cells. Anal. Chem. 86, 5108-5115. https://doi.org/10.1021/ac5008909 (2014).

20. Ge, M. et al. Three-dimensional imaging of grain boundaries via quantitative fluorescence X-ray tomography analysis. Commun.
Mater. 3, 37. https://doi.org/10.1038/s43246-022-00259-x (2022).

21. Di, Z. W. et al. Joint reconstruction of X-ray fluorescence and transmission tomography. Opt. Express 25, 13107-13124. https://
doi.org/10.1364/0E.25.013107 (2017).

22. Malucelli, E. et al. X-ray fluorescence microscopy of light elements in cells: Self-absorption correction by integration of composi-
tional and morphological measurements. J. Phys. Conf. Ser. 463, 012022. https://doi.org/10.1088/1742-6596/463/1/012022 (2013).

23. Gianoncelli, A., Kourousias, G., Merolle, L., Altissimo, M. & Bianco, A. Current status of the TwinMic beamline at Elettra: A soft
X-ray transmission and emission microscopy station. J. Synchrotron Radiat. 23, 1526-1537. https://doi.org/10.1107/S160057751
6014405 (2016).

24. Janssens, K. H. A., Adams, E C. V. & Rindby, A. Microscopic X-ray Fluorescence Analysis 171-190 (Wiley, 2000).

25. Thomsen, V. Basic fundamental parameters in X-ray fluorescence. Spectroscopy 22, 4650 (2007).

26. Storm, L. & Israel, H. I. Photon cross sections from 1 keV to 100 MeV for elements Z=1 to Z=100. At. Data Nucl. Data Tables 7,
565-681. https://doi.org/10.1016/S0092-640X(70)80017-1 (1970).

27. Hubbell, J. H. & Seltzer, S. M. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20
MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. NISTIR-5632. https://doi.org/10.18434/T4D01F
(1995).

28. Icelli, O., Erzeneoglu, S. & Gurbulak, B. Mass attenuation coefficients for n-type InSe, InSe:Gd, InSe: Ho and InSe: Er single crystals.
J. Quant. Spectrosc. Radiat. Transf. 90, 3-4. https://doi.org/10.1016/j.jqsrt.2004.04.012 (2005).

29. Mohammed, E. M., Razooqj, R. N., Majeed, M. A., Vijay, Y. K. & Surve, S. Self mass attenuation coefficients for mixture of some
3D elements Nil00-x Alx and Zn100-x-Alx at Am-241 (40mCi). Int. J. Recent Res. Rev. 3, 26-31 (2012).

30. Lam, S., Pitrou, A. & Seibert, S. Numba: A LLVM-based Python JIT compiler. In Proc. Second Workshop on the LLVM Compiler
Infrastructure in HPC, 1-7 (ACM, 2015).

Acknowledgements
The authors gratefully acknowledge the support of Dr. Francesco Guzzi from Elettra Sincrotrone Trieste, Italy.

Author contributions

EB., G.K. and A.G. conceived of the original idea, were in charge of direction and planning, supervised the
findings of this work and aided in the interpretation of the results. M.I. developed the algorithm, performed
the computations, numerical simulations, statistical analyses, drafted the manuscript, designed the figures and
aided in the interpretation of the result. A.K. supervised the findings of this work, aided in the interpretation
of the results. All authors discussed the results and with their comments and feedback contributed to the final
manuscript. All authors verified the numerical methods and the proposed web application of the algorithm.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.1I.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

Scientific Reports |

(2022) 12:20145 | https://doi.org/10.1038/s41598-022-24059-y nature portfolio


https://doi.org/10.1107/S0909049512021164
https://doi.org/10.1016/j.nimb.2007.04.205
https://doi.org/10.1088/0031-9155/52/7/015
https://doi.org/10.1016/j.nima.2009.11.079
https://doi.org/10.1039/C0JA00187B
https://doi.org/10.1016/j.apradiso.2011.11.012
https://doi.org/10.1021/ac5008909
https://doi.org/10.1038/s43246-022-00259-x
https://doi.org/10.1364/OE.25.013107
https://doi.org/10.1364/OE.25.013107
https://doi.org/10.1088/1742-6596/463/1/012022
https://doi.org/10.1107/S1600577516014405
https://doi.org/10.1107/S1600577516014405
https://doi.org/10.1016/S0092-640X(70)80017-1
https://doi.org/10.18434/T4D01F
https://doi.org/10.1016/j.jqsrt.2004.04.012
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Reconstruction of 3D topographic landscape in soft X-ray fluorescence microscopy through an inverse X-ray-tracing approach based on multiple detectors
	Methods
	XRF simulation. 
	Deriving sample thickness map. 
	Deriving compositional information for XRF simulation. 
	Ray-tracing based inverse reconstruction. 
	Simulated sample. 
	Quantitative evaluations. 

	Results
	3D sample reconstruction. 
	Cumulative counts correction. 

	Discussion
	Conclusion
	References
	Acknowledgements


