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Reconstruction of 3D topographic 
landscape in soft X‑ray fluorescence 
microscopy through an inverse 
X‑ray‑tracing approach based 
on multiple detectors
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George Kourousias 1

The study of X-ray fluorescence (XRF) emission spectra is a powerful technique used in applications 
that range from biology to cultural heritage. Key objectives of this technique include identification 
and quantification of elemental traces composing the analyzed sample. However, precise derivation 
of elemental concentration is often hampered by self-absorption of the XRF signal emitted by light 
constituents. This attenuation depends on the amount of sample present between the radiation 
source and detection system and allows for the exploitation of self-absorption in order to recover a 
sample topography. In this work, an X-ray-tracing application based on the use of multiple silicon drift 
detectors, is introduced to inversely reconstruct a 3D sample with correct topographical landscape, 
from 2D XRF count rates maps obtained from spectroscopy. The reconstruction was tested on the 
XRF maps of a simulated sample, which is composed of three cells with different size but similar 
composition. We propose to use the recovered 3D sample topography in order to numerically compute 
the self-absorption effects on the X-ray fluorescence radiation, thereby showing that a quantitative 
correction is possible. Lastly, we present a web application which implements the suggested 
methodology, in order to demonstrate its feasibility and applicability, available at: https://​github.​
com/​Elett​raSci​Comp/​xrfst​ir.

X-ray fluorescence (XRF) spectroscopy is a versatile and well-established investigation tool for qualitative detec-
tion and quantification of elemental distributions within different types of samples1. As such, this technique 
finds a wide range of applications, spanning from fields such as archeology2, cultural heritage3,4, geology5 and 
biology6,7. Systems that are based at synchrotrons often constitute the most advanced technological examples of 
these applications, having at their disposal a series of features, such as variable spot size below the micrometer 
and high particle flux8,9, that allow for finer analysis of complex samples.

The XRF radiation, which is generated within the constituent atoms of a sample by the photoelectric absorp-
tion of the incident beam, is emitted isotropically in every direction. Despite this characteristic behavior, the 
actual amount of XRF radiation emitted from a point source within the sample, may not be detected evenly 
among the available silicon drift detectors (SDD). This inconsistency in count rates can be attributed mainly to 
the self-absorption of the XRF radiation by the sample itself, which in turn depends on the difference in path 
length encountered by the XRF photons when traveling from the production point within the sample to different 
SDDs. In other words, the surface topography and the orientation of SDDs with respect to the sample surface 
and incident beam direction is responsible for modulating the XRF signal observed by the single detectors10. 
Depending on the severity in path length differences, the self-absorption effect could yield misleading results on 
the actual mass and concentration of the element being examined11. However, no straightforward solution has 
yet been found, due to the fact that there is no explicit way to decouple the absorption effects due to the sample 
topography and those due to its composition12,13.
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Over the years, different attempts have been made to introduce data analysis techniques capable of modeling 
XRF behavior within the scanned samples, in order to also provide a basis for quantitative information retrieval 
and correct for the self-absorption effect. For example, Monte Carlo algorithms have been implemented in order 
to simulate the emission of XRF radiation and its detection14–16. Alternatively, data analysis methods have also 
been implemented to correct for the angular dependence directly on the two-dimensional (2D) XRF maps that 
are collected by the SDDs, through the use of the Fundamental Parameter (FP) Method17–19. In particular, Trojek 
2011 successfully demonstrated the application of the FP Method to reconstruct the 2D surface relief map of a 
metallic object and reduce the effects of self-absorption on its XRF map17. This was achieved through the use of 
a single detector and knowledge of the angles between the source, the sample and the detector. However, this 
method does not provide a three-dimensional (3D) way to analyze the self-absorption effect at various depths, 
focusing primarily on the surface of the object and may not be appropriate for all scanned samples.

Steps towards a 3D characterization and correction of the problem, have been taken in more recent years20,21. 
In particular, in a work by Malucelli et al.19 the authors implemented a multimodal approach employing XRF 
Microscopy, Scanning Transmission X-ray microscopy (STXM) and Atomic Force Microscopy (AFM) on top 
of the FP method. Here, for each pixel in the 2D XRF maps, the absorption of both the incident beam and XRF 
radiation, is calculated by integrating the absorption term formulated in the FP method over the sample’s thick-
ness derived from the AFM22. The density map, also required in this process, is then derived from the STXM data. 
By adopting this approach, the authors were successful in retrieving quantitative maps of molar concentration 
of different elements contained within two cell types from information coming from 8 detectors pertaining to 
the Low Energy XRF (LEXRF) system present at the TwinMic beamline Sincrotrone Trieste (Trieste, Italy)23. 
However, the implementation of such multi-modal approaches may be impractical to adopt, as it requires differ-
ent types of image data acquisitions with different positioning and resolutions to be carefully registered together. 
Furthermore, the self-absorption term pertaining to the XRF radiation, is calculated for each pixel by summing 
together the emission within the corresponding sample volume and considering only a single possible path to 
be undertaken by the emitted radiation to reach its respective detector. In this manner, it is not possible to fully 
exploit the 3D topographic information of the sample and calculate for each 3D emission voxel, all the possible 
paths leading the radiation to the detectors. As a consequence, the effective length of the paths traveled may be 
underestimated by not considering gaps produced by valleys and hills in the topography, resulting in an inac-
curate quantification of the attenuation.

The presented study builds on the findings of a previous work by Billè et al.11, in which an XRF simulation 
framework was presented, to verify the effects of the self-absorption artifact on the elemental distribution of 
XRF imaging of cells. It was shown how strongly the topographical effects can dampen the count rates of fluo-
rescence emission lines pertaining to light elements such as Carbon (C), Nitrogen (N) and Oxygen (O). In the 
current work, we present a ray-tracing based method to inversely reconstruct a 3D sample with its topographi-
cal landscape, simply from 2D XRF maps acquired on multi-detector systems, together with an STXM map, an 
average density value and a maximum thickness value for the sample. Once the 3D sample structure has been 
reconstructed and its similarity with the actual simulated structure has been established, we propose to use it 
in order to numerically calculate the self-absorption effects exerted by the sample on the XRF radiation at a 3D 
level and show that a quantitative correction is possible.

Methods
We introduce a novel 3D Inversion Reconstruction (IR) algorithm, which derives a 3D sample topography start-
ing from 2D XRF images. The IR can be summarized into 3 main steps. First, we define a numerical simulation 
approach that from a 3D sample of known shape and composition, derives the corresponding 2D XRF maps 
that would be collected during a XRF experiment. Secondly, through the FP Method24, we obtain the sample’s 
elemental composition information necessary to run the simulation directly from the 2D XRF maps. Lastly, an 
in-house developed optimization approach based on ray-tracing, is employed to probe an ensemble of possible 
3D sample topographies, and isolate the one minimizing the L1 norm between the actual experimental XRF 
maps and the simulated ones.

XRF simulation.  To numerically resolve the absorption effects of the sample, we first characterize the data 
acquisition process for the SDD. The following considerations are based on the LEXRF detection system of 
TwinMic Beamline in Elettra Synchrotron23, comprising a set of 8 SDDs with an incident energy E0 between 400 
and 2200 eV. Analogous considerations can be made for similar systems carrying out low-energy XRF experi-
ments.

Figure 1 shows a typical XRF setup for one SDD. The incident radiation is aligned parallel to the z-axis of 
the sample’s frame of reference, investing the sample for a certain exposure time and with a specific spot, whose 
size defines the final image resolution of the XRF images. In this work the spot size was 1 μm2 isotropic and the 
incident intensity ( I0 ) was 108 photons/μm2 integrated over the entire time of exposure, mimicking the condi-
tions of a real experiment.

As radiation traverses the sample from its surface to the point of XRF radiation production, it is attenuated 
following the Beer–Lambert’s Law of Absorption I = I0e

−µs(E0)ρz , where I0 is the incident beam’s intensity, µs(E0) 
represents the total mass attenuation coefficient of the sample at the beam energy E0 , ρ represents the sample 
density and z is the traveled distance within the sample. As the incident radiation invests the sample, an absorp-
tion profile ABSs = µs(E0)ρdz is generated along the z−axis. Here, we propose to derive the sample thickness 
map along the incident beam direction (z-map) in an iterative fashion, starting from a Scanning Transmission 
X-ray Microscopy (STXM) map.
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Not all elements absorb the incoming radiation equally. To retrieve the fraction of the radiation which is 
absorbed via photoionization by every j-th element ABSj , we need to multiply ABSs by the mass fraction wj and 
by the ratio of the photoionization cross-section of the j-th element ( τj(E0) ) to µs at E025:

We then take into account the solid angle fraction covered by each detector (�/4π) and physical informa-
tion related to the emission process for XRF line i, such as the fluorescence yield ωj , the transition probability 
pij and the absorption jump ratio Jj , through the factor Yij(E0,Ei) = (�/4π)ωj pij Jj . We then compute the 3D 
fluorescence emission matrix EMij of any element j in the sample25:

During the acquisition, photons emitted from the same voxel can take α different linear paths of length δα 
towards the SDD. As it can be seen in Fig. 1, the differences in δα depend on the portion of the sample traveled 
by the photon and in turn by the sample’s topography. The probability PαT that an XRF photon of energy Ei , 
directed along a single path α, will be able to arrive unabsorbed at the SDD’s interface, is as follows:

We construct the 3D response matrix of any SDD ( XRF3D ) by multiplying Eq. (2) by Eq. (3) for every voxel 
and summing over all the possible α directions:

Here Nα represents the total number of α paths available to reach a given SDD. We divide EMij by Nα to redis-
tribute photons among all available paths. As fluorescence emission is an isotropic phenomenon, we expect the 
same number of photons to be emitted in all directions. EMij is thus independent of the undertaken path and 
can be moved outside of the summation:

where K is a 3D matrix representing the self-absorption effects exerted by the sample. K represents an average 
of all PαT across all possible paths. Equation (4) is a numerical construction, built from the FP method, that can 
be employed to simulate the 3D experimental response of any SDD, having provided the necessary information 
on sample geometry and composition. Furthermore, one can move from the 3D response matrix for an SDD, to 
its 2D analogous XRF2D , by summing Eq. (4) over the axis parallel to the incident beam:

Following, it will be shown how to obtain the sample’s compositional information from 2D experimental 
XRF maps. These will be then used to generate an ensemble of possible 3D sample topographies to be evaluated 
through an iterative optimization procedure based on ray-tracing and Eqs. (2) and (4).

Deriving sample thickness map.  We retrieve thickness information from the STXM data concurrently 
acquired with XRF data. Through approximate knowledge of the average sample density, maximum sample 
thickness and of the ranges of existence of both these quantities, it is possible to create an iterative procedure 

(1)ABSj = ABSs wj
τj(E0)

µs(E0)
= wj τ j(E0)ρ dz.

(2)EMij(z,Ei) = ABSjYij(E0,Ei)I0e
−µsρz

= wj ρ τ
j
(E0)

(

�

4π

)

ωj pij Jj I0e
−µsρzdz.

(3)PαT = e−µs(Ei)ρδα .

XRF3D =

Nα
∑

α=1

EMij

Nα

PαT ,

(4)XRF3D = EMij

Nα
∑

α=1

PαT
Nα

= EMij K ,

XRF2D =

∑

z
EMij K .

Figure 1.   XRF microscopy acquisition setup for a single SDD. The incident beam I0(red arrow) invests the 
sample parallel to the z-axis and travels a distance z before being absorbed, thereby isotropically producing XRF 
radiation, part of which is directed towards the SDD (blue arrows).
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which at first generates a z-map according to the Law of absorption19, by considering the product of µs(E0)ρ 
initially constant. Successively, the algorithm identifies pixels where the derived thickness changes abruptly from 
its nearest neighbors, by choosing a threshold according to the average rate of change observed throughout the 
whole sample. These pixels are then adjusted iteratively in terms of both thickness and density.

Deriving compositional information for XRF simulation.  The FP Method19,25 can be employed at a 
pixel level to retrieve the necessary compositional information, namely: wj and µS at the different Ei considered. 
wj is calculated by first finding the mass of each element mj:

where S is the surface area of the pixel, Ci represents the cumulative counts of the emission line i recorded in 
the XRF spectra, and KFP is an absorption correction factor related to both the incident and XRF radiation, as 
derived from the FP method:

where h is the total sample thickness along the z-axis for the pixel under consideration in the 2D XRF image, 
θ is the angle at which the incident beam invests the sample and ϕ represent all the possible different α paths 
available to reach the SDD. In the last passage of the equation, the term 

∑Nα
α=1

cosec(ϕα)
Nα

 has been substituted with 
〈cosec(ϕ)〉α . For most setups, like the one treated in this work, the incident beam is perpendicular to the sample 
and therefore the term cosec(θ) = 1 and can be omitted.

Once all masses in a pixel are known, a single wj is calculated by dividing the mass of said element mj by the 
total mass ms as follows, wj = mj/ms . The maps for µs(E0) and for µs(Ei) , can then be calculated pixelwise, using 
the elemental mixture rule26–29:

which takes into account the mass absorption coefficients of the single elements µj , known from universal tables, 
and wj.

We propose to firstly retrieve the mass fractions wj by discarding KFP in Eq. (5). Successively, maps of µs(E0) 
and µs(Ei) are calculated from Eq. (6) and employed by the ray-tracing IR algorithm to find a 3D topography. 
This topography attempts to minimize the L1 norm between the experimental XRF maps and the XRF2D maps 
obtained through simulation using the newly reconstructed sample and Eq. (4). At a second stage, we employ 
the reconstructed sample topography to calculate the emission matrix EMij , thereby attempting to retrieve the 
correct cumulative counts for each emission line i, before self-absorption takes place.

Ray‑tracing based inverse reconstruction.  The presented IR algorithm exploits both complementary 
and redundant information from the multiple detectors available to infer a sample topography. The general idea 
is to:

1.	 iteratively derive a z-map from a STXM scan with the use of Beer–Lambert’s Law, an average density value 
and a maximum thickness value for the sample;

2.	 use the z-map to generate an ensemble of possible topographies. This is limited by a geometric constraint 
imposing that along the beam’s axis the sample is continuous and free from gaps;

3.	 verify the goodness of each sample topography by calculating Eq. (4) and confronting the result of each 
simulated XRF2D map with the actual data, by means of the L1-norm.

The z-map derivation is an iterative procedure that requires estimates of the average sample density and the 
maximum sample thickness we can expect. In the first iteration we associate the most absorbing pixels in the 
STXM with the maximum expected thickness. We then consider temporarily, the product of density and mass 
attenuation coefficient as constant for every pixel. In this way we can calculate a thickness map for all the remain-
ing pixels. We then calculate over this thickness map the average slope present between each pixel and its nearest 
neighbors. This value is used as a threshold to select those pixels which seem to change thickness too abruptly 
with respect to the average change observed in the sample. All the identified pixels are then selected and their 
thickness value is replaced with the average thickness value of its nearest neighbors. At the same time the linear 
attenuation coefficient is re-calculated for these pixels from the STXM using the newly found thickness. A new 
iteration can now begin and repeat the whole process until completion.

During the IR, each SDD reconstructs a topography independently of the other detectors. Subsequently, the 
information from the different detectors is merged together to yield a single 3D representation of the sample. 
Let us therefore consider a single SDD. Through the use of ray-tracing, each pixel in the XRF2D maps is assigned 
a value that quantifies fraction present between it and the center of the detector’s face, as shown in Fig. 2a. We 
then select a seed pixel among the ones with the lowest amount of sample shielding from the detector (white 
circle) and we identify all the pixels lying on the line going through this seed and the detector’s center, as shown 
in Fig. 2b. We then pick a number of equally spaced pixels from this line (blue), in the direction moving away 

(5)mj =
CiS

I0Yij(E0,Ei)τj(E0)KFP
,

KFP =

1− e
−ρh

(

µs(E0)cosec(θ)+µs(Ei)
∑Nα

α=1
cosec(ϕα )

Nα

)

ρh
(

µs(E0)cosec(θ)+ µs(Ei)
∑Nα

α=1
cosec(ϕα)

Nα

) =
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(
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wjµj(Ei),
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from the SDD which is placed in the South-East corner of the image. For each of these new pixels a conical 
region of interest (green) is identified, which encloses all the possible directions that an XRF photon can take to 
hit the SDD’s active surface as shown in Fig. 2c. Within this green region, we then need to identify all the pos-
sible geometrical permutations there can be in placing the sample. This is accomplished by firstly recovering the 
sample thickness map along z and expanding the sample in 3D, starting from a flat support in the xy plane and 
then growing each pixel along z. Secondly, all viable permutations are generated by rigidly translating each pixel 
in the green region along the z-axis in different combinations. The rationale behind this point is that among the 
generated topography permutations there is also the correct 3D topography, or at least a close representation. The 
only assumption made here to make a topography viable, is to have sample continuity along z. In other words, 
the rigid translations that bring about gaps along z between adjacent pixels in the 2D conical region of interest 
are not allowed. This is done in order to reduce the ensemble’s size and therefore ease the computational load.

Each 3D topography is then tested, by generating the elemental XRF2D maps through Eq. (4) and computing 
the L1-norm map with respect to the corresponding XRF2D maps from the experiment. A score is assigned to each 
candidate, which is equal to the pixel-wise sum of the L1-norm map. After all candidates have been validated, 
the lowest scoring topography is fixed in 3D for the green region and the whole process is repeated in the next 
conical region of interest in Fig. 2d (red region). This new conical ROI, will therefore partly contain an already 
resolved portion of sample (green region), rendering the complete reconstruction process along the blue line 
affordable in terms of computation. Once the reconstruction of a full blue line is finished, a new line is identified 
which covers different portions of the sample and the whole process is repeated until completion.

In order to speed up the reconstruction, two different parameters were introduced in the algorithm: the per-
mutations threshold (δ) and the Inverse Reconstruction oversampling parameter ( IRos ). Regarding the former, it 
determines the maximum number of candidate topographies that will be generated and tested inside the conical 
regions of interest shown in Fig. 2c,d. If for example, one such region has 104 total permutations available, by 
setting δ equal to 103, the system will take a permutation in every 10 for testing. In this process the candidate 
topographies are always sampled equidistantly from each other, in order to avoid selection biases. As for the latter 
parameter, thanks to coverage level maps such as the one in Fig. 2a, it is possible to establish for each pixel what 
is the most attenuated detector and normalize all coverage levels from the remaining detectors with this value. 
If the normalized coverage level value of a detector for a specific pixel is smaller or equal to the selected IRos , 
then the pixel will be reconstructed for that detector, otherwise it will be excluded from the process ( IRos = 0 
closest detector only, IRos = 1 all detectors). The last step to be considered before the final single 3D sample can 
be derived, involves the merging of the different topographies computed independently from each detector. For 
each pixel, we set the normalized coverage level values associated to each SDD, as the weights of a weighted 
average. In this manner, the final 3D sample configuration is constructed in each pixel, by giving more weight 
to the detectors which are least attenuated by the sample. The presented algorithm was developed in-house with 
Python (Python Software Foundation) and the just-in-time compiler Numba30.

Simulated sample.  The sample simulated in this study consists of three hemispheres of radii 6, 9 and 12 
µm respectively to simulate cells of different sizes. The wj composition was based on the characteristic one of 
human colon carcinoma cells LoVo19, which consists of 61% C, 17% N and 16% O and average density value of 
1.25 g/cm3. Three small regions of interest were chosen, in order to introduce an additional element, Magnesium 
(Mg), with a wj of 4%. As required assumptions, the sample’s elemental composition is considered homogene-
ous along the z-axis and also the sample’s thickness along the same axis is considered to be continuous with no 
interleaving gaps.

Quantitative evaluations.  EMij In Eq. (2) describes the XRF photons in every voxel source, prior to self-
absorption, allowing us to retrieve the mass of each element composing the sample. Calculating EMij precisely 
involves knowledge of both the sample’s 3D structure and the wj of all the elements therein. The latter could 
be found by using the sample structure retrieved through the IR to compute Eq. (4) for different sets of mass 

Figure 2.   Coverage level map for the South-East SDD (a), showing the amount of sample in µm present 
between each pixel and the detector’s center. A first seed pixel, with minimal sample coverage (white circle) is 
picked. Other seed pixels are identified along the line (blue) connecting the SDD’s center with this first seed (b). 
The reconstruction process initializes through a first conical region of interest (c), which is resolved and fixed 
before moving onto the next region (d).
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fractions. The optimal set could then be chosen as the one minimizing the L1 norm between the XRF2D images 
produced by varying the wj sets, and the experimental XRF maps. However, the generation of such a system to fit 
wj goes beyond the scope of this work. Here we simply show that knowledge of a 3D structure, as reconstructed 
with the proposed algorithm, allows us to perform a quantitative correction of the elemental presence, provided 
the correct wj are known.

Two EMij matrices were calculated using the same 3D sample structure recovered through the IR: one with 
the correct wj for all the elements ( EMc ) and one with the incorrect wj using Eq. (5) by omitting KFP ( EMu ). 
EMc and EMu are compared against the true emission matrix simulated ( EMs ) via Eq. (2), obtained using the 
correct wj and the true 3D sample. The same comparison is carried out, on the XRF2D maps summed across all 
detectors, having defined the image generated with: the correct mass fractions and IR sample structure ( �XRFc ); 
the incorrect mass fractions and the IR sample structure ( �XRFu ); the correct mass fractions and the true 3D 
sample matrix ( �XRFs).

The statistical analysis consisted in determining the least square differences from the true images (�EMu, 
�EMc , �XRFu, �XRFc  ). All images were summed along the z-axis before the analysis, which was then carried 
out over 778 pixels constituting the entire 2D sample. Statistical significance in the difference of the mean values 
was assessed through a paired t-test, after verifying the normality assumption, through the 1-sample Kolmogo-
rov–Smirnov test. Differences were considered to be significant for p < 0.001.

Results
3D sample reconstruction.  All necessary compositional information, such as the mass fractions of the 
different elements wj present, the mass absorption coefficients of the elemental mixture making up the sample 
at the different line energies µs(Ei) and beam energy µs(E0) , were derived through Eqs. (5) and (6). The count 
rate maps XRFs pertaining to the Kα emission line of Carbon, were chosen as the target images for the optimizer 
of the ray-tracing IR algorithm. Carbon emission lines were chosen as an example since due to their low energy, 
they are most subject to self-absorption. Thickness information was successfully extracted from STXM data 
through the proposed iterative procedure, as can be observed in Fig. 3. After 1000 iterations the observed aver-
age percentage difference between the true z-map and the recovered one was − 3.4 ± 5.3%, while for µs(E0)ρ the 
difference was 2.9 ± 5.5%.

Figure 4 shows the comparison between various profiles of the actual artificial sample (top row) and the 
reconstructed sample (bottom row). As it can be seen, most of the reconstructed sample already qualitatively 
shows a good resemblance with the actual sample in terms of topographic features such as the slopes and val-
leys present when moving from one hemisphere to another. The overall similarity of the two structures is also 
highlighted by the more quantitative evaluation of the volume percentage overlap which was found to be at 82% 
with IRos = 0.2 and 86% with IRos = 1.

Cumulative counts correction.  After the retrieval of a 3D sample structure through the IR, the exact 
mass fractions of the elements present were employed in order to calculate XRF3D and XRF2D through Eq. (4) 
for all SDDs. This was done in order to quantitatively evaluate the effects of the absorption correction based on 

Figure 3.   Comparison of z-map (top row) and µs(E0)ρ (bottom row), between the ground truth (left column) 
and data recovered from STXM after 1000 iterations (right column).
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the newly acquired 3D sample structure, which is derived from inexact mass fractions directly from the XRF 
data. Figure 5a–c shows XRF2D maps of the cumulative counts for the Kα line of C for the XRFs , XRFu and 
corrected data XRFc respectively, displayed with the same range. The XRFu and XRFc maps are both generated 
using the same structure from the IR. While the former are obtained via the inexact mass fractions through 
Eq. (5) by omitting the KFP term, the latter are obtained using the exact mass fractions. The simulated data on 
the other hand, is obtained by using the actual structure and mass fractions and is therefore used as the target 
to be achieved by the correction. As it can be seen, the maps from the corrected structure qualitatively show a 
good level similarity with the simulated data in terms of count rate, intensity and absorption features. The same 
does not hold true for the uncorrected data which deviates more strongly from the simulated images, especially 
in terms of count rates.

Figure 6a shows the sum of the count rates across all the SDDs for C, N and O, specifically for the line Kα 
and for the �XRFs , �XRFu and �XRFc data respectively. As it can be observed in the uncorrected maps, there 
is a global and substantial drop in the count rates associated with all the elements. By directly confronting the 
uncorrected images with the simulated ones it is evident that most of the count rates lost in the uncorrected 

Figure 4.   Comparison of simulated sample (top row) versus the reconstructed sample (bottom row).

Figure 5.   XRF2D maps for the Kα line of C of the XRFs data (a), XRFu data (b) and XRFc data (c) respectively, 
displayed with the same logarithmic range. Each column displays images for all 8 SDDs comprising the LEXRF 
system, namely the West (W), North-West (NW), North (N), North-East (NE), East (E), South-East (SE), South 
(S) and South-West (SW) detectors.
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data, predominantly come from the central part of the cells. On the other hand the corrected maps overall show 
count rates much closer to the simulated data. However, stronger deviation from the simulated intensities can 
also be observed in regions of the corrected maps that correspond to a stronger deviation of the reconstructed 
sample from the actual sample. Figure 6b shows the fluorescence emission matrices EM for line Kα , and for 
the EMu , EMs and EMc images of C, N and O, respectively. Similarly to Fig. 6a, we can appreciate the stronger 
resemblance between the corrected and simulated data over the uncorrected and simulated data. Once again, the 

Figure 6.   Sum of the count rates in logarithmic scale, across all the SDDs of the �XRF maps (a) and of the 
EMij matrices (b), for elements C, N and O included in the simulation, specifically for the line Kα and for the 
simulated, absorption uncorrected and absorption corrected data respectively.
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uncorrected images systematically show lower count rates, especially as we move from the borders to the inner 
parts of the cells. It is also interesting to notice that in Fig. 6a, the �XRFs map of C shows a drop in signal within 
the central part of the largest cell facing the other two cells, which is not observed in the homologous EMs map.

The quantitative evaluation regarding the average least squares difference of the uncorrected and corrected 
maps from the simulated ones, was carried out on the �XRF maps and EMij matrices for line Kα of C, N 
and O and is reported in Table 1. All t-tests resulted to be statistically significant to the 1-sample Kolmogo-
rov–Smirnov test and the paired sample t-test (p < 0.001). Confirming the visual inspection of Figs. 5 and 6a,b, 
the corrected images systematically demonstrated values close to the ground truth, both in the case of �XRF 
(1.36 × 105 ± 1.33 × 105 for C, 1.52 × 105 ± 1.35 × 105 for N and 3.99 × 105 ± 3.24 × 105 for O) and in case of EMij 
(2.27 × 104 ± 1.45 × 104 for C, 2.29 × 104 ± 1.46 × 104 for N and 5.73 × 104 ± 3.65 × 104 for O) images.

Lastly, the performance of the IR was investigated across different intensities for I0 (from 103 to 1010), dem-
onstrating a good level of robustness, with volume percentage overlap values ranging from 76 to 82%.

Discussion
Results seem to indicate that the proposed method recovered with good fidelity, the total volume of the analyzed 
sample, which was attested at − 4.2% with respect to the exact sample volume (4651 μm3). This figure is also in line 
with the pixelwise average percentage difference found between the true thickness map and the one recovered 
iteratively after 1000 steps from the STXM map, which was − 3.4 ± 5.3%. After recovering thickness information, 
the IR algorithm was able to derive a 3D sample which overlapped with the original one by 82% in terms of vol-
ume with IRos = 0.2 . It was also found that precision in the reconstruction may be increased by choosing higher 
values of this parameter. In this case for example, choosing IRos = 1 yielded a modest increase of 4% in precision.

The IR was robust against the inexact mass fractions which were derived directly from the data and deviated 
on average from the correct ones by 53 ± 5% for C, 15 ± 6% for N and 12 ± 8% for O, respectively. This robust-
ness can probably be attributed to the optimization cost function, which consists of an L1 norm between the 
count rates of the XRF experimental image versus the ones from the simulated image, for the specific pixel being 
reconstructed. With this type of cost function, if the mass fractions being used are not exact, we will observe in 
the simulated XRF maps a displacement in intensity which renders absolute quantification challenging. On the 
other hand, since we are fixing the thickness and thus the available sample mass, we can expect the observed 
intensity displacements to have a common order of magnitude throughout a given map, following a change in the 
set of mass fractions. This translates into generating XRF simulated maps that have different absolute count rates 
from the real images but have conserved intensity proportionality among pixels within each SDD. At the same 
time, the intensity variation which is due to the topography variation only, while maintaining a fixed thickness, 
operates at different orders of magnitude and can alter the aforementioned proportionality. The IR algorithm 
developed for this study makes use of the intensity variation observed due to the topography variation once 
thickness has been fixed and attempts to derive a 3D sample by recovering the intensity proportionality among 
pixels rather than recovering exact count rates.

It was then verified whether the 3D reconstructed sample could be used as a way to calculate a 3D correction 
for self-absorption of the XRF radiation. At a first glance, the individual XRF2D images reported in Fig. 5 and the 
�XRF images in Fig. 6a, highlighted the strong resemblance between the corrected and simulated images. This 
result was confirmed by the quantitative analysis reported in Table 1, where the average least squares difference 
in the pixelwise count rates for �XRFc resulted to be at most 1.36 × 105 ± 1.33 × 105 and 2.27 × 104 ± 1.45 × 104 
for EMc . Furthermore, by investigating into the XRFs of Carbon of Fig. 6a, it can be seen that the largest cell 
demonstrates an absorption pattern moving towards the center of the image where the three cells meet. This 
pattern is not observed instead in the EMs map of C in Fig. 6b, where the spherical symmetry in the signal is 
well conserved. This found complementarity suggests firstly that for the energies (i.e. 277 eV for the Kα line of 
C) and spatial scales involved (i.e. μm scale for cells) the absorption artefact is present and that a quantitative 
correction of such effect can be feasible through the presented methodology. Overall, the quantitative analysis 
seems to suggest that it is possible to employ the recovered 3D sample structure to numerically correct for the 
self-absorption effects.

The results obtained in the self-absorption correction evaluation of this study are in good qualitative agree-
ment with the findings reported in a previous study by Malucelli et al.19. Namely, the recovery of the count rates in 
the raw XRF maps of a human cell, which are strongly asymmetric prior to the correction due to self-absorption 
and are modulated according to the position of their respective detector. The self-absorption correction proposed 
by Malucelli et al. integrates the absorption term formulated in the FP method over the entire sample’s thickness 
derived from the AFM, considering for each step of the integration, a single path defined by a single exit angle, 
traveled equally by all particles. On the other hand, the presented method exploits Ray-Tracing in an attempt 

Table 1.   Quantitative evaluation results. Results of the quantitative evaluation of the least squares differences 
of the correct and incorrect images, from the simulated images. Reported values represent average 
value ± standard deviation.

��XRFu ��XRFc �EMu �EMc

C 3.76 × 105 ± 1.91 × 105 1.36 × 105 ± 1.33 × 105 29.09 × 104 ± 19.71 × 104 2.27 × 104 ± 1.45 × 104

N 7.34 × 105 ± 3.70 × 105 1.52 × 105 ± 1.35 × 105 13.48 × 104 ± 6.86 × 104 2.29 × 104 ± 1.46 × 104

O 19.24 × 105 ± 9.56 × 105 3.99 × 105 ± 3.24 × 105 31.34 × 104 ± 15.60 × 104 5.73 × 104 ± 3.65 × 104
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to accurately quantify all the paths traveled by the particles in each different voxel source. In this way, if gaps 
or valleys are present between the source voxel and the detector, they are fully taken into account and do not 
contribute to the attenuation of the XRF radiation. In other words, we argue that a true absorption correction 
must be carried out at a 3D level as is suggested by Eq. (4).

In order to verify the robustness of the IR algorithm on datasets coming from different radiation sources, 
including ones at lower energies than synchrotrons, a series of reconstructions were carried out on the same 
simulated sample for a range of I0 values (between 103 and 1010 photons). It was found that the IR works well 
also at lower I0 intensities (76% volume overlap with I0 = 103). Furthermore, it was evaluated how varying the 
oversampling parameter IROS and the permutations threshold δ would affect the reconstruction time of an 
upscaled version of the simulated sample. This representation is exactly 2.5 times the size of the original sample 
and is contained in a cubic grid of 100 × 100 × 100 μm3. It was found that when fixing δ and using a value of 0.2 
for the IROS, instead of 1.0, always yielded a 3D sample within 6% difference and up to a factor of 5 in speed gain. 
At the same time, varying the δ when fixing IROS, could yield a maximum gain factor of 3. By varying these two 
parameters together, we could find a combination (IROS = 0.2 and δ = 104) that yielded a 3D sample of similar 
precision (85% volume overlap with simulated sample) in just above 10 min.

The presented work also offers the basis for a 3D XRF simulation framework which can be used to simulate 
the experimental outcome of synchrotron XRF experiments with virtually any acquisition geometry. The same 
framework could also be used as the basis for developing a system capable of fitting different sets of mass frac-
tions over the STXM and XRF data provided for the IR. In this manner it would be possible in principle, after 
having retrieved a 3D structure through the IR, to find an optimal set of mass fractions for the fixed thickness 
chosen. Such a fitting system has not yet been developed and goes beyond the initial aims of this study which 
involve recovering a 3D sample structure and showing that 3D self-absorption correction of XRF maps can in 
principle be carried out through this structure. Future developments should therefore focus on the application 
and evaluation of the proposed framework with actual XRF datasets for which the average density is known and 
STXM data is available. At present, we are currently testing the IR algorithm on different types of samples that 
could recently be acquired and that will be the object of future works.

Conclusion
In conclusion, through the presented IR algorithm based on ray-tracing and the use of multi-detector systems, 
we aim to provide a novel methodology to retrieve a 3D representation of the sample with resolved topographical 
landscape, from XRF data. Furthermore, we hope to have shown that starting from this sample representation 
it is also possible to open the way for a quantitative correction of the self-absorption artifact at the 3D level.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Code availability
We have provided a demo web application of the IR algorithm, where users can select from three simulated XRF 
samples and experiment with the reconstruction parameters. The web application, together with usage instruc-
tions and anonymous login, can be found at: https://​github.​com/​Elett​raSci​Comp/​xrfst​ir.
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