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3D scattering microphantom 
sample to assess quantitative 
accuracy in tomographic phase 
microscopy techniques
Wojciech Krauze1*, Arkadiusz Kuś1, Michał Ziemczonok1, Max Haimowitz2, 
Shwetadwip Chowdhury2 & Małgorzata Kujawińska1

In this paper we present a structurally-complex biomimetic scattering structure, fabricated with two-
photon polymerization, and utilize this object in order to benchmark a computational imaging system. 
The phantom allows to tailor the scattering by modifying its degrees of freedom i.e. refractive index 
contrast and scattering layer dimensions and incorporates a 3D imaging quality test, representing a 
single cell within tissue. While the sample may be used with multiple 3D microscopy techniques, we 
demonstrate the impact of scattering on three tomographic phase microscopy (TPM) reconstruction 
methods. One of these methods assumes the sample to be weak-scattering, while the other two 
take multiple scattering into account. The study is performed at two wavelengths (visible and near-
infrared), which serve as a scaling factor for the scattering phenomenon. We find that changing the 
wavelength from visible into near-infrared impacts the applicability of TPM reconstruction methods. 
As a result of reduced scattering in near-infrared region, the multiple-scattering-oriented techniques 
perform in fact worse than a method aimed for weak-scattering samples. This implies a necessity of 
selecting proper approach depending on sample’s scattering characteristics even in case of subtle 
changes in the object-light interaction.

One of the modern challenges in computational optics is to image scattering samples with high resolution1. This 
can be attributed to the fact that complex biological structures such as spheroids or organoids tend to be more 
relevant models than 2D cell cultures e.g. for drug discovery2. Also, most in vivo imaging techniques require the 
probing light to pass through the complex structure of a tissue which highly limits imaging depths due to mul-
tiple scattering. This demand stimulates the development of new methods1,3–5, however, it is difficult to select an 
appropriate one based on the scattering strength of the analyzed specimen. For this reason a versatile, repeatable 
and quantitative method for the evaluation of different imaging systems and algorithms is essential to determine 
their limits of applicability depending on the object’s scattering properties. One possibility is to use calibrated 
microphantoms as imaging targets. Unfortunately, existing microphantoms are typically either weak-scattering 
(e.g. index-matched microspheres) or overly simplistic (e.g. index-mismatched microspheres)6,7 compared to 
the types of heterogenously scattering multicellular samples that multiple-scattering methods are intended for. 
This is a critical limitation when characterizing computational imaging methods that utilize nonconvex solvers, 
where iterative convergence depends on the complexity of the energy landscape and directly associates with a 
sample’s 3D complexity8.

In this work we present a 3D-printed microphantom with multiple-scattering refractive index (RI) distri-
bution. To do so, we leverage recent developments in 3D printing via direct laser writing9–12. Among multi-
ple available 3D printing techniques13–18, we chose a two-photon polymerization that enables 3D printing of 
microphantom samples with known geometry and calibrated RI. When compared to other implementations 
of direct laser writing, it allows (1) to control the RI with relatively high modulation range, (2) to adjust the RI 
contrast or scattering strength post-fabrication using different immersion liquid and (3) to handle and measure 
the microphantom in the same way as biological specimens. Next, we present the application of the phantom in 
the field of tomographic phase microscopy (TPM), a technique which has demonstrated impressive biological 
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imaging results in prior works. However, it is important to note that all computational imaging methods can be 
evaluated with the proposed procedure.

TPM is a quantitative, label-free imaging method that utilizes optical projections through a semi-transparent 
sample along various illumination angles to reconstruct the sample’s 3D RI. This method has found several 
applications in biological imaging, where RI is directly related to the dry mass distribution at the cellular and 
subcellular levels. Refractive index and dry mass are known to be crucial factors in analyzing the current stage 
of cell cycle19, cell structure20,21, photobiochemical effects on cells22, influence of external factors on cellular 
parameters23,24 and many others. Given the wealth of information provided by the dry mass at the single-cell 
level, there is significant demand to extend the capability to analyze dry mass to large multicellular clusters, thick 
tissue slices, or whole microorganisms. However, to reconstruct 3D RI, traditional TPM methods utilize critical 
assumptions in their computational reconstruction methodologies that rely on the sample being weakly scat-
tering25. These assumptions limit samples to having thicknesses on the order of only tens of microns. For thick, 
complex samples, reconstruction frameworks that accommodate for multiple scattering must be utilized. To this 
end, numerous TPM approaches have been proposed in recent years that introduce new frameworks to accom-
modate multiple scattering26–31. Notably, these approaches utilize nonlinear and nonconvex solvers to iteratively 
solve for a sample’s 3D RI. Though these methods have demonstrated impressive results in reconstructing RI in 
multiple-scattering samples, their quantitative accuracy has not yet been robustly characterized experimentally, 
and the presented results usually do not allow comparison of different methods in order to select proper approach 
for a given scattering level in a sample. The general strategy to experimentally evaluate quantitative accuracy in 
TPM methods is to reconstruct 3D RI in samples with known RI distributions6,7,32. A multiple-scattering TPM 
method that outputs accurate 3D RI reconstructions of a weakly scattering or overly simplistic microphantom 
cannot be expected to output similarly accurate RI reconstructions for more complex multiple-scattering samples, 
where the probability of converging to local minima is drastically higher. To robustly characterize the quantitative 
accuracy of multiple-scattering TPM methods, it is imperative to use microphantoms with known 3D RI that 
mimic the structural complexity of the types of samples that the TPM methods are intended to image. To the best 
of our knowledge, these types of gold-standard multiple-scattering microphantoms do not exist.

Results
In this section we present the design of the 3D printed microphantom and its application in evaluation of three 
TPM reconstruction methods.

3D printed microphantom.  The scattering microphantom we designed and 3D printed consists of a cell-
like target with internal test structures33 embedded within a pseudo-random distribution of rods that switch 
their orientation across various layers (Fig. 1a). The width and height of each rod is equal to 0.5 µ m and 1.8 µ m 
respectively. The lateral distance between the rods in each layer is randomized between 0.7 µ m to 3 µ m and the 
layers are stacked vertically every 1.4 µ m. The resulting structure is transparent (over 99% transmittance for the 

Figure 1.   (a) Half-section view of the scattering microphantom design. (b) SEM image of a scattering 
layer made out of quasi-randomly distributed rods. (c) Individual rod that comprises a scattering layer. (d) 
Visualization of the 3D RI distribution of the imaging target—cell phantom. Subcellular features, such as 
resolution targets (shown in the inset) and cell nucleoli, are enclosed in truncated ellipsoid with the external 
dimensions of 30 µ m × 25 µ m × 12 µ m, which is then embedded in the center of the 60 µ m × 60 µ m × 40 µ m 
scattering cube.
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extinction coefficient of 0.1 mm−134) and multiple scattering35. The final scattering region is a 60 µ m × 60 µ m × 
40 µ m cube with a fill-factor of roughly 25% (fraction of volume occupied by the polymer).

The cell-like target embedded within the layers of randomly distributed rods mimic a single biological cell 
encased within a scattering volume, which represents e.g. tissue. The cell-target comprises of substructures that 
enable assessment of quantitative accuracy in TPM imaging systems36. Information about 3D printing procedure 
are given in Sect. “3D scattering microphantom fabrication”. The main features within the cell target include 
resolution test targets, nucleoli suspended in a nucleus, and a region of slow RI variation (see Fig. 1d). Notably, 
the resolution test target comprises of lines with increasing spatial frequency37 up to 1667 lp/mm. By assessing 
the maximum spatial frequency of lines that can be distinguished within the cell test target, the imaging resolu-
tion of a TPM method of choice can be characterized and potentially compared to different methods of assessing 
resolution described by other research groups38,39. The pseudo-random distribution of rods that compose the 
scattering portion of the whole microphantom are suppressed within 0.5 µ m of the cell target and do not intersect 
with any of the test structures. A model of the phantom is available in Dataset 140.

TPM systems evaluation.  Three TPM reconstruction methods were implemented and evaluated through 
comparison of tomographic reconstructions of the proposed microphantom. The methods are: (1) Gerchberg-
Paopulis with support constraint (GPSC)41, (2) multi-slice beam-propagation with electric-field measurements 
(MSBP-E)42 and (3) multi-slice beam-propagation with intensity-only measurements (MSBP-I)31. In order to 
perform the comparison, the phantom has been measured with the TPM device and two datasets were com-
posed from the complex-valued scattered field measurements of the microphantom being illuminated at dif-
ferent angles, using both 633 nm and 835nm wavelengths. For GPSC and MSBP-E, these datasets were used 
directly. For MSBP-I, only the amplitude components were used. The measurements and their corresponding 3D 
RI reconstructions are available in Dataset 140.

Figure 2 shows the reconstruction results for both wavelengths. We characterize lateral (x and y) resolution 
of the TPM reconstructions by visualizing the resolution test lines inside the microphantom. To quantitatively 
compare the three TPM reconstruction methods, horizontal and vertical cross-sectional plots across these reso-
lution tests were generated by computing the average and standard-deviation of the pixel-values across rows or 
columns adjacent to the dashed white a-a and b-b lines, by ±4 pixels. These cross-sectional plots are shown below.

Discussion
The known complex geometry and RI distribution of the developed microphantom allows to show that changing 
the wavelength from visible into near-infrared impacts the applicability of TPM reconstruction methods43,44. 
The magnified views of the resolution test region after reconstructing the microphantom using the GPSC algo-
rithm with 633 nm wavelength light reveals significant grainy artifacts which occlude the line features within 
the microphantom’s test region. We note that these artifacts are heavily decreased when reconstructing with 835 
nm wavelength light. This suggests that, at 633 nm wavelength, the microphantom is too highly-scattering for 
GPSC to be applicable. The decreased GPSC reconstruction artifacts for 835 nm matches conventional knowledge 
that longer wavelengths of light are more resistant to scattering than shorter wavelengths. In order to confirm 
that this observation is due to reduced scattering and not different noise characteristics between the two light 
sources, we analyzed the standard deviation of phase-noise in an object-free region within the input datasets. For 
633 nm wavelength light, a phase-noise standard deviation of σ = 0.10 radians was observed, while for 835 nm 
wavelength light, a phase-noise standard deviation of σ = 0.08 radians was observed. Given such a small varia-
tion between these noise characteristics, we conclude that the major factor in the GPSC reconstruction quality 
that affects its ability to visualize the microphantom’s test lines is the scattering strength of the microphantom 
at the two different wavelengths.

Notably, both MSBP-E and MSBP-I use total-variation (TV) regularization in order to stabilize the con-
vergence of the nonconvex iterative solver in the presence of noise45. Especially in the case of using 633 nm 
wavelength light, TV regularization results in 3D RI reconstructions with less noise compared to the 3D recon-
structions computed via GPSC, which does not use TV regularization. This can be directly visualized in the 2D 
cross-sections in Fig. 2, and is confirmed by the bounds of standard deviation shown in the 1D cross-sectional 
plots. However, the drawback of regularization is that it has a blurring effect on high-resolution features. Because 
the microphantom is less scattering in 835 nm wavelength light, only GPSC managed to reconstruct the high 
spatial-frequency test lines within the microphantom. Typically, the strength of TV regularization is manually 
tuned to fit experimental factors and balance the tradeoff between achieving iterative stability versus high imag-
ing resolution.

In terms of the average RI, the knowledge about the ground truth RI distribution of the phantom makes it pos-
sible to quantitatively compare reconstruction results with GPSC, MSBP-E, and MSBP-I. We see that all methods 
successfully capture the bulk characteristics of the microphantom. As described above, the 3D reconstruction 
via GPSC exhibits grainy artifacts when using 633 nm wavelength light, likely due to the microphantom being 
multiple-scattering at that wavelength. Furthermore, MSBP-I outputs slightly overestimated RI values, and also 
suffers from low-frequency spatial artifacts (which have been observed in other intensity-only phase-imaging 
techniques46,47). Other works have shown that MSBP-I demonstrates higher accuracy when using partially-
coherent illumination, which drastically reduces coherent noise31. Future work may include repeating this analysis 
across a larger range of TPM reconstruction techniques with more complex scattering microphantoms.

With the presented results we show that changing the illumination wavelength affects the scattering nature of 
the microphantom. Specifically, though the microphantom is multiple scattering with 633 nm wavelength light, it 
is weak scattering with 835 nm wavelength light. This naturally indicates that the optimum choice for illumina-
tion wavelength must balance between resolution (  �

NA
 for single projection) and scattering strength. As has been 
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shown, there are cases when instead of applying multiple-scattering methods, it is advantageous to increase the 
illumination wavelength (thus decreasing the scattering strength of the sample) and apply a method based on the 
Fourier Diffraction Theorem that does not utilize the total-variation constraint. More fundamentally however, 
we showed that 3D printed microphantoms enable quantitative assessment of 3D RI reconstruction accuracy 
across various TPM methodologies. This capability is important when choosing a TPM method optimized for 
specific classes of samples and imaging conditions.

Future works will focus on developing methods to quantify scattering strengths of phantoms and relate these 
quantities with the scattering properties of different tissue types. If successful, this would enable us to design 
and fabricate (using the presented methods) 3D microphantom structures to mimic a wide range of biological 
specimens ranging from multicellular clusters to bulk tissues and small organisms. Another possible direction is 
to tune scattering parameters in the phantom to characterize imaging performance for various techniques used 
to image into scattering tissue, such as optical coherence tomography or confocal reflectance microscopy. Finally, 
we envision that one can exploit the flexibility of two-photon polymerization to fabricate microphantoms on 
different substrates (e.g. at the end-face of the optical fibre for sample rotation tomography), using biocompatible 

Figure 2.   Comparison of tomographic reconstructions of the microphantom measured with 633 nm and 835 
nm wavelength and calculated with 3 algorithms. The shaded colored regions surrounding each of the 1D plots 
at the bottom represent the standard deviation.
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resins (to combine test targets with the living cells in the single measurement volume48) or modify the resin with 
functional particles18 (e.g. to accommodate systems that also measure absorption49–53).

Materials and methods
We present below the (1) methodology with which we 3D-print multiple scattering microphantoms; (2) the 
optical design of the TPM imaging systems that we use to experimentally collect scattering electric-field meas-
urements of the microphantom; and (3) short theoretical descriptions of three tomographic algorithms that were 
used to reconstruct 3D RI from the measured data.

3D scattering microphantom fabrication.  The phantom is fabricated using two-photon laser lithog-
raphy, in which a focused laser beam is scanned within liquid resin. The resin within the laser’s focal volume is 
locally polymerized. Adjusting the scanning trajectory and the exposure time of the laser beam enables simul-
taneous control over the 3D printed geometry (accuracy at the order of 100 nm) and RI (accuracy at the order 
of 5× 10

−4 , maximal � RI = 0.03 within the structure) in three dimensions. We used Photonic Professional GT 
(Nanoscribe GmbH) equipped with a 1.3 NA 100× microscope objective and piezo scanning stage. The phantom 
is fabricated in the IP-Dip resin (Nanoscribe GmbH) on top of a #1.5H coverslip (dip-in configuration54). After 
fabrication the structure was developed in PGMEA (Propylene glycol monomethyl ether acetate; 12 min), fol-
lowed by isopropyl alcohol (10 min) and then blow-dried. The full methodology for fabrication and validation 
of the features can be found in our previous work33.

To conduct our TPM imaging experiments, the microphantom was immersed in Zeiss Immersol 518F oil 
(RI632 nm = 1.5123), which provides similar RI contrast as in the case of cells immersed in culture medium. 
By using immersion oils with varying RI, it is possible to adjust the scattering properties of the microphantom 
post-fabrication.

Measurement system.  In this work, an optical system, as shown in Fig. 3a) was used in order to study 
the scattering phantom. The system is a Mach-Zehnder-based TPM microscope55, working in a limited-angle 
configuration with stationary sample and illumination rotated with a galvo mirror (Thorlabs GVS212/M)56. 
The research was performed with two wavelengths and thus there were two modified versions of the presented 
tomographic microscope. First version, TPM633 works with wavelength � = 633 nm and the second, TPM835 
with � = 835 nm. The input beam (S in Fig.3a) is delivered with an optical fiber, collimated and then split 
into object and reference arm. In the TPM633 system the light source was a volume Bragg grating laser (Necsel 
NovaTru Chroma 633 SLM), S633 , providing a single longitudinal mode and offering long coherence length. 
The TPM835 system utilized a swept source (Superlum Broadsweeper BS-840-2-HP, �� = 800–870 nm), S835 set 
at � = 835 nm. Due to difference in coherence length, an additional delay module was placed in the reference 
beam for TPM835 measurements. The beam-splitting cubes in this work were either coated for 400–700 nm or 
700–1100 nm depending on the wavelength used. The focal length of the tube lens TL1 was EFL633= 150 mm 
and EFL835= 200 mm respectively. Both microscope objectives (MO1 and MO2) in Fig. 3 were 100× NA 1.3 Semi 
plan-apochromatic, infinity-corrected objectives. The second tube lens TL2 used was either EFL633= 200 mm 
or EFL835= 300 mm. This provided magnifications M633 = − 48.5 and M835 = − 72.7 . The camera used in the 

Figure 3.   (a) Mach-Zehnder-based TPM measurement system. S, light source; GM, galvo system; TL1 and 
TL2, tube lenses; MO1 and MO2; microscope objective; SPL, sample plane; CAM, camera; (b) hologram 
acquired at axial illumination of the sample; (c) amplitude of a projection at ϕ = 304

◦ ; (d) circular scanning 
scenario used in the measurement. Rotation angle: ϕ , zenith angle: θ = 47

◦ ; (e) phase of the projection.
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system was a CMOS sensor in both cases, with 3.45 µm pixel size (JAI BM500GE) in case of CAM633 and 5.5µm 
pixel size (Basler acA2040-180km) in case of CAM835 . The minimum magnification, which is imposed by pixel 
size and wavelength in order to assure correct hologram recording for each projection57 is M633min = − 44.2 and 
M835min = − 53.5 , which is satisfied in both cases. A sample hologram is presented in Fig. 3b). Both systems 
were set to illuminate the sample with a circular scanning scenario (see Fig. 3d) at zenith angle θ = 47

◦ and pro-
vided 180 projections spaced at ϕ = 2

◦ . A sample of the phase and amplitude provided by the system at 835nm 
is presented in Fig. 3c and e.

Reconstruction algorithms.  There were three different TPM reconstruction methods for computing 3D 
RI of the microphantom used for comparison. The data for each method was acquired through the multi-angle 
scattering measurements captured as described in Sect. “Measurement system”. We provide a short description 
of these methods below. Complete descriptions of these methods is given in respective references.

Gerchberg‑Papoulis with object support.  To provide a baseline standard to compare to TPM reconstruction 
algorithms utilizing multiple-scattering models, we first reconstruct the microphantom’s 3D RI using a weak-
scattering TPM method. We specifically use the Gerchberg-Papoulis algorithm enhanced with additional finite 
object support constraint (GPSC)41. Complex-valued electric-fields measured by our TPM systems are used as 
inputs. The procedure is performed in two steps. First, an initial tomographic 3D RI distribution is reconstructed 
from the electric-field measurements with strong total-variation regularization45. This is performed through 
the Chambolle-Pock58 optimization method and implemented with ASTRA tomography toolbox59. The result 
undergoes binarization and a finite object support is generated. Secondly, a classic Gerchberg-Papoulis algo-
rithm is used which is an iterative version of Direct Inversion method (also known as the Wolf transform)60. This 
iterative procedure is based on the Fourier Diffraction Theorem61 and utilizes first-order scattering approxima-
tion. Here, the reconstruction and its Fourier transform are calculated alternately and constraints are applied: 
nonnegativity and finite object support in the signal domain, and replenishment of original projections in the 
frequency domain.

Multi‑slice beam‑propagation with electric‑field measurements.  Our main method to model multiple-scattering 
is the multi-slice beam-propagation method (MSBP)62, which has recently shown promising results for biological 
imaging42,63. In our first implementation of MSBP, we use the same exact electric-field dataset utilized by GPSC 
from above. An initial guess of the sample’s 3D RI is selected to start off the iterative procedure. Afterwards, the 
MSBP method is used to simulate scattering measurements resulting from plane waves propagating through 
the sample’s initial estimated 3D RI. The scattered fields resulting from this simulation are compared with those 
obtained experimentally with our TPM systems. The error computed between the simulated and experimental 
measurements is back-propagated through each layer of the 3D sample estimate to incrementally modify the RI 
value of each voxel. Continued iterations repeating these steps eventually result in the 3D sample estimate con-
verging to a stable steady-state solution. We implemented the MSBP with electric-field measurements (MSBP-E) 
through the Learning Tomography algorithm (LT)42. The LT procedure is an iterative optimization algorithm 
with additional weak total-variation (TV) regularization applied in each iteration to ensure convergence. We 
found that the method works best when an initial-guess is chosen as a starting point for the iterative process. In 
this paper, we use the Direct Inversion method to provide the initial guess.

Multi‑slice beam‑propagation with intensity‑only measurements.  Recent works have demonstrated that the 
gradient-update step within the MSBP method can be reformulated to reconstruct 3D RI from only non-inter-
ferometric intensity measurements31. The key advantages of this method include the use of a non-interferomet-
ric imaging system, which are resistant to mechanical instabilities that often limit long-term use of dual-arm 
interferometers without realignment. Furthermore, the light source can be partially coherent, to avoid coher-
ent speckle artifacts in the measurements, while retaining sufficient coherence necessary for RI reconstruction. 
For the purposes of demonstrating 3D RI reconstruction using this intensity-only variant of MSBP (which we 
refer to here as MSBP-I), we simply use the amplitude component of the electric-field measurements used for 
the GPSC and MSBP-E reconstructions, described above. Similarly to MSBP-E, total-variation regularization is 
applied at every iteration. The starting point for MSBP-I is a matrix of zeros.

Stopping criterion.  All described TPM reconstruction methods are iterative procedures that use the same stop-
ping criterion to automatically terminate the computations. This criterion is a modification of a method pre-
sented earlier64, and is described in Alg. 1 below. The general intuition behind this procedure is to terminate 
the iterative computation process when the dynamics of the change between 3D sample estimates outputted 
from consecutive iterations drops below a certain saturation level ǫ . In order to be less dependent on outliers, 
the median value of the dynamics from the last 10 iterations is calculated. The value for ǫ is chosen empirically 
for each algorithm. For GPSC ǫ = 0.02 , for LT and MS ǫ = 0.01 . Values of ǫ were empirically chosen to balance 
between incomplete convergence and reconstruction speed.
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Data availability
Data underlying the results presented in this paper are available in Dataset 140.
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