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Isolated attosecond X‑ray pulses 
from superradiant thomson 
scattering by a relativistic chirped 
electron mirror
B. H. Schaap1,3*, P. W. Smorenburg2,3 & O. J. Luiten1

Time-resolved investigation of electron dynamics relies on the generation of isolated attosecond 
pulses in the (soft) X-ray regime. Thomson scattering is a source of high energy radiation of increasing 
prevalence in modern labs, complementing large scale facilities like undulators and X-ray free 
electron lasers. We propose a scheme to generate isolated attosecond X-ray pulses based on Thomson 
scattering by colliding microbunched electrons on a chirped laser pulse. The electrons collectively act 
as a relativistic chirped mirror, which superradiantly reflects the laser pulse into a single localized beat. 
As such, this technique extends chirped pulse compression, developed for radar and applied in optics, 
to the X-ray regime. In this paper we theoretically show that, by using this approach, attosecond soft 
X-ray pulses with GW peak power can be generated from pC electron bunches at tens of MeV electron 
beam energy. While we propose the generation of few cycle X-ray pulses on a table-top system, the 
theory is universally scalable over the electromagnetic spectrum.

Atomic and molecular dynamics is governed by forces caused by electron motion, which changes at the attosec-
ond time scale. For about two decades the main driver of attosecond science has been high harmonic generation 
from noble gasses1. High harmonics have enabled the imaging of electron wave-packets in motion of several 
atomic2,3 and molecular species4–6. However, the insufficient photon flux of isolated attosecond pulses from high 
harmonics, especially at high photon energy7, limits applications8. To increase the amount of photons in attosec-
ond pulses for advanced applications, undulator based alternatives have been proposed9–14 and demonstrated15,16 
over the years, yet at the cost of real estate.

Thomson scattering (TS) of relativistic electrons, also referred to as inverse Compton scattering, is an upcom-
ing, lab-based X-ray source17–22. In a Thomson X-ray source, a relativistic electron bunch reflects high energy 
radiation of a laser pulse. Both the velocity of the electrons v, the angular frequency of the laser pulse ωL deter-
mine the scattered angular frequency by the well known equation

where c the speed of light, θL the laser angle of incidence and θ the scattering angle as measured from the propa-
gation axis of the electron beam. Thomson scattering could bridge the gap between the large scale undulator 
schemes and low flux HHG-based, and other lab sources. To extend TS sources into the attosecond realm, several 
schemes have been proposed that employ single cycle driver pulses23,24 and attosecond electron bunches25,26.

In this paper, we propose a scheme to generate isolated attosecond X-ray pulses via TS by colliding micro-
bunched electrons on a chirped laser pulse as shown in Fig. 1a. The electrons are distributed in such a way that 
the frequency up-converted radiation pulses interfere constructively into a single localized beat, as illustrated 
schematically in Fig. 1b. The scheme is attractive since both the electron bunch and laser pulse can be of long 
temporal extent, making high power attosecond pulses possible, while mitigating detrimental space charge effects.

In essence, this scheme extends the chirped pulse compression technique employed in radar27 and optics28 
to the X-ray regime, similar to proposed FEL-based techniques12,13. In chirped pulse compression, an amplified 
frequency modulated signal is sent through chromatic delay line so that the frequencies pile up (compress) in 
time to form a short pulse. In optics a customary delay line is a chirped mirror having a frequency dependent 

(1)ω1 = ωL
1+ v/c cos θL

1− v/c cos θ
,
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penetration depth. Our scheme relies on superradiant emission from microbunched electrons that, very similarly, 
act as a relativistic chirped electron mirror (CEM) with a frequency dependent depth at which superradiance 
occurs, as depicted schematically in Fig. 1c.

Superradiant emission, describing only the constructive interfering part of the reflected radiation, occurs 
when the phase difference of the radiation from spatially separated emitters is equal to an integer n of 2π . 
For superradiant TS of radiation at frequency ω1 , a density modulated electron beam should have a bunching 
frequency29

However, in chirped pulse compression the laser frequency is not constant but varies with time. The use of a 
frequency chirped laser pulse has been proposed before to compensate for bandwidth broadening in incoherent 
TS30–32. Here, in contrast, we want to increase the bandwidth of the generated radiation by means of frequency 
chirp to attain short X-ray pulses. Therefore, the bunching frequency of the electron mirror should also vary.

For optimal chromatic delay, the periodic density modulation of the mirror should satisfy the following two 
conditions. First, the variation in bunching frequency should be large enough to support superradiant reflection 
of the full laser bandwidth. Second, the superradiant reflection of each spectral component should occur in a 
single beat, which can only hold true if the periodic density modulation of the electron mirror is tailored to the 
frequency chirp of the laser pulse. For instance, if the laser pulse has a linearly chirped frequency ωL + αt , with 
α the chirp rate, then the bunching frequency ke + ηz should also vary linearly along the length z of the mirror, 
where η the spatial chirp rate of the density modulation. By correctly matching the chirp rate of the laser α to the 
mirror chirp rate η , it is possible to attain few cycle X-ray pulses or high peak power pulses.

Here, we will use analytical and numerical methods to demonstrate under which conditions isolated atto-
second X-ray pulses are generated by chirped laser pulse compression and frequency up-conversion using a 
relativistic chirped electron mirror. The framework of classical electrodynamics will be applied to linear Thomson 
scattering of a chirped laser pulse, in order to predict the attosecond pulse length and peak power.

Results
We consider chirped pulse compression and frequency upconversion of a linearly chirped laser pulse by a rela-
tivistic chirped mirror consisting of free electrons. Our calculations, see Methods, show that the rms pulse length 
of the superradiantly reflected X-ray pulse, resulting from a head-on interaction is given by

As indicated by Eq. (3) the generated X-ray pulse length takes the form of a quadratic sum of several contribu-
tions. We will now discuss these contributions one by one. The first term τmin = (c − v cos θ)/((c + v)�L) is 
the shortest attainable pulse length by compression along scattering angle θ . It is determined by the bandwidth 
of the chirped laser pulse �L = (τ−2

L + α2τ 2L )
1/2 and the angular dependent, double Doppler shift that results 

in an increase of the reflected frequency, as given by Eq. (1). The laser pulse can be compressed to very short 
pulses if a strong chirp is applied. In the following, when we refer to strong chirp, the rms frequency chirp ατL 
is assumed to be much larger than the inherent pulse bandwidth given by the inverse of the laser pulse length 
τ−1
L  . The bandwidth of a strongly chirped laser pulse is determined fully by the rms frequency chirp �L ≃ ατL.

Secondly, the term τCEM = (1+ cos θ)/((1+ v/c)�e) describes the shortest pulse that can be compressed 
along angle θ by the relativistic chirped mirror. Likewise, it is determined by the range of frequency components 
�e = (τ−2

e + η2c4τ 2e )
1/2 that can be superradiantly reflected by the delay line of length cτe and a geometri-

cal factor resulting from the projection of the electron density modulation on a particular scattering axis. If 
τCEM > τmin , the mirror allows for partial reflection of the chirped laser pulse, such that full compression cannot 
be attained. In the ideal case, on the other hand, when τCEM ≪ τmin , the mirror allows for full compression and 
frequency up-conversion of the laser pulse.

(2)ke =
ωL

nc

cos θL + cos θ

1− v/c cos θ
.

(3)τX =
[

τ 2min + τ 2CEM + τ 2⊥ + τ 2GDD
]1/2

.

Figure 1.   (a) Attosecond X-ray pulse (purple) generation by colliding microbunched electrons (green) on 
a chirped laser pulse (gradient). (b) Single electron radiation fields (purple gradient) of axially separated 
electrons (green) and the resulting superradiant beat (purple). The grey box illustrates the part that contributes 
to superradiance. (c) A relativistic chirped electron mirror has a frequency dependent depth at which 
superradiance occurs.
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The next contribution, τ⊥ = (σ⊥/c) sin θ , results from the transverse extent σ⊥ of the mirror. Electrons that 
are separated transversely in space, emit radiation with a relative phase delay with respect to each other, leading 
to pulse broadening. However, when ω1τ⊥ > π , destructive interference occurs, limiting the X-ray pulse energy, 
which we will address in the discussion section. Due to destructive interference, the transverse pulse broadening 
effect will then be restricted to about a single period.

The last term τGDD = (Ŵ1 − ŴCEM)/(τ 2min + τ 2CEM + τ 2⊥)
1/2 is the pulse length due to (mis)matching of the 

spectral delay by the mirror to the laser frequency chirp. Here, Ŵ1 = ατ 2L τ
2
min is group delay dispersion (GDD) 

of the Doppler shifted laser pulse reflected by a single electron, which is a measure for the required spectral 
delay to reach τmin . The term ŴCEM = ηc2τ 2e τ

2
CEM is the GDD of the chirped electron mirror that quantifies its 

chromatic dispersion. A strongly chirped laser is optimally compressed by matching the two GDDs, which is 
true for head-on collision when the following condition is satisfied:

Furthermore, superradiance is optimized by spectral overlap with the single electron radiation, which is achieved 
when the central bunching wavenumber ke is related to the central laser frequency ωL by Eq. (2).

The shortest pulse is attained on-axis ( τ⊥ = 0 ) when the GDDs are matched ( τGDD = 0 ). For strong chirp, 
the shortest pulse length for τmin = τCEM can be written as τX ≃

√
2(4γ 2ατL)

−1 with γ = (1− v2/c2)−1/2 the 
Lorentz factor. For instance, an 11 fs CEM with a kinetic energy of 5 MeV, scattering a matched, 5 ps laser 
pulse of central wavelength �0 = 1000 nm with a GDD of 0.033 ps2 , leads to a pulse length of τX = 20 as 
at a wavelength of �X ≃ �0/(4γ

2) = 2 nm. The uncompressed, single electron radiation pulse in this case is 
τ1 = τmin(1+ α2τ 4L )

1/2 = 11 fs on-axis, three orders of magnitude longer than the compressed pulse.
However, a mismatch in GDD leads to significant weaker compression of the pulse. Due to the angular 

dependence of the Doppler shift of TS, Ŵ1 becomes increasingly larger going off-axis. The same holds for ŴCEM 
which grows with θ due to the increase effective path length between radiation emitted from consecutive micro-
bunches. The latter effect is much weaker, such that there can only be ideal matching along a single scattering 
direction. In addition to the inherently varying pulse length due to the relativistic Doppler shift, GDD (mis)
matching results in an angular distribution of pulse lengths. In Fig. 2 the distribution of pulse lengths is shown 
on log scale for a infinitely thin ( τ⊥ = 0 ) mirror with matching axis along the central scattering axis (a) and along 
an off-axis angle (b) with the same electron beam energy and laser parameters as in the example of the previ-
ous paragraph. For the CEM in (a) the shortest pulse length (20 as) is found on-axis and becomes progressively 
longer off axis. The other mirror (b), matched off axis, reflects a radiation pulse at a slightly lower frequency. 
The shortest pulse length (24 as) is found at the matching angle where a ring of attosecond radiation is formed. 
The mismatch in GDD, therefore, is the dominant pulse broadening effect over red shifting due to the Doppler 
effect, which becomes even more clear in the projection given in Fig. 2c. Furthermore, the quantitative difference 
between group delay disperions Ŵ1 − ŴCEM is shown in Fig. 2d.

Pulse compression can greatly improve the peak power P of the generated X-rays. As shown in Eq. (27) the 
reflected pulse energy W for a thin mirror ( τ⊥ ≃ 0 ) consisting of Ne electrons with matching along the central 
scattering axis is independent of the chirp rate. Therefore, we estimate that the peak power

increases with chirp i.e. compression of the on-axis matched pulse length τX(0) . Here, σT is the Thomson cross-
section, IL the peak intensity of the laser pulse, b1 ∈ [0, 1] the quality of the electron beam density modulation 
and ωX ≃ 4γ 2ωL ≃ cke . In Fig. 3a the peak power P reflected by a matched mirror with τCEM = τmin is plot-
ted as function of the relative frequency chirp of the laser pulse ατL/ωL . In the figure, Eq. (5) (dashed line) for 
ωLτL = 105 and P, as retrieved by numerical integration of the angular peak power distribution (see Eq. (28) in 
methods section), is plotted for different value of initial pulse length. The results in the figure confirm that the 
peak power increases by several orders of magnitude: For ωLτL = 105 with chirp ατL/ωL = 5× 10−3 we find 
that the peak power P = 275Pα=0 with Pα=0 the peak power of the unchirped case. Stronger chirps, however, 
counter-intuitively do not lead to further increase of peak power, although the pulse length linearly decreases 
as seen in Fig. 3b, leading to a mismatch between Eq. (5) and the numerical integrated data. This effect can be 
attributed to the angular dependence of GDD mismatching and the reflected energy distribution of the radiation: 
the pulse energy for an infinitely thin mirror is independent of chirp but is confined to an increasingly larger 
single electron scattering angle �1 ≃ γ−1�̄1/2 , with �̄ = (�2

L/ω
2
L +�2

e/(cke)
2)1/2 ≃

√
2ατL/ωL . Conversely, 

as the chirp rate grows, the angular width of the single electron radiation �1 increases, but the angular range 
in which the GDDs are matched �τ ≃ γ−1(2Ŵ1,CEM)−1/2(τ 2min(0)+ τ 2CEM(0))1/2 ≃ γ−1(ατ 2L )

−1/2 decreases. 
Therefore, at some chirp rate, part of the radiation starts to fall outside the matched angular range, and does not 
perfectly compress anymore. For a matched mirror with τCEM = τmin this happens when the chirp rate is equal 
to αP = 2−1/4(ωL/τ

3
L )

1/2 . The peak power reaches its maximum value around around a slightly stronger chirp 
αPmax = 2αP . As such, Eq. (5) only holds for moderate chirps α < αP . The dependency of the peak power on 
chirp rate, as shown in Fig. 3a, is independent of beam energy or reflected frequency.

To make previous results quantitative, we calculate the attosecond pulse properties generated by a CEM with 
bunching amplitude b1 = 0.5 , charge Q = 7 pC , pulse length τe = 100 fs and beam energy 4.8 MeV ( γ = 10.4 ) 
reflecting a τL = 12.5 ps chirped laser pulse focused to a peak intensity of IL = 1.4× 1016 W/cm2 with a spectral 
distribution around central wavelength �0 = 1µm . The mirror upconverts the laser pulse to the K-absorption 
edge of oxygen ( �X = 2.3 nm ) at the edge of the water window. We consider two cases of chirp: (i) high peak 

(4)α = η

[

c − v cos θ

1+ cos θ

]2

.

(5)P ≃
W

τX(0)
=

3πγ 2σT ILτL

ωXτX(0)

b21N
2
e

τe
,
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Figure 2.   An 11 fs CEM irradiated by a GDD-matched 5 ps laser pulse. (a) Pulse length distribution for on axis 
matching. (b) Pulse length distribution for off axis matching. (c) Pulse length along white dashed line for on axis 
(black) and off axis (red) matching. (d) Difference in group delay dispersion between the superradiance induced 
by the mirror and the single electron radiation.

Figure 3.   (a) Peak power P with respect to monochromatic peak power Pα=0 plotted against relative rms 
frequency chirp ατL/ωL for an ideal on-axis matched CEM ( σ⊥ = 0 ) as calculated analytically (dashed line) 
and by numerical integration of Eq. (28) for different laser pulse length (colors). The electron mirror is GDD 
matched with τCEM = τmin . (b) Normalized pulse length ωXτX as function of relative rms frequency chirp for 
different laser pulse length (colors).
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power chirp α = αPmax corresponding to a GDD of 1.3 ps2 and (ii) short pulse chirp α = 22αPmax corresponding 
to a GDD of 0.06 ps2 , which can both be obtained using standard CPA optics. Different unchirped laser pulse 
lengths are needed (100 fs (i) and 5 fs (ii)) to meet the requirements on bandwidth for compression. For (i) we 
calculate that the reflected peak power is P = 1.4 GW and pulse energy W = 0.65µJ , which is orders of mag-
nitude higher than existing table-top sources in soft X-ray regime16,33. The pulse length of the high peak power 
case is τX = 253 as . For the short pulse case (ii) the peak power is lower P = 240 MW and W = 0.39µJ , but with 
a very short pulse length of τX = 12 as - corresponding to only 1.5 cycles - which has yet to be demonstrated 
experimentally in any kind of source34–36. In both cases, besides control over pulse length by the chirp, a constant 
phase offset can be applied to the laser pulse to change the carrier envelope phase (CEP) of the attosecond pulse, 
which is an important pulse characteristic for e.g. coherent imaging applications. Furthermore, the Thomson 
scattering process lends outstanding control over polarization, since the reflected radiation to a very high degree 
takes over the laser polarization37. The polarization state of the attosecond pulse can be chosen arbitrarily by the 
polarization of the driving laser, without altering the pulse energy or peak power of the pulse.

Discussion
It is challenging to generate the intricate density modulation required for compression. At high electron beam 
energy, methods to produce chirped microbunching have been proposed12, and demonstrated13. Here, we men-
tion two techniques that might be employed at the beam energy relevant to Thomson sources: First, by using 
conventional radio-frequency (RF) cavities, a density modulated electron bunch with zero bunching chirp can 
be non-linearly compressed to attain linearly chirped modulation38. The non-linearity may be obtained from 
non-linear compression fields or by non-linear velocity bunching at low beam energies. The second approach 
is similar to the method in ref.13, where a short magnetostatic undulator in combination with a co-propagating 
chirped laser pulse is used to impart a chirped energy modulation on the highly relativistic electron beam. The 
energy in the modulator is subsequently turned into a chirped density modulation using a magnetic chicane. At 
low beam energy, however, the magnetostatic undulator should be replaced by a short laser pulse to fulfill the 
resonance condition similar to Eq. (1) for optimal energy modulation. If the resonance condition is satisfied, 
a beat wave is formed travelling at the velocity of the electron bunch39. The ponderomotive force of the beat 
wave then imparts the energy modulation, which at the relevant beam energy turns into a density modulation 
by velocity bunching. The density modulation can be further compressed using RF-cavities with linear fields to 
attain bunching around the radiation frequency. However, this is not necessary if the bunching factor has a non 
zero component at X-ray frequency from a higher harmonic of the (local) bunching frequency. At harmonic n 
the chirp rate is increased to nη.

For the previous calculations we assumed that the electron mirror is cold, i.e. no spread in transverse or 
longitudinal momentum. However, in reality, an electron beam always has some finite transverse emittance 
and non-zero energy spread that influences the reflected X-ray pulses. Moreover, non-linear effects from strong 
laser fields, assumed negligible in the calculations, can potentially limit compression. All of the aforementioned 
effects induce broadening of the single electron radiation spectrum, which can be estimated from the reso-
nance condition Eq. (1) by including a small general perturbation ǫ such that ω1 ≃ 4γ 2ωL/(1+ ǫ) . We estimate 
that perturbation ǫ does not hinder compression when the change in GDD matching satisfies the conditions 
|Ŵ1(ǫ)− ŴCEM| ≤ τ 2min + τ 2CEM , which for a strongly chirped laser compressed by a matched mirror is written as

where �τ is again the angular range of compression. Using Eqs. (1) and (9) we estimate that the effect of non-
ideal conditions in general is given by ǫ ≃ γ 2�2

e + 2δγ /γ + A2
0/2 with �e the angular spread of the electron 

beam, δγ the energy spread and A0 the normalized vector potential of the laser pulse. Quantum diffusion was 
not taken into account here since it requires an involved model describing superradiantly enhanced recoil, which 
is beyond the scope of this work.

The effect of energy spread on reflected pulse length and pulse energy is investigated numerically to check 
Eq. (6). We apply the weighted average �x� = (2πδγ 2)−1/2

∫

x exp[�γ 2/(2δγ 2)]d(�γ ) to the pulse length given 
by Eq. (3) and to the angular energy distribution given by Eq. (26), which we subsequently integrate over solid 
angle to find the pulse energy. The integration variable is given by �γ = γ ′ − γ with γ the average, on-resonance 
Lorentz factor. The results given in Fig. 4a confirm the estimated effect: if the energy spread δγ /γ ≪ γ 2�2

τ the 
pulse length remains unaffected. In this regime, also the pulse energy is not reduced by energy spread as shown 
in Fig. 4b. Around the critical energy spread δγ /γ ≃ γ 2�2

τ /2 , the compression and pulse energy begins to 
be restricted by energy spread. When δγ /γ ≫ γ 2�2

τ , the pulse length is significantly longer that of the pulse 
reflected by the cold mirror. Besides slight variations in slope after the critical energy spread, the effect of energy 
spread on the pulse length is independent of initial matched pulse length. The reflected energy in this regime, 
for chirp αPmax , is significantly reduced for large energy spread, and depends strongly on initial the pulse length.

Using Eq. (6) we find that for the high peak power case (i) in the previous section the critical normalized 
emittance ǫn ≃ γ�eσ⊥ at which the compression starts to be hindered is about 340 nm-rad (assuming an electron 
beam waist size of σ⊥ = 5 µ m) and the critical energy spread is 12 keV. Such electron beam properties with bunch 
charge of tens of pC can be attained using a photoinjector40. For few cycle pulse generation the requirements 
are much more stringent: ǫn ≤ 80 nm-rad for the same mirror waist size and δγmec

2 ≤ 0.5 keV. These beam 
parameters, however, can still be achieved for bunch charges of several pC using a state-of-the-art thermionic 
gun41. Furthermore, we find that laser field strength proposed for the high peak power case (i) approximately 
corresponds to the critical value for A0 ≤ 0.1 . The compression to the near-single-cycle pulse (ii), for which 

(6)ǫ ≤
1

2α

[

1

τ 2L
+

1

16γ 4τ 2e

]

= γ 2�2
τ ,
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the same field strength was proposed, will therefore be hindered significantly by ponderomotive broadening 
( A0 ≤ 0.02 ). This can be compensated for, without lowering the peak intensity, by using a laser pulse with a 
smaller change in laser pulse envelope during superradiant reflection.

To sustain sufficient peak intensity over the interaction length, the laser Rayleigh length should be at least 
half the laser pulse length cτL . To satisfy this condition for the proposed parameters in the examples, the pulse 
energy needed is 1.6 J. Nowadays, laser pulses with tens to hundreds of Joule of pulse energy are generated at 
several laser facilities around the world42. However, this has the disadvantage of requiring access to a laser facil-
ity. Furthermore, producing high energy laser pulses with sufficient bandwidth for compression to near-single 
cycle remains a challenge43. One way to circumvent the need for such high pulse energy, without having to admit 
significant reduction in peak power, is by focusing the chirped laser pulse using a lens with chromatic aberra-
tion. This enables a small laser waist for over 100 times the Rayleigh length and control over the speed at which 
the focus co- or counter-propagate along the propagation axis44,45. The so-called flying focus can be adjusted 
to the electron beam so that the required pulse energy is reduced by a factor ∼ 20046. Such a focussing system 
potentially reduces the required pulse energy to the mJ level, which can be generated using a standard, compact 
laser system. Moreover, broadband mJ pulses at kHz repetition rate have been produced that can be compressed 
to near-single-cycle pulses47.

Another reason for considerable loss of attosecond pulse energy and consequently peak power is the trans-
verse size of the mirror. Two regimes can be distinguished: In the pencil beam regime, where �1 ≪ �CEM , 
with �CEM ≃ c(ωXσ⊥)−1 the angle of superradiant emission, all reflected radiation is coherently amplified. In 
the beer-can beam regime, where �1 ≫ �CEM , destructive interference due to the transverse size dominates, 
significantly limiting the pulse energy of the attosecond pulse. This effect can be compensated for by focusing to 
a small waist or going to high beam energy and introducing a oblique scattering geometry such that the angles 
better overlap29.

Besides the superradiant radiation that results in the compressed pulse, the electrons independently also emit 
incoherent radiation. Within relative bandwidth �̄ , the incoherent energy reflected by the mirror is approximately 
given by Winc = 3πγ 2σT ILτLNe�̄ . By definition the phase of the incoherently scattered radiation is random, 
and therefore does not interfere constructively, leading to a much longer pulse length τ1 = τmin(1+ α2τ 4L )

1/2 . 
The signal-to-noise ratio (SNR) in radiated power is approximately given by the ratio between incoherent and 
superradiant peak power:

where we assumed the pencil beam regime and that chirp rate α < αP . Simplifying further to a matched mirror 
with τCEM = τmin , the signal-to-noise ratio is simply given by SNR ≃ 2−1/2b21Ne . The superradiant emission 
dominates over the incoherent radiation if the bunch charge Ne ≫ b−2

1 .
Summarizing, we propose a method to generate attosecond pulses using a long density modulated electron 

bunch that compresses and, simultaneously, frequency up-converts a chirped laser pulse. We have analytically 
calculated the generated angular pulse length distribution for arbitrary linear chirp, which we used to determine 
the optimal chirp parameters for compression of the laser pulse. Due to the angular distribution we found that the 
peak power is optimal for a relatively weak chirp rate α = αPmax . Furthermore, we estimate at which transverse 
emittance and energy spread compression is significantly affected. These findings can have great impact for the 
development of compact powerful soft X-ray sources.

(7)SNR ≃ b21Ne
τminτCEM

τ 2min + τ 2CEM

τ1

τe

Figure 4.   (a) Pulse length as function of energy spread for α = αPmax
 . The electron mirror is GDD matched 

with τCEM = τmin . (b) Reflected pulse energy as function of energy spread for the same parameters.
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Methods
Electron dynamics in a chirped laser pulse.  We describe the interaction between an electron and a 
laser pulse in the framework of covariant electrodynamics, using the metric gµν = diag(1,−1,−1,−1) . In this 
classical description we neglect electron recoil, restricting the initial laser frequency ωL to fulfill the condition 
γℏωL/(mec

2) ≪ 1 , where γ0 is the Lorentz factor of the electron prior to interaction, ℏ the reduced Planck’s con-
stant, c the speed of light and me the electron mass. Furthermore, we restrict our discussion to the linear regime 
where the vector potential amplitude of the laser pulse A satisfies eA/mec ≪ 1 , with e the elementary charge. In 
the linear regime the transverse momentum induced by the laser remains non-relativistic, which is desired in 
most experimental conditions to avoid spectral broadening48. From here, unless stated otherwise, we will nor-
malize the relevant parameters as follows: charge is measured in units e, mass in units me , time is measured in 
the inverse of the initial laser frequency ω−1

L  , length in k−1
0 = c(ωL)

−1 and (consequently) velocity is measured 
in units of c .

The four-potential of a chirped laser pulse can be written as:

where A0 is the maximum vector potential amplitude, ϕ = kν0xν the optical phase with kµ0 = (1,n0) the four 
wavevector of the laser pulse, n0 its propagation direction, xµ = (t, x) the four-position, τ̄L the pulse length, ᾱ the 
chirp rate and ǫµ = (0, ǫ) the four-polarization. If the Lorentz gauge condition ∂νAν = 0 holds and the vector 
potential only depends on ϕ , the exact solution to the Lorentz force equation is written as49

where uµ0 = (γ0, γ0v0) is the initial four-velocity. The second term here describes the quiver momentum induced 
by the laser pulse. The terms within brackets describe the coupling with longitudinally oriented fields and 
momentum resulting from the ponderomotive force respectively. Since the maximum amplitude of the four-
potential A0 ≪ 1 , the second order ponderomotive term is considerably smaller than the others, such that it can 
be neglected in the following. For sake of clarity, we choose the laser polarization perpendicular to the initial 
velocity, making the last term zero. This simplification does not deprive our model of any useful physics, but it 
makes the expressions much easier to compute. Using that dϕ/dτ = kν0uν = kν0u0ν is a constant of motion, we 
can integrate to find the four-position

Here, xµ0  is the initial four-position of the electron with respect to the laser phase and instantaneous frequency 
ω̄(ϕ) = d�/dϕ with � the laser phase given by the imaginary part of the argument in Eq. (8). The second term 
describes the uniform motion by the initial velocity of the electron. The last accounts for the quiver motion with 
an amplitude that is proportional to the time the electron propagates through an optical cycle. It is important 
to note here that xµ depends on ϕ and therefore it is a recursive relation, which we must readdress for a correct 
description of coherent emission from the mirror. Equation (10) describes the electron motion correctly if the 
following conditions hold: χ1 = |ᾱω̄−2| ≪ 1 such that there is a notion of a pseudo period T(ϕ) = 2π/ω̄(ϕ) , 
and χ2 = |df /dϕ(f ω̄)−1| ≪ 1 , so that the envelope of the vector potential amplitude f (ϕ) = exp[−ϕ2/(2τ̄ 2L )] 
experiences almost no change over a pseudo period. Note that the last term of Eq. (10) diverge at ϕc , where 
ω̄(ϕc) = 0 . However, since ᾱ ≪ τ̄−1

L  holds for a propagating pulse, the divergent terms have no physical meaning 
in the calculation of the scattered radiation discussed in the next part.

Single electron four‑potential.  The radiation by a single electron is described by the solution to 
the inhomogeneous wave equation. In the far-field, where the scattering four-vector kµ = (ω, k) is con-
stant, the time-spectral solution to the wave equation is given by Aµ

1 (ω, x) = L0(x)j̃
µ
1 +O(x−2) where 

j̃
µ
1 = −(2π)−1

∫

uµ(τ) exp(ikνxν)dτ is the spectral four-current of a single electron and L0(x) = (re/x) exp(ik · x) 
is a quasi-invariant that describes the amplitude and phase of a spherical wave at a observer position x far away 
from the scattering charged particle and re is the classical electron radius. Substitution of Eqs. (10) and (9) and 
linearizing the exponent in terms of A0 gives

Here we also expanded the oscillatory term ω̄(ϕ) of (10) around the stationary phase 
ϕs = (ω/ω1 − 1)/ᾱ , with ω/ω1 = kµu0µ/(k

ν
0u0ν) , of the integral that defines the resonance function 

Ã(k) = (2πkν0u0ν)
−1

∫

A(ϕ) exp[iωϕ/ωX ]dϕ with A(ϕ) the scalar part of Eq. (8). Integrating, while keeping 
only positive frequencies, results in:

(8)Aµ(ϕ) = A0 exp

[

−
ϕ2

2τ̄ 2L
− i

(

ϕ +
1

2
ᾱϕ2

)]

ǫµ

(9)uµ(τ) = u
µ
0 + Aµ(ϕ)−

1

uv0k0v

[

uv0Av(ϕ)+
1

2
AνAν(ϕ)

]

k
µ
0 ,

(10)xµ(ϕ) ≃ x
µ
0 +

u
µ
0 ϕ

uν0k0ν
+

iAµ(ϕ)

ω̄(ϕ)uν0k0ν
.

(11)A
µ
1 (ω, x) = −L0(x) exp(ik

νx0,ν)

[

ǫµ − u
µ
0

kνǫν

uκ0kκ

]

Ã(ω).

(12)Ã(ω) =
A0

2
√
2πkν0u0ν

τ̄L

(1+ ᾱ2τ̄ 4L )
1/4

exp

[

−
1

2

(

ω

ω1
− 1

)2( 1

�̄2
1

− iŴ̄1

)

+ i�1

]
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where �̄1 = (τ̄−2
L + ᾱ2τ̄ 2L )

1/2 is the rms relative bandwidth of the single electron vector potential, Ŵ̄1 = ᾱτ̄ 2L �̄
−2
1  

the normalized group delay dispersion and �1 = 1
2 arctan ᾱτ̄

2
L a constant phase factor. The vector potential and 

resulting fields take over the relative frequency modulation of the laser pulse.

Mirror four‑potential and pulse length.  The chirped electron mirror consist of Ne electrons with initial 
position of the jth electron given by xµ0,j . Using the superposition principle we can write

where sum over phase factors is the form factor of the electrons which for Ne ≫ 1 can be written in its continu-
ous form:

where F(x, p) is the initial 8-dimensional phase space distribution of the mirror prior to interaction with the driv-
ing laser pulse. The change in wave vector here is inferred by rewriting Eq. (10) for Aµ = 0 to its non-recursive 
expression. Writing the discrete distribution of electrons as continuous takes away the incoherent contribution to 
the radiation, which is subdominant over the superradiant part when b(ω) ≫ N

−1/2
e  . In the following we assume 

that all the electrons have the same initial velocity, i.e. the cold beam approximation (CBA). The distribution of 
a CEM in the CBA is given by

where ρ(x) the charge density distribution and Q the total charge of the electron bunch. For normally distributed 
electrons with linear frequency modulated microbunches along its propagation (z-)direction, ρ(x) is

where S = diag(σ 2
⊥, σ

2
⊥, σ

2
� ) with σ⊥ the rms transverse CEM waist size, σ‖ the rms mirror length, � the modula-

tion depth, ke the bunching wavenumber and η̄ = η/k2e the normalized microbunching chirp rate. The normaliza-
tion constant that ensures 

∫

ρd3x = Q is given by

where τ̄e = keσ� , �̄e = (τ̄−2
e + η̄2τ̄ 2e )

1/2 the rms relative bandwidth and Ŵ̄e = η̄τ̄ 2e �̄
−2
e  the normalized group 

delay dispersion and � = 1
2 arctan ᾱτ̄e a phase factor of the superradiant emission by the mirror. If �̄e ≫ 1 , we 

can neglect the second term within the large round brackets such that ρ0 ≃ Q(2π)−3/2σ−2
⊥ σ−1

�  . By combining 
Eqs. (14-17) the bunching factor for positive frequencies (and leaving the zero-band frequency out):

where ωCEM = ke(n� − n0,�/ωX)
−1 the central resonant frequency of superradiance and τ⊥ = σ⊥|n⊥ − n0,⊥/ωX | 

the rms time delay between radiation from transversely separated electrons in the mirror with n = (n⊥, n�) 
and n0 = (n0,⊥, n0,�) . Similar to the single electron scattering, the superradiant emission takes over the relative 
spectral properties of the microbunching, however at some shifted frequency dependent on the scattering and 
laser propagation direction with respect to the propagation direction of the mirror. For significant superradiant 
emission the resonant frequency ωCEM should be equal to ω1 . However, since both depend on the scattering and 
laser direction differently, the condition ωCEM(θr) = ω1(θr) holds only at a single resonant scattering angle θr as 
measured from the mean propagation axis of the mirror.

Combining Eqs. (11), (12) and (18), and dropping normalization, yields the following expression for the 
mirror four-potential:

where g(ω, x) =
∑2

n=0
1
2 cn(x)ω

n a polynomial with complex coefficients cn given by

(13)A
µ
CEM(ω, x) =

Ne
∑

j=1

A
µ
1,j(ω, x) = A

µ
1

Ne
∑

j=1

exp
[

ikνx0,jν
]

,

(14)b(ω) =
1

Ne

Ne
∑

j=1

exp
[

ikνx0,jν
]

→
∫ ∞

−∞
p0F(x, p) exp

[

i

(

kν −
ω

ωX
kν0

)

xν

]

d4pd4x

(15)F(x, p) = δ4(pµ − p
µ
0 )δ(x

0)
ρ(x)

γQ

(16)ρ(x) = ρ0 exp

[

−
1

2
x
TS−1

x

](

1+� cos

[

kez +
η̄

2
k2e z

2

])

,

(17)ρ0 =
Q

(2π)3/2σ 2
⊥σ�

(

1+
�

(1+ η̄2τ̄ 4e )
1/4

exp

[

−
1

2
�̄−2

e

]

cos

[

1

2
Ŵ̄e −�e

])−1

(18)b(ω) =
b1

(1+ η̄2τ̄ 4e )
1/4

exp

[

−
1

2

(

ω

ωCEM
− 1

)2( 1

�̄2
e

+ iŴ̄e

)

+ i�e −
1

2
ω2τ 2⊥

]

(19)A
µ
CEM(ω, x) =− L0(x)Ne

[

ǫµ − u
µ
0

kνǫν

uκ0kκ

]

Ã(ω)b(ω).

(20)A
µ
CEM(ω, x) =−

eµ0

8
√
2π3/2

A0b1Ne

ckν0u0ν

(

τ̄e

τ̄l�̄e�̄l

)1/2[

ǫµ − u
µ
0

kνǫν

uκ0kκ

]

1

x
exp

[

−g(ω, x)
]

(21)c0 =ω2
CEM

(

τ 2CEM + iŴCEM

)

+ ω2
1

(

τ 2min − iŴ1

)

+ 2i(�1 −�e)
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where we introduced the quantities τCEM,min = (ωCEM,1�̄e,l)
−1 and ŴCEM,1 = Ŵ̄e,lω

−2
CEM,1 , being the inverse band-

width and group delay dispersion of the mirror and single electron emission respectively. The rms reflected pulse 
length can be found directly from the c2 term as follows

which is smallest when the GDDs are matched �Ŵ = ŴCEM − Ŵ1 = 0 and τ⊥ = 0 , which in general does not 
have to be on axis.

Distribution of reflected energy and peak power.  The energy reflected per unit frequency per unit 
solid angle in dimensional form is given by50:

where dϑ = sin θdθdφ differential solid angle, αf  the fine structure constant and f (ω) =
∑2

n=0 rnω
n with 

rn = 1
2 (cn(x)+ c∗n(x)) the real part of the coefficients given by (21)–(23). The energy distribution can be inte-

grated analytically over angular frequency to find the angular distribution of energy:

Equation (26) can be integrated over solid angle for small scattering angles. Assuming that a infinitely thin 
σ⊥ ≃ 0 mirror compresses a counterpropagating laser pulse with GDD matching along the central axis, we find 
that

which is independent of chirp rate. Since we also know the pulse length distribution (24), reflected by the mirror 
we can calculate the angular peak power distribution, which is simply:

Equation (28) can be integrated over solid angle to find the reflected peak power.
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