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The HLS of digital filters is a complex optimization task in electronic design automation that increases
the level of abstraction for designing and scheming digital circuits. The complexity of this issue
attracting the interest of the researcher and solution of this issue is a big challenge for the researcher.
The scientists are trying to present the various most powerful methods for this issue, but keep in
mind these methods could be trapped in the complex space of this problem due to own weaknesses.
Due to shortcomings of these methods, we are trying to design a new framework with the mixture

of the phases of the powerful approaches for high level synthesis of digital filters in this work. This
modification has been done by merging the chimp optimizer with sine cosine functions. The sine
cosine phases helped in enhancing the exploitation phase of the chimp optimizer and also ignored
the local optima in the search area during the searching of new shortest paths. The algorithms have
been applied on 23-standard test suites and 14-digital filters for verifying the performance of the
algorithms. Experimental results of single and multi-objective functions have been compared in
terms of best score, best maxima, average, standard deviation, execution time, occupied area and
speed respectively. Furthermore, by analyzing the effectiveness of the proposed algorithm with the
recent algorithms for the HLS digital filters design, this can be concluded that the proposed method
dominates the other two methods in HLS digital filters design. Another prominent feature of the
proposed system in addition to the stated enhancement, is its rapid runtime, lowest delay, occupied
area and lowest power in achieving an appropriate response. This could greatly reduce the cost of
systems with broad dimensions while increasing the design speed.

High-level synthesis (HLS) is a hot topic and a design process in which a high-level, functional description of
a design is automatically compiled into an register transfer level setup that meets some user-defined design
constraints. In re-timing, any difficult optimization problem can be alienated into independent sub-problems.
If any problem or function have divided into (m — 1) flip-flops, in that decreasing the overall time by these fac-
tor (m). Generally this process is apply to obtain synchronous circuits (SYC). And re-timing method is used to
enhanced the speed of the SYC without changing the latency and functionality'. A re-timing method can also
be generalized to locate non-critical gates that can be operated with low supply voltages to reduce overall system
power consumption. The various re-timing strategies have developed by the researchers in the literature for the
issues of power consumption such as®>** respectively. In Ref.?, have developed a new framework for retiming and
for the digital filters the digital signal processing blocks based evolutionary computation process. During this
strategy takes the inputs form the user in the form of data flow graphs or matrices or obtains all optimal solu-
tions in the search domain.

In addition, the high level of synthesis of digital filtering is a big challenge for the engineers. In this issue
researchers have solved various complacence’s of the power consumption in the terms of maximized frequency
and reducing area. Last few decades, various recent MA’s are applied for tackling of these kinds of issues. And
for the demand of the future more robust algorithms are developing, so that these can be used to fulfil the
future requirements. For highlighting the important of this work we are discussing more by the following some
references.

Digital filter can be categorized into two main groups: Finite Impulse Response (FIR)® and Infinite Impulse
Response (IIR). Filters®, are the major crucial systems in most electronic and computing machines. Filtering aims
to extract information about the most relevant interesting signals, either by extracting frequency components or
by separating desired components from unwanted signals or eliminating noise. As per view of the mathematical,
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the designing of the digital filters according to a specified criterion, can be formulated as an optimization func-
tion where need to find the best suites specifications. Thus, the various robust stochastic algorithms during the
last few decades has developed the different kinds of metaheuristic algorithms (MHAs). These are sophisticated
MASs, they are often a better alternative to traditional nature inspired algorithms, giving an excellent trade off
amid the computing time and optimal solution’s quality, particularly for complex optimization functions or large
dimension issues. Generally, the metaheuristic algorithm can be divided into different phases as per sources
of inspiration®: (1) natural phenomena (NP) methods that imitate the principles of physics and chemistry. (2)
Evolutionary methods that follow the natural evolution processes found in nature; and (3) swarm intelligence
(SI) methods, including population-based algorithms that mimic the social behavior of insects or animals. In
particular, Chimp Optimizer'’, is a new population based method that has already started attracting attention.
In this study we are trying to present the novel hybrid method with the mixture of two powerful algorithms
such as ChOA with Sine Cosine, it is called SChoA. These powerful features of two methods play an important
role for trapping the best solutions in the global search space. The sine cosine features helped in enhancing the
exploitation phase of the chimp optimizer and also ignored the local optima in the search area during the search-
ing of new shortest paths. The main objective of this study is to introduce the powerful method for considering
the high level synthesis of the complex dimension digital filters. The experimental numerical and statistical
outcomes show that the proposed method performance is superior to other well-known MHAs in the literature.
In summary, the main contributions of this paper are:

® A novel improved algorithm called SChoA method that includes features from Chimp and sine cosine func-
tions is proposed.

® The proposed method performance is developed for high-level synthesis (HLS) of datapaths in digital filters.

® proposed strategy is developed for solving single and multi-objective issues.

® Statistical and qualitative numerical result analyses assess the performance of the proposed method compared
to other competitive algorithms.

The remainder of this paper is as follows: Th related works have been described in “Related work” An over-
view about the Chimp Optimizer Algorithm (ChoA) are presented in “Chimp optimizer algorithm (ChoA)”
respectively. “Problem formulation”, illustrates the all details of the high level synthesis (HLS) of the digital
filters. “Modified SChoA version for high level synthesis of digital filters” describes the mathematical model of
the proposed SChoA algorithm. “Results analysis and discussion of 23-standard test suites” and “Simulations
and results of digital filters” presents the results and their analyses obtained by the proposed strategy and the
competitor algorithms. “Conclusion and future work” concludes the paper.

Related work

MHAs recently are playing an most important role for digital filters issues. In fact, MHAs have provided extraor-
dinary performances in several practical problems of a broad domain of applications, e.g., feature selection!'~4,
optimization problems'®, constrained engineering problems'é, traveling salesman problems'’, Case study Email
spam detection'® respectively. For superior efficiency of the MA’s, various robust population based algorithms
have been developed in the last few decades. This growing interest in population based algorithms coincides
with the need for more efficient algorithms for finding the best solution’s of the complicated optimization func-
tions. Some of these metaheuristic methods, including Genetic algorithms (GAs)Y, Particle swarm optimiza-
tion (PSO)*, Henry gas solubility optimization (HGSO)?', Simulated annealing algorithm (SA)??, Archimedes
optimization algorithm (AOA)?*, Cuckoo Search (CS) algorithm?*, Lévy flight distribution (LFD)* and Chimp
optimizer algorithm (ChoA)'?, One Half Personal Best Position Particle Swarm Optimizations (OHGBPPSO)?,
Personal Best Position Particle Swarm Optimization (PBPPSO)%, Half Mean Particle Swarm Optimization Algo-
rithm (HMPSO)?, HAGWO?, Hybrid Particle Swarm Optimization (HPSO)*’, HPSOGWO?*!, Hybrid MGBPSO-
GSA*, HGWOSCA?*, MGWO*, MVGWO?*, HSSAPSO*, SChoA¥, HSSASCA*, HSSAHHO?, Hybrid Chimp-
Cuckoo search algorithm (ChCS)*’, An enhanced chimp optimization algorithm for optimal degree reduction
of Said-Ball curves*!, Dynamic levy flight chimp optimization*’, A weighted chimp optimization algorithm®,
Niching chimp optimization for constraint multimodal engineering optimization problems*!, Fuzzy-ChOA: an
improved chimp optimization algorithm for marine mammal classification using artificial neural network®,
Optimization of constraint engineering problems using robust universal learning chimp optimization*¢, Multi-
Objective chimp Optimizer:An innovative algorithm for Multi-Objective problems*, An enhanced chimp opti-
mization algorithm for continuous optimization domains*® and the SCA method was developed by Mirjalili
et al.*’ for real world optimization issues. This algorithm is the most robust method for complex issues. It has
played an important role in the modifications of the basis algorithm for presenting the new one enhanced meth-
ods. The SCA method has been designed by sine and cosine trigonometric functions. These functions play an
important role for superior exploration and exploitation phases of the algorithm. The following mathematical
formulations are applied in this method for finding the new one position in the search domain.

X =% 4 1y xsin () x |rs x If — x{| (2.1)

St+1 ot t_ =t
T =X + 11 x cos (r2) x ‘1’3 x I; —xi| (2.2)

where X!, 71,75, 73 € [0, 1]are illustrates the current position and random numbers and /; is targeted global opti-
mal result. The above mathematical Eqs. (2.1)-(2.2) uses 0.5 < r4 < 0.5 setting for exploitation and exploration.

Scientific Reports |

(2022) 12:21389 | https://doi.org/10.1038/s41598-022-24343-x nature portfolio



www.nature.com/scientificreports/

, 1, <05

S _ XL 41, xsin(r,) x |r, x I = %! 2.3)
, 1, > 0.5

i 2t t_ st
Xf+r xcos(r,) x |rs x I — %!

Recently, digital filtering is a big challenging optimization function. It is worth mentioning, that with the
help of the robust nature inspired algorithms the various drawbacks of the digital filters have been resolved such
as processing time and enhances the characteristics of the designed digital filters etc>**!. Mohanty et al.*%, have
developed a distributed arithmetic approach for reconfigurable block-based FIR filter, which is scalable for larger
block-sizes and higher filter-lengths. A new algorithm based on African vultures’ lifestyle is developed by Abdol-
lahzadeh et al.*. This strategy simulates African vultures’ foraging and navigation behaviors. The performance
of this approach is verified through 36 standard test suites. Abdollahzadeh et al.>* has presented the algorithm
by gorilla troops’ social intelligence in nature, it is known as Gorilla Troops Optimizer (GTO). In this work, the
gorillas’ collective life is scientifically framed, and new mechanisms are intended to execute exploitation and
exploration. The robustness of the presented approach has been tested through 52 standard suites and engineering
functions. A new approach that is stimulated through farmland fertility in nature is introduced by Shayanfar and
Gharehchopogh®®, which has been assessed by utilizing the complex issues. In addition, the overview of Whale
Optimization Algorithm, Spotted Hyena Optimizer, symbiotic organisms search algorithms and its applications
is presented by Gharehchopogh et al.*. Also, Luis and Arribas®, have proposed a new approach for the design
of digital frequency selective FIR filters using an flowers pollination algorithm (FPA), with a novel multiple fit-
ness function, to get optimised filter coefficients that best approximate ideal specifications. Yadav et al.’s, applied
grasshopper optimization algorithm (GOA) to design a linear phase finite impulse response (FIR) low pass, high
pass, band pass, and band stop filters. proposed methodology target to reach minimum absolute error difference
fitness function, through selecting optimal filter coefficients. In*, the effectiveness of employing the swarm intel-
ligence (SI) based and population-based evolutionary computing techniques is investigated for determining the
optimal solutions to the FIR filter design problem.

The research of applying nature inspired algorithms to digital filters design has attracted much attention in
last few years due to its utilization in a wide range of complex optimization functions®. In general, digital filter
is an optimization issue, in last few decades, regarding this issue various new strategies have been developed
by the researchers for instance, such as; Lagos-Eulogio, Pedro, et al.*%, have developed a new hybrid algorithm
based on the combination of cellular particle swarm optimization (PSO) and differential evolution (DE) called
CPSO-DE for the optimal parameter estimation of IIR digital filters. Wanga et al.%? have presented a novel
design method that used a membrane computing method to design an optimal digital filter, their strategy that
employed a tissue-like membrane system with ring-shaped topology structure. Panda et al.%*, have presented an
IIR system identification using the cat swarm optimization (CSO). Wang et al.5* have developed a framework
called two-stage ensemble memetic algorithm (TSMA), TSMA employed to synthesize the strengths of the evo-
lutionary global search and local search techniques. The proposed TSMA applied to design high-order digital
IIR filters, experimental results compared to 6 state-of-the-art algorithms. Kaur et al.%>, have applied a new model
to optimize the magnitude response and the phase response based on the greedy search method, binary suc-
cessive approximation (BSA) and evolutionary search (ES) simultaneously, along with finding the lowest order
of the filter. Kumar and Rawat®® have employed cuckoo search algorithm (CSA), to get optimal coefficients of a
fractional delay IIR (FD-IIR) filter, and to have an ideal frequency response characteristics. Upadhyay, P,, et al.??,
have combined the Differential Evolution (DE) with Wavelet Mutation (DEWM) to IIR system identification
problem. Also, to develop proper IIR filter designing method as a multi-objective optimization problem, Wang,
Yu, Bin Li, and Yunbi Chen®, have proposed a new local search operator enhanced multi-objective evolutionary
algorithm (LS-MOEA). Saha et al.®?, have Presented a hybrid method of Gravitational Search Algorithm (GSA)
and Wavelet Mutation (WM) called GSAWM, which applied on design of an 8th-order IIR filter, GSAWM tar-
get to achieve better cut-off frequency sharpness, smaller pass band and stop band ripples. Additionally, in”,
2-dimensional IIR Filter design method based on hybrid PSO and SA is presented.

Chimp optimizer algorithm (ChoA)
A novel population based method, is known as chimp optimizer recently originated by Khishe et al.!’. The
method is inspired by sexual motivation and individual intelligence of chimps. And it’s most famous for their
group hunting. The hunting approach of this method is differ from the others. In this,strategy has used the four
different phases such as driver, chaser, barrier and attacker respectively for searching the best score in the search
domain.

All the working steps have been illustrated through the following mathematical formulations;

For chasing and driving the prey, has been used the following Egs. (3.1)-(3.2);

D= ’C-aprey(n) - machimp(”)‘ (3.1)

Achimp(n + 1) = Aprey — a.d (3.2)

where # illustrates the number of generations ,c,m and a are the coefficient vectors. These vectors c,m and a are
evaluated through Egs. (3.3)-(3.4)

a=2lr —1 (3.3)
c=2.r; (3.4)
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m =chotic,aye (3.5)

where r1 and r; are illustrated random values lying between [0, 1], m is denoted the chotic vector and [ has use
for reducing non-linearly from 2.5 to 0 through the generation process. In this stage the behavior of the search
agents has applied through mathematically. Firstly in the initial stage the each search member position is chosen
by the given random values. In the next iteration, the first four best solutions are stored for updating the new
position of the search member in the search domain. This procedure has been evaluated through the following
mathematical Egs. (3.6-3.9);

d, =|cra, — my x| (3.6)
dy, =|caap — my.x| 3.7)
d; =|cza. — m3.x| (3.8)
dg =|csaq — my.x| (3.9)

When the random values are lies amid [—1, 1], then the next position of the search member can be in any
position amid its current location and the location of the target or prey.

X1 =a, — a1.d, (3.10)
X =ap — ay.dp (3.11)
x3 =a. — as.d; (3.12)
X4 =aq — as.dg (3.13)

As per all above mathematical formulations, the position of the search is evaluated by the Eq. (3.14);

X1+ x2 + X3+ x4
Kop) = = (3.14)

At end, for position updating of each member has used following Eq. 3.15.

) _ S aprey(n) —x.d, if $ <05
Achimp (1 + 1) = { chaoticyaye if ¢ > 0.5 (3.15)

Pseudocode of chimp optimizer (ChoA).
The pseudocode of ChoA is illustrated through Algorithm 1.

Algorithm 1 Pseudo-code of ChoA algorithm

Inputs: The population size N and total number of iterations ¢
Initialize the population X;(i = 1,2,..., N)
while ¢ < t,,02,ter dO
for each member do
Define the crowd
By using is group strategy to update
end for
for each member do
if x < 1 then
Update position of current member
else if z > 1 then
Select a random member
end if
Update position of current member
end for
Update X =~ Attacker, Barrier, Driver and Chaser
t+1
end while
Return Xattacker
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Problem formulation

Retiming is a robust method for optimization which improves the sequential circuit performance. Generally, this
method is applied for changing the positions of delay variables in a circuit without affecting the initial input and
end outputs of the circuit. The brief details related of retiming are illustrates through the following subsections;

Clock period.  The main purpose of Retiming is transforming a digital filter graph to another digital filter graph by
shifting the location of registers without moving the functionality of the circuits. Generally, it is used for reducing the
delay variables count in the circuits. Because it could influence the clock period and delay variables, so it is obligatory
to consider all phases into account. Additionally, it can be used to reduce switching operation which minimizes the
dynamic power dissipation in circuits. A large amount of placing the component at the initial input node can reduce
switching which plays a role for reducing power consumption. The main objective of retiming is to reduce the clock
period. So, shifting the delay variable can be helpful in reducing the clock time period of a circuit.

Quantitative. If the transforms digital flow graph g to a retimed digital flow graph g, then the final output or
solution at the last is illustrates by a numerical quantity #(v) for all v. let w(e) and w, (e) are illustrates the weight
of the edge ¢ in the first digital flow graph g be w(e) and in the retimed digital flow graph g, be w: (e). Finally, the
weight at the each edge u — v in the retimed digital flow graph g — g, are evaluated by the following math-
ematical formulation;

wr(e) = w(e) +r(v) — r(u) (4.1)
where r(u) and r(v) are retime output vectors.
Clock time period (CTP) minimization. Retiming method is generally applied for the minimization of

the CTP of the digital flow graphs. The least CTP for the digital flow graph, is the highest critical path computa-
tion time with no delay. The least feasible CTP, ¢ (g), is evaluated by the following mathematical formulation;

#(g) = max{t(p) : w(p) =0} (4.2)

where w(p) = ngol(w(ei)) and t(p) = > i (v;) are illustrates weight and computational time of the
path. Further, through the following phases have been illustrated how to finds a retimining solution vector
1o | ¢(gr,) < @(gr). Here w(u, v) and D(u, v) are used in retiming method to illustrates least number of delay
and maximum computational time of the path from u — v.

e Inadigital flow graph u —> v, the edge weights are evaluated by the following equations;

m = Imax X N (4.3)

where N and I, are illustrates the number of nodes and maximum node execution time in digital flow
graph.

w'(e) = m x w(e) — t(u) (4.4)
e In this phase, the following formulations are applied for deciding the next new shortest path in u Sy
ifu#v
D(u,v) = m x w(u,v) — sy + t(v) (4.5)
where w(u,v) = [S"WV]
ifu=v
D(u,v) = t(v) (4.6)

where w(u, v) = 0.
® In this phase the CTP has evaluated by two matrices w(u, v) and D(u, v) over the following conditions of

{rl¢@) < CTP)

Feasibility constraint conditions;
rw) —r@) swe) ¥ ou->v (4.7)
Critical path (CP) constraint conditions;
r(u) —r(v) <w(e)—1 V u Sy | D(u,v) > CTP (4.8)

where the feasibility condition is illustrate the delay variable on every edge non-negative and similarly, the
critical path condition is to forces ¢ (g) > CTP. Similarly, if D(u, v) > CTP, then w(u,v) + r(v) — r(u) > 1
should satisfy for CP execution time period < CTP.

e In this phase, the algorithm is implemented for obtaining the retime vectors.

Retiming for register minimization. In circuit, if a single node has various output edges are connected to
other nodes while the maximum delay variables needed for that output going edge is the highest delay variable of
a single node. The brief details have been represented through the Fig. 1. These graphs are shows that here ‘naive’
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Figure 1. The graphs for fanout and clever implementation.
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implementation shows 1 4+ 3 + 7 = 11 registers on Fig. 1 and clever’ implementation shows max(1,3,7) =7
registers on Fig. 1. Similarly, with the help of following mathematical equation can be obtained the number of
registers needed to apply the output edges of the node v in the retimed figure as:

v = g wrle) 49)

where r, and g, are illustrates the total register output cost in the retimed circuit and gadget node. Here, the
above function holds under three different constraints or conditions as fanout, feasibility and clock time period
respectively. These conditions or subject to constraints have been illustrated through the followings;

Fanout condition:

ry > wr(e) YV v Y n (4.10)
Feasibility condition:
rw) —r(v) <wie) ¥ u—>v (4.11)
Clock time period condition:
r(u) —r(v) < w(u,v) — 1 VY vertices u,v st D(u,v) > CTP (4.12)

These retiming techniques would provide us with one maximal clock frequency solution. The designer would
not be able to explore the entire potential solution space of the filter circuit under consideration. The entire solu-
tion space for the considered digital filters circuit is analyzed in the present evolutionary retiming algorithms and
different feasible solutions are obtained. Depending on the critical path and the register count as the constraint,
the designer can select any solution of his preference. Evolutionary algorithms explores the solution space by
preserving all the node attributes of the digital filters graph. A framework model is generated to understand
the design space for Pareto-optimal solutions. This will help the decision maker to converge at a design specification.

High level synthesis (HLS). HLS is the process of converting a high abstraction level description of a design to
register transfer level description. This is done by using MATLAB HDL coder that generates the synthesizable VHDL
or Verilog code that has been executed to HDL work flow and generates the hardware design. This save the design
cycle time with the generation of synthesizable report that gives information about the improvement in the speed and
complexity reduction of the design with respect to novel retiming algorithm. The Matlab HDL coder and Xilinx tool
transforms the specification into a register transfer level (RTL) implementation that can synthesize into a Xilinx field
programmable gate array (FPGA). HLS techniques focus on design space exploration with reduced design cycle time
and allow many optimization techniques and transformations. Herein this work retiming transformations are to be
incorporated into the design for performance enhancement. The design space exploration results are taken from MAT-
LAB and Viva do HLS. The retiming solutions in MATLAB are verified in Xilinx, along with clock period. Here the
problem of optimally mapping a Data Flow Graph [DFG] specification of digital filters on to FPGA architecture has
been done with the help of retiming transformation. This optimality is achieved using retiming based on meta heuristic
algorithm(MHA). In this work, retiming based MHA algorithms are implemented on the different structures of the
digital filters using HDL coder. A synthesisable RTL is obtained from input in which the location of the registers is
altered in such a way that the overall clock period reduces, thereby increasing the clock frequency. This happens due to
reduction in the critical path which bounds the speed of the design. Further, intelligent placement of registers is imple-
mented that minimized the area. It is observed that the operating clock frequency in the digital filter can be increased
to a great extent after novel approach.

Clock period and number of registers are considered as the optimization requirement in the present work. Using
MHA, multiple retimed solutions are generated with high speed and different output register counts. Depending on the
area constraint, user can choose the retiming solution with particular register counts. The MHA approach helps to find
all possible retimed solutions and obtaining synthesizable HDL of the considered filter. For this, model is designed which
automatically generates the synthesizable HDL of the considered filter. Again the choice of HDL (VHDL or Verilog)
can be given by the user. This optimization environment reduces lot of design cycle time for the considered digital filters.
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The designer can choose any solution depending on the time units for critical path and the number of registers. With
the designed environment, the designer can choose the required solution and can get the synthesizable HDL.

Modified SChoA version for high level synthesis of digital filters

The sequential and recursive filtering of circuits is a complex optimization problem for the recent demand of the technol-
ogy. The scientists are trying to solve this issue with the help of new one presented algorithms. However, each and every
algorithm is not able to tackle these complex problems while these methods can be trapped in these types of complex
issues. So, robust methods are required to resolve the complexity of these functions. According to present demand we
are trying to present the new modified version SChoA for handling these complexities. This modified version is the
mixture of two population based algorithms such as chimp and sine cosine methods. These trigonometric functions
have been applied over the position update equation of the chimp optimizer for enhancing the exploitation phase. In
addition, this enhancement, is developed for tackling various complex issues as slow diversity, premature convergence
and slow convergence speed etc. Here all algorithms have been applied to solve the retiming issue as well as clock time
period and area are the given constraints. Let v and e;; illustrate the set of nodes and edges, where each edge is linked
amid (i, j) vertices likei # j. In data flow graphs, delay is denoted the registers while linking nodes by an edge illustrated
by weight vector w;. The following three quantities are evaluates is the main prospectus of this implementation.

® the least number of registers amid two paths on any path.
® the least execution time required amid two paths on any path.
e the high-level synthesis (HLS) of datapaths in digital filters.

In this stage, we are explain the implementation steps of the proposed method, that how to insert these digital
filter functions with the proposed algorithm.

System inequality. The main task of the proposed method that is minimize the fitness function (, m, r)
fort : g — g,. The subject to constraints as followings;

® [ critical path
® m: Registers
e 1: Total time required for evaluation

Also, find the output area of this issue to get all global retimed outputs. The many retimed outputs m created
required to have;

I={h=0,,>0,...,,, >0} (5.1)

m={m; > 0,my >0,...,my >0} (5.2)

Here the following cost function has been applied for calculating the global output given by
T(x) = {t1(x), t2(x), . . ., tm(x)}, where m illustrates the global outputs. The following mathematical formula-
tion has been consider for optimization are

T(x) = min Zli Z mj (5.3)

i=0  j=0

Parameters. In this research the various population based methods have been runned parallel for fair comparison.
During this implementation has been used thirty search members and five hundred maximum number of generations.

Initialization. In the search domain the decision variable values of the given function are the same as the
location of the search members of the population. The location of the each member of the crowd is assign as the
following mathematical formulation (5.4);

X1,1 X1,2 5. X1,d
X2,1 X2,2 5. X2d

X=1. . . . (5.4)
Xn,1 Xn2 5 Xnd

Where # and d are illustrates the total number of search member in the search domain and dimension respec-
tively. The fitness values of the each search member can be evaluate by the following mathematical Eq. (5.5);

fx

fx
FX=|. (5.5)
Jxn
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where n and fc; are illustrates the total of number search members and fitness outputs of the j#» member. Similarly,
another two matrices can be formulate for the last node z (or target) of the graph by the following mathematical
equations;

21,1 21,2 5. 21,d
22,1 22,2 5. 22,d
Z=| . . . . (5.6)

Zn,l Zn2 5. Znd

Ja
Jz
FZ =] . (5.7)
fzn
where 7, d and fz; are illustrates the number of nodes, dimension of the function and the fitness value of the
ith node.

New location and distance b/w nodes. In this stage, the position of the search member in the search
domain and distance of the given node is calculated by the following Egs. (5.8)-(5.12), here these mathematical
equations are illustrates the new location of the variable of the search member. Further, the Egs. (3.1)-(3.5), are
illustrates the distance b/w the position of the variable of the search member and the position of decision vari-
ables of the target.

r, =) x rand (5.8)

xf =dattacker — €05(12) X a1.dastacker (5.9)
X5 =aparrier — Sin(rz) X az.dpgrrier (5.10)
X3 =Achaser — €05(12) X a3.dchaser (5.11)

X} =Agriver — $in(r2) X ag.dgriver (5.12)

For modified the location of the each member of the crowd in every generations with the aims of the improv-
ing the extractability of the proposed method has applied the following mathematical Eq. (5.13).

n
Cn, = (ns— G) x MfSG (5.13)

where 1,,G and Mg are illustrates the number of search member, current iteration and maximum generations.
Therefore, the search member of the crowd update their locations during the search process in the search area
with respect to the target in the last generations.

Leader search member position. The leader search member position modified by the following math-
ematical Eq. (5.14);

xF 4 xF 4+ xF +xf
G =T (5.14)

Lastly the following Eq. (5.15) has been used for updating the position of new path in the retimed data flow graph;

_ Jat(n) —xd, if ¢ <05
an+1) = {chaoticmlue if ¢ >05 (5.15)

where a5 and g, illustrate the updated location of new path by search member and location of the last node or
target position.

Fitness function. The following fitness function” has been applied for testing the best solution of the retim-
ing problem with least cost path over the following subject to three different properties;

1
Fz{(R+M)} (5.16)
1
R =7 (5.17)

where R, M and L4y are illustrates the critical path, number of registers and longest path of the filter.
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Subject to constraints. Here subject to constraints are hold over three different properties such as;

® Prop-1: The weight (w) of the graph must be capable of rewriting as the weight (w) of the edge of the original
graph, with the retimed value of each node. This can be mathematical formulate in the following form;
j=k—1
Wy =Wo AW L, Wy = Z W;’j_)zjﬂ (5.18)
i=0

where zp and zj illustrate the start and end nodes in z of the retimed graph. The above mathematical formula-
tion can be rewritten in the following form;

|
~
|

j=k—1 j j—1
w) = Wh gy V= Vi = Wo Svn Y v (5.19)
i=1 =0

i

Il
=]

where v is represent the retimed vector.

® Prop-2: In a retimed data flow graph (DFG), the weight (w) of the blocked way including the loop bound
and repeated filing of this graph, should not exchange. In DFG the loop of a cycle is determined by the total
time needed to run that particular circle. This is evaluated by summing up all nodes in the graph or cycle.
And the generation bound illustrates the highest loop bound of every cycle in this graph.

® Prop-3: The initial and last node of the edge in the data flow graph way would remain the same. This can be
evaluated through the following mathematical equation;

Wy = Wursy (5.20)
If any output not fulfil these conditions would be the global output value with a given cost fitness function.
We may penalize retimed output that do not fulfil the conditions with the value of the penalty that discharges
these individuals during the selection process. The cost of the given function is evaluated in terms of number
of registers and critical path after retiming. So, it is calculated by the above fitness function (5.16).

Stopping condition. Lastly, the stopping criteria has been applied for updating the new one best path for
the search member in the data flow graph. This process repeated again and again until it satisfies the criteria of
prevention for example it reaches the highest generations or the output is earliest found.

Pseudocode of the proposed algorithm.
The pseudocode of modified SChoA version is illustrated in Algorithm 2.

Algorithm 2 Pseudo-code of SChoA algorithm

Inputs: The crowd size N and total number of generations/iterations ¢
Initialize crowd z;(i = 1,2,...,N)
while ¢ < total no’s of generations do
for each agents do
Define the search members group
Via utilizing is cluster approach to amend m,c and [
Use m,c,l for evaluate a and then d
end for
for all member do
if ¢ < 0.5 then
if |z| < 1 then
Amend the location of search member via Eq.(5.14)
else if |z| > 1 then
Chose a random member
end if
else if ¢ > 0.5 then
Amend the location of search member via Eq.(5.14)
end if
end for
update m,c,l and a
Update attacker, chaser, barrier and driver by Eq’s. (5.8)-(5.12)
t+1
end while
Return Tattacker
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Results analysis and discussion of 23-standard test suites

For evaluating the performance of the enhanced version has been used 23-standard test suites. These functions
have been divided into three different phases such as 07-uni-modal, 06-multi-modal and 10-fixed dimension
multi-modal test suites respectively. These test suites have been reported in the appendix table S1. The conver-
gence performance and robustness of the enhanced algorithm have been compared with recent powerful opti-
mizers such as Chimp, TACPSO, SCA and MPSO etc. Further, the analysis and discussions of the results have
been illustrated in details in the following sub-sections:

Constant setting and standard test suites.  All the evolutionary methods have been coded in the Mat-
lab R2018a during the implementation. And algorithms have been runned on the system Intel(R) Core(TM)
i3-8130U, RAM 8GB and Win 10. In these experiments have been applied different constant settings such as
30-number of search agents and 500- number of iterations respectively. It is constantly advantageous to use a
standard test suite with dissimilar features to suitably and assertively verify the robustness of MA’s on altered
standard test suites and compare it with recent MAs. The diversity of these test suites permits detecting and
analyzing the capability of the proposed method from dissimilar standpoints. In uni-modal test suites have only
one global optimum with no local optima. Generally, these test suites are highly suitable for comparing the con-
vergence and exploitative ability of the MAs. Additionally, the multi-modal and fixed dimension multi-modal
test suites face the survival of numerous local optimum outputs and more than one global optimum.

Here, the 23-test suites have been used to validate the robustness and efficiency of the enhanced version
compared to with others recent MA’s. These test suites have been divided into three categories such as uni-
model, multi-modal and fixed dimension multi-modal functions. These test suites have been illustrated through
appendix table S1.

Discussion. The performance of the algorithms have been tested on 23-test suites and experimental results
are illustrated in the table. The robustness of the algorithms have been verified in terms of best minimum cost,
maximum cost, average and standard deviation etc. Here the least and maximum cost of the fitness test suites
illustrates the best performance of the evolutionary algorithms. And the statistical outputs have also been used
for testing the robustness of the algorithms. All these results have been computed at the last iteration for every
evolutionary algorithm on every test suite to get the best global optima solution, to compare meaningful best
outputs.

Assessment of exploitation capability.  Firstly, the performance of the evolutionary algorithms have been tested
on uni-modal test suites (F1-F7). Generally, these test suites are applied to evaluate the exploitation phase. The
results of algorithms on these test suites have been illustrated through Tables 1, 2, 3 and 4. All the results of these
tables gives strong evidence that the enhanced algorithm has been able to provide the better exploitation abil-
ity as compared to others. As mentioned earlier, these standard test suites are most suitable for these functions.
Experimental outputs prove that the SChoA algorithm is highly functional. Furthermore, these experimental
solutions prove that the proposed strategy can be highly effective and robust in giving the accurate and best
optima for the high complex space test suites as compared to others.

Capability assessment.  Further, the performance of the evolutionary algorithms have been verified on multi-
modal (Fg-F;3) and fixed dimension multi-modal (Fi4—F3) test suites. The all results of algorithms on these
test suites have been illustrated through Tables 1, 2, 3 and 4. These test suites have many local and the number
of decision variables increases exponentially with the size of the test suite compared to the uni-modal test suite.
Generally, these test suites are used to assess the exploration ability and suitability of the evolutionary algo-
rithms. All results of tables, shows that the enhanced strategy achieves a higher detection ability and superior
exploitation ability.

Accuracy. In this subsection, the average scores obtained by the evolutionary algorithms on 23-test suites have
been discussed briefly in the Table 2. The average values have been divided into two categories like worst average
score (W) and best average score (B) etc. Generally, the least average score denotes the accuracy of the evolution-
ary algorithms for the best outputs. In the Table 2, we can see easily that the proposed strategy is able to find the
best optima solutions in at least average scores for the maximum standard test suites in the highly complex space.
Hence these results give strong evidence that the proposed strategy can find the accurate solutions for the highly
complex test suites as compared to others.

Stability. 'The standard deviation is used to verify the solution stability of the evolutionary algorithms. In
this phase, the performance of the evolutionary algorithms have been discussed on the behalf of statistically.
The standard deviation values obtained by the evolutionary algorithms on the 23-test suites have been plotted
through Fig. 2. In this graph, we can see easily that the standard deviation values of the proposed strategy on
23-test suites are near to 0, it means that the proposed strategy is stable on the test suites that were performed.
Additionally, the least standard score shows the best convergence performance of the evolutionary algorithms.
Hence, here, it can be concluded that the proposed methodology can able to fastly trap the best global optima
solution in the search space as compared to others.

Convergence performance. In this phase we are discussing the convergence performance of the evolutionary
algorithms on 23-test suites. All these graphs have been plotted through Figs. 3, 4 and 5. In this graph the x-axis
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Test suites | SChoA Chimp

F1-23 Min Max Mean S.D Min Max Mean S.D

F1 3.44E-33 7.27E+04 2.41E+03 3.65E+03 | 1.19E-05 6.04E+04 3.36E+04 2.79E+04
F2 2.93E-20 5.92E+12 2.38E+08 1.74E+09 | 3.77E-05 3.47E+12 6.41E+11 1.28E+12
F3 3.64E-08 1.38E+05 1.04E+04 2.11E+04 | 4.30E+01 1.27E+05 5.58E+04 5.17E+04
F4 1.77E-11 9.56E+01 1.08E+01 2.36E+01 | 5.64E-02 8.83E+01 5.41E+01 3.77E+01
F5 1.86E+01 3.10E+08 7.06E+06 3.36E+07 | 2.90E+01 2.99E+08 1.45E+08 1.35E+08
F6 1.20E-03 7.90E+04 1.02E+03 2.29E+03 | 3.72E+00 6.57E+04 3.30E+04 2.91E+04
F7 3.91E-04 1.78E+02 1.16E-02 1.66E-01 | 1.80E-03 1.02E+02 5.69E+01 4.70E+01
F8 1.04E+00 4.98E+02 3.64E-01 1.88E+00 | 6.86E+00 4.45E+02 2.64E+02 1.97E+02
F9 0.00E+00 4.88E+02 2.75E+00 1.50E+00 | 5.78E+00 4.24E+02 2.75E+02 1.84E+02
F10 2.22E-14 2.09E+01 2.42E+00 5.54E+00 | 2.00E+01 2.07E+01 2.00E+01 4.46E-02
F11 0.00E+00 6.00E+02 1.09E+01 2.51E+01 | 1.14E-05 5.53E+02 3.30E+02 2.98E+02
F12 0.00E+00 7.14E+08 1.07E+07 6.47E+07 | 3.06E-01 4.99E+08 2.80E+08 2.31E+08
F13 9.99E-01 6.40E+01 1.07E+00 2.05E+00 | 9.98E-01 1.08E+01 2.91E+00 3.02E+00
F14 —1.03E+00 | 0.00E+00 —1.02E+00 | 2.40E-03 |—1.03E+00 | —2.51E-01 | —1.00E+00 | 1.23E-01
F15 6.80E-04 1.85E-01 2.00E-03 9.70E-03 | 1.30E-03 8.09E-02 2.10E-03 5.80E-03
Fl6 3.98E-01 2.53E+00 4.10E-01 9.70E-02 | 3.98E-01 2.12E+00 4.25E-01 8.30E-02
F17 3.98E-01 4.72E-01 4.00E-01 1.08E-02 | 3.99E-01 1.33E-01 4.01E-01 9.01E-02
F18 3.00E+00 8.22E+01 3.06E+00 6.17E-01 | 3.00E+00 4.14E+01 3.21E+00 1.79E+00
F19 —3.86E+00 | 0.00E+00 —3.83E+00 | 5.46E-02 | —3.85E+00 | —2.25E+00 | —3.77E+00 |2.90E-01
F20 —3.82E+00 | —1.16E+00 | —3.63E+00 | 2.19E-01 |—3.13E+00 | —2.42E+00 | —2.76E+00 |2.89E-01
F21 —1.01E+01 | —1.16E+00 | —4.80E+00 |2.72E-02 | —8.82E-01 | —7.64E-01 | —8.69E-01 |2.79E-02
F22 —1.04E+01 | —5.20E-01 | —4.88E+00 | 8.38E-02 | —5.00E+00 | —5.68E-01 | —3.95E+00 | 1.20E+00
F23 —1.04E+01 | —2.10E-01 | —4.32E+00 | 8.38E-02 | —5.00E+00 | —6.68E—01 | —3.95E+00 | 1.20E+00

Table 1. The performance of algorithms on the 23-test suites.

and y-axis are denoted the number of iterations and best solutions respectively. These graphs show the evolu-
tionary algorithm how much takes a number of iterations or time for finding the best score in the search space
during the search process. Additionally, as per Berg et al.”%, this behavior can assure that evolutionary methods
ultimately converge to a point and are found locally.

So, being these reasons, we can discuss and as per reasoned to the proposed methodology. The search mem-
bers move from high score to low scores, so with the assumption of growth in proposed methodology, the overall
chimps and their fitness are improved during the iterations. With this methodology, we save the best score for
finding the next one best score and this value helps the search member during the search process in the search
space for searching the next best score. On the basis of these graphs, we can conclude that the proposed strategy
is able to trap the best score in least numbers of generations or time as compared to others. And could be capable
of resolving very complex issues easily.

Here, the proposed method have demonstrated their efficiency and capability over traditional optimizers for
generating the topology, rules and optimal parameters that deliver the superior classification performance with
concerning to the quality of the global result, avoiding local minima and computational cost. So,the proposed
method can be more helpful for addressing the complex domain issues and new Challenges.

Simulations and results of digital filters

In this work, an enhanced version of chimp optimizer have been applied on 14- different data filters such as DF-
FIR, LATFIR, CASFIR, PARFIR, TDFFIR, DF1IIR, TDF1IIR, TDE2IIR, DEF2IIR, CASIIR, SLATIIR, DLATIIR,
PARIIR and LADIIR for evaluating the several outputs. Under designing the complex filters high level synthesis is
alarge paramount stage for that. Generally, the high-level optimization methodology has been applied for reduc-
ing the designing period time at the lower levels, leading to superior circuit indices”. In this work is synthesized
using MATLAB HDL coder and Viva do HLS. All the benchmarks are synthesized on the Virtex family in term
of maximum usable frequency, Critical path delay and no of slices utilized in term of flipflps, LUTs, no of DSP
slices etc. Other HLS tool available in the market are Stratus HLS from Cadence, HDL coder from MATLAB,
Intel FPGA, Viva do HLS from Xilinx.

During implementation, Matlab HDL coder is preferred. It generates synthesizable VHDL code from MAT-
LAb, Simulink models. The HDL coder provide the workflow advisor that automates the program that be used
for programming for Xilinx. The Xilinx High-Level Synthesis (HLS) compiler provides a programming environ-
ment similar to those available for application development on both standard and specialized processors. The
programming model of an FPGA was centered on register-transfer level (RTL) descriptions which illustrates
how the programming model difference affects implementation time and achievable performance for differ-
ent computation platforms. During this methodology, the number of registers can exceed which may be the
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Table 2. Comparison of mean outputs of evolutionary algorithms on 23-standard test suites.

constraints to the designer. Here, we are trying to present the superior quality of solution for these issues. The
various recent algorithms and modified algorithms have been applied for verifying the accuracy of the solutions
of this issue. The matlab code of all the algorithms have been runned over the system with Intel (R) Core (TM)
i3-8130 U processor and 8GM of RAM. In this implementation the various parameter values applied like number
of search agents (30) and number of 500 iterations respectively.

The numerical solutions of the digital filters have been reported in Tables 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15,
16,17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 and 34 in the terms of least minimum, highest
maximum, average, standard deviation, execution time, occupied area and speed respectively. The performance
of the algorithms have been illustrated over single and multi-objective functions. Under this study have been
considered two categories of functions for evaluated the high level synthesis of the digital filters such as (1)
14-single objective digital filters and (2) 14-multi-objective digital filters. In Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, have illustrated the performance of the algorithms on the 14-single objective digital filters. The
numerical solutions in these tables shows that the proposed method gives the best score as comparison to others.
In Figs. 6, 7, 8,9 and 10 of these filters also proven that the proposed algorithm is able to provide the best optima
and accurate solution in the least time and in the least number of iterations or runs. So, the proposed algorithm
can be able to prove its own efficiency to reduce the complexity of these filters.

Similarly, in Tables 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, have been reported the algorithms
solutions on the multi-objective digital filters. The outputs of the algorithms are revealed that the proposed
method is capable of presenting the best and accurate global optima solutions on these multi-objective func-
tions. The convergence performance of the algorithms have been plotted through the Figs. 12, 13, 14, 15 and
16. These graphs give the proof of the best solutions trapping performance of the algorithms. And proven that
the proposed method easily and quickly trapping the best and accurate global solution with the least number
of iterations and time.

In Tables 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, the execution time of the algorithms on the
single and multi-objective digital filters have been illustrated. The results show that the proposed algorithm can
be trapping the best global optima solution in the complex search domain easily and fastly outperforms others.
The execution time performance of the algorithms on the single and multi-objective digital filters have been
plotted through Figs. 11, 12, 13, 14, 15, 16 and 17. These graphs give strong evidence that the proposed method
is able to trap the best goal fastly as comparison than others.

The average values of the algorithms have been illustrated through a Fig. 18. This graph has been plotted over
the average values of the algorithms on the multi-objective digital filters, these values are shown in Tables 20,
21, 22,23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33. Generally, the least value of mean represents the accuracy of the
optimizer algorithm for the best global optima. These figures give strong evidence of the superior accuracy of the
proposed algorithm as comparison with others on these multi-objective digital filters. Finally, we can say that the
proposed methodology is able to present accurate and superior global optima solutions for these complex filters.
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Figure 2. The standard deviation (SD) values of evolutionary algorithms on 23-standard test suites.

Test suites TACPSO SCA

F1-23 Min Max Mean S.D Min Max Mean S.D

F1 1.00E-02 6.17E+04 3.58E+03 5.30E+03 | 5.57E+01 6.43E+04 1.31E+04 2.27E+04
F2 1.19E+00 7.34E+10 2.94E+08 4.63E+09 | 9.60E-03 5.16E+12 1.03E+10 2.31E+11
F3 7.72E+02 1.08E+05 7.64E+04 2.99E+04 | 3.49E+03 1.20E+05 4.82E+04 4.16E+04
F4 1.05E+01 8.30E+01 2.09E+01 1.16E+01 | 3.19E+01 9.17E+01 6.65E+01 2.67E+01
F5 2.76E+01 1.93E+08 8.67E+06 4.31E+07 | 1.80E+05 1.52E+08 7.34E+07 7.44E+07
F6 2.24E-01 5.93E+04 1.58E+03 4.66E+03 | 4.28E+00 6.84E+04 7.92E+03 1.60E+04
F7 1.18E-01 1.55E+02 1.66E+00 8.94E+00 | 1.02E+00 7.51E+01 1.82E+01 2.24E+01
F8 7.39E+01 4.39E+02 1.34E+02 7.89E+01 | 7.06E+01 4.38E+02 1.81E+02 1.05E+02
F9 8.36E+01 4.29E+02 1.42E+02 7.66E+01 | 0.00E+00 4.60E+02 1.60E+02 1.42E+02
F10 4.26E+00 2.08E+01 6.71E+00 4.00E+00 | 9.60E-01 2.06E+01 8.85E+00 8.04E+00
F11 1.27E-01 5.94E+02 1.77E+01 4.79E+01 | 1.53E+00 4.14E+02 1.29E+02 1.52E+02
F12 1.60E+00 7.01E+08 2.68E+06 3.53E+07 | 1.37E+01 7.02E+08 3.40E+08 3.46E+08
F13 9.98E-01 3.81E+01 2.37E+00 2.05E+01 | 9.98E-01 1.37E+01 2.02E+00 2.72E+00
F14 —1.02E+00 | —8.01E-01 | —9.07E-01 | 1.11E-01 | —1.03E+00 | 0.00E+00 —1.02E+00 | 6.24E-02
F15 7.83E-04 1.65E-01 7.83E-04 0.00E+00 | 1.50E-03 3.70E-02 2.20E-03 4.20E-03
Fl16 3.98E-01 4.49E-01 4.00E-01 7.60E-03 | 4.02E-01 1.87E+00 4.78E-01 2.61E-01
F17 3.98E-01 3.14E-01 4.00E-01 1.84E-02 | 3.99E-01 1.34E+00 4.23E-01 9.71E-02
F18 3.00E+00 7.72E+01 3.22E+00 3.78E+00 | 3.00E+00 5.89E+01 3.23E+00 2.78E+00
F19 —3.86E+00 | —3.06E+00 | —3.85E+00 | 8.01E-02 | —3.82E+00 | 0.00E+00 —3.79E+00 | 1.71E-01
F20 —2.81E+00 | —1.40E+00 | —2.07E+00 | 5.98E-01 | —2.80E+00 | —2.80E+00 | —2.60E+00 |3.69E-01
F21 —4.61E+00 | —3.38E-01 | —9.41E-01 | 1.25E+00 | —4.97E-01 | —4.97E-01 | —4.93E-01 | 8.30E-01
F22 —9.12E-01 | —3.52E-01 | —6.76E-01 | 2.15E-01 | —4.83E+00 | —4.83E+00 | —2.79E+00 | 1.74E+00
F23 —9.12E-01 | —3.52E-01 | —6.76E-01 | 2.15E-01 | —4.83E+00 | —2.98E+00 | —2.79E+00 | 1.74E+00

Table 3. The performance of algorithms on the 23-test suites.
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Test suites MPSO

F1-23 Min Max Mean S.D.

F1 3.43E-01 6.50E+04 9.43E+03 1.38E+04
F2 6.24E-01 1.20E+09 3.45E+08 5.42E+09
F3 3.36E+04 2.19E+05 5.70E+04 2.48E+04
F4 1.53E+01 7.13E+01 3.92E+01 1.67E+01
F5 5.94E+02 2.57E+08 2.32E+07 3.73E+07
F6 5.10E-02 7.35E+04 1.22E+04 1.76E+04
F7 5.95E-02 1.09E+02 1.24E+01 1.87E+01
F8 1.19E+02 4.36E+02 2.30E+02 1.03E+02
F9 1.26E+02 4.60E+02 2.34E+02 1.03E+02
F10 1.51E+00 2.08E+01 9.55E+00 7.26E+00
F11 1.99E-01 5.69E+02 7.49E+01 1.11E+02
F12 5.08E+00 5.28E+08 7.48E+07 1.15E+08
F13 9.98E-01 1.80E+01 1.92E+00 2.78E+00
Fl14 —1.03E+00 | 2.01E-01 - 1.02E+00 | 5.98E-02
F15 7.83E-04 1.59E-01 2.00E-03 1.03E-02
Fl6 3.98E-01 4.00E-01 3.98E-01 4.62E-04
F17 3.98E-01 3.00E-01 4.01E-01 1.67E-02
F18 3.00E+00 5.31E+01 3.14E+00 2.28E+00
F19 - 3.82E+00 | —2.99E+00 |- 3.86E+00 |5.72E-02
F20 —3.20E+00 |- 1.62E+00 |-3.17E+00 | 1.18E-01
F21 —5.10E+00 | —3.44E-01 |-4.93E+00 |5.30E-01
F22 -5.13E+00 |-7.21E-01 |-4.12E+00 |6.30E-01
F23 —-5.13E+00 |-7.21E-01 |-4.87E+00 |6.30E-01

Table 4. The performance of algorithms on the 23-test suites.

In this phase, we are discussing the standard deviation values (sd) of the algorithms. The sd values of each
algorithm have been plotted by the graph or Fig. 19 with respect to x-axis and y-axis respectively. These values
are illustrates through Tables 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33. Generally, these values near to
zero represent the stability and fast convergence performance of the algorithm. This graph gives strong evidence
that the proposed methodology all standard deviation results are near to zero which presents the proof of global
optima solution stability and fast convergence performance of the proposed method outperform than others.
Here, we can conclude that the proposed method is able to trap the best global optima with least number of
iterations and time as comparison than others.

This paper has proposed a novel approach based on the recent meta-heuristic algorithm of SChoA. After
using this approach in digital filter synthesis, it was found that, relative to other approaches, the proposed process
has a greater ability to achieve optimal solutions in the same initial state (the initial population and the same
number of iterations). In our suggested method, SChoA algorithm was applied separately to each node, where
the location is modified according to the retiming strategy to which the SChoA algorithm is applied. In this way,
the SChoA algorithm is applied to all the nodes available on the path. This enables the proposed algorithm to
solve the current restrictions of identifying operator execution quickly and accurately. Lattice Ladder IIR filter
system is taken into the account as an example to evaluate different outcomes using evolutionary algorithms
based retiming approach. By significantly reducing the longest activities in a retimed DFG, the clock performance
increases. It is by lowering while using this as next critical path in the system. The count of registers will rise in
the process that could be the designer’s limit.

SChoA, MFO, PSO are highlighted here as the evolutionary algorithm based on Pareto, although there are
other algorithms available on Pareto that may be considered for comparative analysis. The results of the algo-
rithms have been illustrated in Table 35. In the entire solution space, the decision vectors that are not dominated
can be represented as optimal Pareto and entail an optimal Pareto front. The Pareto front has been shown in two
dimensions (Path delay and number of registers) to manipulate the objectives. The Pareto fronts identified using
the information gathered for the analysed filters from the objective solution space are shown in the Figs. 20, 21,
22,23 and 24 where the blue line indicates the relevant information obtained by the proposed process, while the
red line reflects the algorithm data based on the MFO and the green line shows the algorithm-related data based
on the PSO. In addition, the number of registers has been used in the vertical axis to clearly represent the data,
which provides a clearer comparison of the three methods. In the Lattice Ladder IIR filter, the most appropriate
solution fulfilling the goals is with a clock period of 5 time units and register count of 11. Besides that, even if
clock period is chosen a limit, then with clock period as 3 and register count as 14 from the search space can
be considered. From the design space if register count is a constraint, then response with clock time as 5 and
register count as 11. An entry into the potential solution space would come from the one that does not alter the
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Figure 3. The convergence graph of algorithms on 07-Uni-modal test suites.

circuit functionality. This process will proceed until all feasible solutions are obtained. The designer may select

either solution refers to a time units for critical paths and the registers count.

Consequently, the findings certainly showed selection in view of register and path latency, leading to an
improvement in the design stage of the filters for the optimum solution. The solution space that provides the path
lower than the initial critical path that fulfils all the retiming features is calculated by all feasible routes from the
source node to the destination node. In the DLAT-IIR, the Pareto set at a path delay of 3 time units and a register
count of 6 is the most suitable option that meets both objectives. However, if only a path delay is considered a
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400

500

restriction, the solution can be interpreted as a path delay with 3 and register 10 as a register count. For the regis-
ter count as a restriction, another approach in terms of path delay as 5 and register count as 6. A 37.13%, 30.18%
improvement in the MUF and area, 39.74% and 40.51% in relative to MFO, PSO based algorithms. The pareto
optimal front for the consideration of 14-digital filters are shown in Figs. 20, 21, 22, 23 and 24. The retimed best
optima results have been evaluated during this work for the single and multi-objective digital filters. Generally
the search domain is finalized at each path from initial node to final node which provides the path less than the
critical way that fulfills all the given conditions or properties.

The information obtained through the simulations of the three methods are listed in the tabulated form, i.e.
SChoA-Proposed Method, MFO-based Method, PSO-based Method. In all the methods, the initial population
and the maximum number of iterations are equal to 30 and 500. The results of the HLS of the digital filters have
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Figure 5. The convergence graph of algorithms on 10-Fixed dimension multi-modal test suites.

been tabulated in Table 36 where the maximum frequency available and the occupied area, that is the number
of slices register used for the implementation of the operators and registers.

Table 37 summarises the percentage of the improvement achieved by the proposed SChoA-based method
than other methods (MUF-based and PSO-based) while synthesising each digital filter. Table 37 clearly illustrates
that in the DF-FIR, the current method have significantly improve MUF by 26.70% and 38.13% as compared to
the MFO-based and PSO- based method. And the proposed method have provided improved MUF by 61.29%
compared to the PSO-based method for DF2IIR. And compared to the MFO-based and PSO-based methods,
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Algorithm | Best score | Bestmax | Mean SD
SChoA 2.001 210.9273 2.5948 | 1.2636
MPSO 6.6 17.025 6.6645 | 2.675
TACPSO 9.2 27.1034 9.4398 | 1.6964
ChCSs 12.866 25.446 16.526 4.5525
Chimp 13.0723 23.3669 | 16.541 3.9507
MChimp 13.0784 21.7749 | 16.2532 | 3.3444
GWO 4.848 20.4637 5.2975 | 1.6976
MFO 4.8 21.4217 53021 |2.1577
SCA 5.956 17.3476 6.443 1.4032
TLBO 4.8 17.4918 5.236 1.3733
PSO 4.8132 25.245 5.2916 |1.6579

Table 5. The global optimal results of the algorithms on single-objective direct form FIR filter.

Algorithm | Bestscore | Best max | Mean | SD
SChoA 2 8.7279 2.0438 | 0.3101
MPSO 5.0211 12.0759 5.0548 | 0.3904
TACPSO 5.22 9.5391 50.866 | 0.4684
ChCS 8.0374 10.087 8.6119 | 1.1925
Chimp 5.0001 10.9958 8.0069 | 1.4896
MChimp 5.0001 10.8877 7.0041 | 1.9999
GWO 5.1021 11.4891 5.0486 | 0.402
MFO 5.0236 9.1648 5.1644 | 0.5723
SCA 5.0281 6.6956 5.0664 |0.313
TLBO 5.0126 7.2683 5.022 0.4521
PSO 5.2981 9.35 5.0453 | 0.3978

Table 6. The global optimal results of the algorithms on single-objective lattice form FIR filter.

Algorithm | Bestscore | Best max | Mean | SD
SChoA 2 10.5065 2.3025 | 0.3447
MPSO 2.001 9.3818 2.942 0.868
TACPSO 29 9.247 3.0367 | 0.65831
ChCS 3.196 6.8026 3.8655 | 0.9922
Chimp 3.227 9.5168 4.5794 | 1.5258
MChimp 3.234 9.6698 4.4008 | 1.4324
GWO 2.903 8.5665 2.9799 | 0.9398
MFO 2.9706 8.0757 3.0968 | 0.532
SCA 3.1388 6.3783 3.3795 | 0.5173
TLBO 2.9035 7.2913 29704 | 0.3702
PSO 2.9025 6.4123 3.0817 | 0.7337

Table 7. The global optimal results of the algorithms on single-objective cascade form FIR filter.

the proposed method used fewer slices. For the optimum frequency, the proposed method in LAT FIR, DLATIIR
filters synthesis revealed the best compared to the MFO-based, PSO-based, with 21.05%, 25.51% and 37.13%,
30.18% improvement. The best outcome for utilized slice registers was observed in the DF-FIR synthesis, with an
improvement of 59.70% compared to the PSO-based method and an improvement of 39.74% in the DLAT-IIR
synthesis compared to the MFO-based method. Important improvements have been identified in the Tables 36
and 37 to reach an optimal solution in terms of throughput. Our proposed method outperformed the other two
with respect to two parameters (MUF and Area) for the filter synthesis. In Table 38, have been compared the
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Algorithm | Bestscore | Bestmax | Mean |SD
SChoA 2 5.4738 2.022 0.192
MPSO 2.002 5.1575 2.026 0.2498
TACPSO 2.001 6.4194 2.0833 | 0.4673
ChCS 2.0016 6.335 2.5378 | 1.009
Chimp 2.006 7.8854 2.5811 |0.9513
MChimp 2.002 6.4369 2.6 1.1154
GWO 2.0014 6.5121 2.057 0.3269
MFO 2.0251 6.9538 2.6812 | 0.4188
SCA 2.0366 5.2195 2.1308 |0.2818
TLBO 2.121 4.2772 2.0341 | 0.2066
PSO 2.22 7.5669 2.0868 | 0.4047

Table 8. The global optimal results of the algorithms on single-objective parallel form FIR filter.

Algorithm | Best score | Best max | Mean |SD
SChoA 2 3.6206 2.0119 | 0.028
MPSO 2.0102 2.4326 2.0075 | 0.0774
TACPSO 2.011 2.7873 2.0114 | 0.0577
ChCSs 2.0048 3.3692 22721 | 04116
Chimp 2.7864 3.8314 2.9155 | 0.2382
MChimp 2.0024 3.1075 2.2946 | 0.317
GWO 2.0014 3.2125 2.0192 | 0.0736
MFO 2.1375 3.8634 2.1857 | 0.1873
SCA 2.0013 3.7071 2.207 0.2173
TLBO 2.0011 2.6426 2.004 0.0336
PSO 2.0033 3.1933 2.0333 | 0.0881

Table 9. The global optimal results of the algorithms on single-objective transpose direct form FIR filter.

Algorithm | Best score | Best max | Mean SD
SChoA 3.2 17.6002 3.9344 | 0.891
MPSO 11.8 14.5335 11.8185 | 0.172
TACPSO 5.4613 12.6305 5.6023 0.7837
ChCS 6.0057 13.4063 7.6548 2.4924
Chimp 5.0039 16.2935 7.5746 3.2657
MChimp 5.9984 18.6078 7.6327 2.6068
GWO 3.8025 12.1505 3.9137 0.5437
MFO 42 13.7726 4.4028 1.1605
SCA 3.9341 19.219 5.2136 1.9907
TLBO 3.8 14.7553 3.9283 0.7514
PSO 3.8054 17.9583 4.0331 1.4121

Table 10. The global optimal results of the algorithms on single-objective direct form IIR filter.

execution time taken by the evolutionary algorithm for the 14- different digital filters. The results of this table give
strong evidence that the proposed algorithm is able to tackle these issues in least time as comparison with others.

By comparing the performance of models, it would be reported that the optimum operating frequency for
Lattice Ladder IIR filter has enhanced from 17.884 to 28.186 MHz that is improved by 57.6% whereas the number
of slices used get declined by 23.52%. From the statistic it has been seen that the proportion of latches does get
controlled well with desired clock period for the evolutionary retiming algorithm. For the performance analysis
which including area and delay, models are evaluated and HLS has been used to optimize register transfer logic.
The improvement in the clock rate of FIR and IIR digital filters during novel retiming algorithm are shown in
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Algorithm | Bestscore | Bestmax | Mean |SD

SChoA 3.202 12.7328 3.6757 | 0.6346
MPSO 3.8 12.2121 3.9407 | 0.6259
TACPSO 3.8 11.0269 3.9342 | 0.7674
ChCS 5.8134 7.2297 6.3365 | 0.75

Chimp 4.767 8.2288 6.4463 | 1.2141
MChimp 6.4115 14.1893 8.561 2.3742
GWO 3.8025 17.1272 3.9723 | 0.8946
MFO 3.8 13.1308 4.0081 | 0.9875
SCA 4.1692 12.5974 4.7104 | 0.9022
TLBO 3.8565 11.818 3.9181 |0.6547
PSO 3.8348 16.1025 4.0567 | 0.8181

Table 11. The global optimal results of the algorithms on single-objective transpose direct form IIR-1 filter.

Algorithm | Bestscore | Best max | Mean | SD
SChoA 2.0001 12.5078 2.9885 |1.4321
MPSO 3 12.4903 3.1886 | 0.883
TACPSO 2.4995 11.521 2.6825 | 0.9083
ChCS 4 7.9303 57231 | 1.7345
Chimp 4.0007 11.673 6.9392 | 2.5919
MChimp 2.5025 13.7468 6.1608 | 3.548
GWO 2.4954 10.0096 2.6144 | 0.5615
MFO 2.794 12.999 3.1936 | 1.532
SCA 2.5071 11.1921 2.7635 |0.7914
TLBO 2.4188 6.3385 2.4787 | 0.3085
PSO 2.4933 9.9725 2.6297 | 0.5863

Table 12. The global optimal results of the algorithms on single-objective transpose direct form IIR-2 filter.

Algorithm | Bestscore | Best max | Mean | SD
SChoA 3.2 12.9193 3.3646 | 0.8452
MPSO 4.2 17.3297 4.3595 | 0.9658
TACPSO 3.8 13.9067 4.1401 1.18
ChCS 8.0985 13.968 8.7321 | 1.4725
Chimp 3.8059 13.111 6.6859 | 2.7878
MChimp 7.2021 21.7115 8.5815 | 1.9148
GWO 3.8081 18.757 3.9466 | 0.9807
MFO 5.6 16.4038 0.8728 | 1.2778
SCA 3.8125 17.2306 4.0884 | 1.2642
TLBO 3.8253 8.1135 3.976 1.4236
PSO 3.8555 18.922 3.989 1.0307

Table 13. The global optimal results of the algorithms on single-objective direct form IIR-2 filter.

Table 37. It highlights that after implementing the novel approach, the stepladder of the different arrangements
are whittled down. The declination of the register count accelerates the design’s clock rate and trim down the
feature size that further enhances performance level. Summing up, on the basis of all simulations, we concluded
that the proposed methodology can tackle the complex digital filters issues strongly.

HLS of digital filters design.  Under this phase, the proposed strategy has been implemented on the high
level of synthesis. HLS (high level synthesis) is a paramount phase during designing the digital filters. Normally,
HL optimization decreases design period at minor stages, foremost to superior circuit indices”. HLS is a plat-
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Algorithm | Bestscore | Bestmax | Mean |SD
SChoA 2.5 3.575 2.5108 | 0.0531
MPSO 2.5005 4.9231 2.5279 | 0.1585
TACPSO 2.5216 3.5783 2.5382 | 0.1522
ChCS 2.5058 3.6604 2.7769 | 0.3768
Chimp 2.55 3.4886 2.7318 | 0.3048
MChimp 2.5038 4.9792 3.0672 | 0.6584
GWO 2.5004 3.936 2.5105 | 0.0783
MFO 3.007 3.663 3.0072 | 0.0549
SCA 2.5152 3.985 2.581 0.1983
TLBO 2.5164 4.0363 2.5219 |0.133
PSO 2.5023 4.3532 2.5245 |0.1113

Table 14. The global optimal results of the algorithms on single-objective cascade form IIR-2 filter.

Algorithm | Best score | Best max | Mean SD

SChoA 3.008 12.8731 5.6723 0.9228
MPSO 5.8 9.7896 5.8452 0.3542
TACPSO 5.8 8.8013 5.8184 0.8814
ChCS 8.6 10.888 9.2427 0.8772
Chimp 7.0058 12.2945 8.6923 1.7725
MChimp 7.001 11.7942 8.92525 | 1.6074
GWO 5.8002 7.8945 5.9101 0.8274
MFO 5.8003 9.2786 5.8841 0.6319
SCA 5.8134 9.3424 5.9071 0.8333
TLBO 5.821 7.0899 5.8131 0.9801
PSO 5.8006 6.9432 5.8376 0.7524

Table 15. The global optimal results of the algorithms on single-objective SS lattice form IIR filter.

Algorithm | Best score | Best max | Mean SD
SChoA 2 10.9322 2.8544 | 1.2677
MPSO 4 10.285 4.2051 | 1.402
TACPSO 4.001 10.048 4.0543 | 0.4422
ChCS 6.8 14.6637 10.0989 | 2.7477
Chimp 6.60003 11.2271 9.0192 | 1.6648
MChimp 5.401 10.575 8.3921 | 1.5678
GWO 5.3987 9.0144 5.4457 | 0.5861
MFO 4.0308 11.6615 4.2051 | 1.002
SCA 4.0549 12.4323 4.3074 | 0.8712
TLBO 4 8.1319 4.1035 | 0.6592
PSO 4.0098 11.8028 4.1792 | 0.6182

Table 16. The global optimal results of the algorithms on single-objective DS-lattice form IIR filter.

form of very big scale integration (VLSI) design where in behavioral explanation is transformed into a physical
representative’®””. The HLS is the initial stage in synthesizing a circuit and data flow graph (DFG) is utilized
to illustrate the behavioral explanation, which defines the operators’ type and the connections amid them. The
assumed DFG has been demonstrated by the Eq. (7.1);

Y =(((@a+b)x(cxd)+((e+f) x(gxhm)+((e+f) x(gxh) (7.1)

The digital filters (DF’s) are commonly utilized for videos, process signals, images, communication applications,
digital signal processing etc. The auto regressive filter (ARF), finite impulse response (FIR), the band-pass filter
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Algorithm | Bestscore | Bestmax | Mean |SD
SChoA 2 4.2505 2.0195 | 0.1317
MPSO 2.0071 5.4267 2.0371 |0.156
TACPSO 2.02 5.5167 2.0503 |0.23
ChCS 2.0001 3.7446 2.035 0.203
Chimp 2.005 4.1569 2.5059 | 0.3589
MChimp 2.0074 4.3069 2.0832 | 0.4109
GWO 2.005 4.6426 2.0102 | 0.9913
MFO 2.115 4.5478 2.0275 |0.6174
SCA 2.0119 3.9378 2.0593 | 0.9146
TLBO 2.0151 4.4391 2.0126 |0.1107
PSO 2.0002 4.5202 2.0213 | 0.1946

Table 17. The global optimal results of the algorithms on single-objective parallel form IIR-2 filter.

Algorithm | Bestscore | Best max | Mean | SD
SChoA 2.1665 8.2876 2.2429 |0.291
MPSO 2.3917 9.2255 24234 |0.3751
TACPSO 2.2917 9.5753 2.3845 | 0.6318
ChCS 8.3662 12.1782 9.8557 | 1.4494
Chimp 24272 7.3386 5.2377 | 1.8086
MChimp 2.3932 9.0506 6.8039 | 1.8742
GWO 2.3591 10.2187 2.5273 | 0.7707
MFO 2.2583 8.6259 2.322 0.7706
SCA 2.5332 8.0528 2.6882 | 0.6164
TLBO 2.2583 4.2576 2.1846 | 0.3147
PSO 2.3472 10.7821 2.5034 | 0.9692

Table 18. The global optimal results of the algorithms on single-objective lattice ladder form IIR filter.

(BPF), the infinite impulse response (IIR), the elliptic wave filter (EWF) and the wave digital filter (WDF) are
the DF’s used in this work. The DFG of the ARF used in this text has been demonstrated by Fig. 2578.

The following fitness function has been considered for evaluating the area, power and delay by the proposed
strategy and verify the accuracy by the results of MFO”* and PSO* algorithms:

L
F=w; X — +w, X
Imax Amax Pmax

(7.2)

where Fis illustrated the fitness function, wi,wz,w3 are describes the weights of the power, delay and area terms,
I; is represented the schedule length of sample evaluated, at) is illustrated the total number of registers and tran-
sistors in the operators, p; is denoted the power consumption of operators, [, is denoted the long scheduled
length in the current crowd,a,qx is denoted the largest area in the current crowd and py,4y is denoted the highest
power in the current crowd respectively.

Further accurately illuminates on the best optima results attained by the newly proposed method in the
subsequent period of this subdivision. These outcomes have been confirmed over the recent literature solutions
achieved by MFO™ and PSO’“. The code of the algorithms have been runned on Matlab-R2015a under the system
with 8GM of RAM and Intel (R) Core (TM) i3-8130 U processor. The various constants values have been fixed
for getting the best outcomes viz total no ’s of search members are 30, total no’s of generations are 100, total nos
of operational units and sources are 5 etc. The experimental outcomes of the HLS of the digital filters have been
described through Tables 39, 40, 41, 42, 43, 44. Similarly, the best outcomes of the newly developed approach for
power, occupied area and lowest delay are presented by Fig. 26. All outcomes have assessed on three modes such
asw; = 0.8, w, = Lws = landw; = 1, w, = 0.8, w3 = landw; = 1, w, = 1, w3 = 0.8 etc. For every mode, the
average of the assimilated reaction for a 50-times effecting for the newly developed approach has been tabulated
beside with their appropriate the standard deviation(sd). Here keep in mind that, the standard scores (sd) have
been reported for a comparison and superior presentation of the result with respect to the power consumption
and largeness of the occupied area.

The outcomes of Tables 39, 40, 41, 42, 43, 44, shows that the proposed method is able to give a highly
accurate and superior outcome in terms of area, power and delay than others. All outcomes of IIR, FIR, ARE,
EWE, BPF and WDF-DFG have been attained through changing the constant values of (wj, w2, w3) and a major
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Figure 6. The convergence graph of algorithms on single-objective DF-FIR, LATFIR and CASFIR digital filters.

improvement in the global optimal outcome responses of the MA’s observed. For illustration, the best delay
will be attained, linked to the other two modes, when supposing a weight of 0.8 for w;, this factor is associated
to the delay, and supposing a coeflicient of 0.1 for w, and w as the coefficients of the occupied area and power.
The same is true for the other two modes. All least scores in Tables 39, 40, 41, 42, 43, 44 of the newly developed
algorithm revealed are able to give the highly effective and accurate solutions for the occupied area and the
least power consumption than MFO’* and PSO”# algorithms. In addition, the outcomes of Table 40 proved that
the mean scores for the delay have been attained by the new method in comparison to others. These outcomes
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Figure 7. The convergence graph of algorithms on single-objective PARFIR, TDFFIR and DF1IIR digital filters.

revealed that the new method is capable of decreasing the delay period than other for HLS issues. Therefore,
the new strategy is competent to deliver the paramount outcome response in terms of delay, area and power
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consumption for HLS in VLSI circuits.

Summing up, the performance of the proposed algorithm shows that it is able to provide the high quality
of the global optimal solutions outperforming the original algorithms. The powerful features of the proposed
method can deal with the NP-hard applications of different domains. So this approach would be helpful in

handling complex real-world problems.
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Figure 8. The convergence graph of algorithms on single-objective TDF1IIR, TDF2IIR and DF2IIR digital
filters.

Conclusion and future work

In the paper, a enhanced version of chimp optimizer with sine cosine functions have been designed for the high
level synthesis (HLS) of digital filter data-paths in terms of best score, execution time, occupied area and speed.
The sine and cosine functions are helped of the algorithms in fluctuating toward or outward searching the global
optima solutions. These functions are also able in ignoring the local optima and forcing for trapping the global
optima fastly in the search domain. The performance of the algorithms have been tested on 23-standard test
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Figure 9. The convergence graph of algorithms on single-objective CASIIR, SLATIIR and DLATITIR digital
filters.

suites and 14-different digital filters of single and multi-objective functions in terms of minimum, maximum,
average, standard deviation, execution time, occupied area and speed. The simulation results of the proposed
strategy shows that the proposed strategy is able to successfully solve the high level synthesis of datapaths in
digital filters problem in terms of area and speed respectively as comparison than to others. It is also able to trap
highly accurate global optima solutions in the search area with least number of iterations and time than others.
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Figure 10. The convergence graph of algorithms on single-objective PARIIR and LADIIR digital filters.

Digital filters | SChoA | MPSO | TAPSO | ChCS | Chimp | MChimp | GWO |MFO |SCA |TLBO | PSO
DF-FIR 157 222|193 1174 |3711 | 3.886 371 |6015 |177 |58 2.06
LATFIR 0783 |1305 |1.075 5926 |2.016 | 2.866 215 [3426 |094 |32 1.17
CASFIR 0913 | 1533 | 1257 7.306 | 2.42 3.661 259 4223 |11 1.37
PARFIR 0993 | 1.558 | 1.306 7.397 | 2.45 3.51 26 409 |116 |39 1.42
TDFFIR 0568 |1.04 | 0.836 442|157 22 169 [271 071 |25 0.92
DFIIIR 1.034 | 1.805 |144 7.965 | 2.77 3923 298 [464 |125 |44 1.6
TDFIIIR 1.02 1794 | 1.443 8013 |2751 | 3914 295 |464 |124 |44 1.59
TDF2IIR 1064 192 152 831 |289  |4.106 312 492 |13 |46 1.71
DF2IIR 1019|1798 |143 795 |2.73 3.87 293|461 |124 |41 1.59
CASIIR 0557 [1.04  |0826 443 | 155 2216 169 273 |07 |25 091
SLATIIR 0.68 131 1.03 551 |1.95 2.75 211 (338|087 |32 115
DLATIIR 1.05 195 | 1.54 833 294  |4.165 317|498 |13 |47 1.73
PARIIR 0777 |1.336 |1.08 603 |2064 |2932 221 |35  [094 |33 1.19
LADIIR 1675 |233  [2.03 1242 (39 5.63 408 6328 [1.87 |61 217
Table 19. The execution time of the algorithms on single-objective digital filters.
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Algorithm | Best score | Best max | Mean SD
SChoA 0.0046 | 11.8261 | 0.6708 |1.054
MPSO 5.4383 11.6974 | 5.4888 |0.3805
TACPSO 5.4383 11.4401 5.6124 | 0.829
ChCs 10.8411 11358 10.856 | 0.0759
Chimp 9.943 119379 | 103059 |0.4513
MChimp 9.00396 | 11.5773 9.1815 | 0.4439
GWO 63861 12.9561 6.5973 | 0.604
MFO 5.4383 17.5802 5.6966 | 0.9476
SCA 9.049 10.8017 | 9.1355 |0.5581
TLBO 5.4383 10.7239 5.5887 | 0.5822
PSO 63402 10.9351 6.8387 | 0.6043
Table 20. The global optimal results of the algorithms on multi-objective of direct form FIR filter.
Algorithm | Bestscore | Bestmax | Mean |SD
SChoA 0.001098 | 4.005 0.121 |0.195
MPSO 024138 | 3.0009 02556 | 0.161
TACPSO 0.2385 3.4205 02724 | 0.2842
ChCs 036038 | 57828 1.2438 | 1.1965
Chimp 033717 | 1.2334 0.6302 | 0.3216
MChimp 035147 | 2.7265 0.8032 | 0.7314
GWO 0.24181 1.971 02554 |0.1235
MEO 024138  [3.2128 02755 | 0.2571
SCA 024312 [ 4.0598 0.2655 | 0.1923
TLBO 0.239 1.4698 0245 | 0.0688
PSO 024192 | 54632 02693 | 0.2744
Table 21. The global optimal results of the algorithms on multi-objective lattice form FIR filter.

Further, for the SChoA evolutionary algorithms, maximum improvement analysed in the frequency, the
occupied area for DR- FIR is 38.13%, 59.70% and for DF2-IIR is 61.29%, 15.69% ,for LAT-IIR is 52.37% , 14.67%
and also for LAD-IIR is 43.95%, 59.07%. This could greatly reduce the cost of systems with broad dimensions
while increasing the design speed. Practically, the entire framework is saving the designer resources and time.
In addition, the SChoA is competent to effectively solve the HLS of datapaths in digital filters issue in terms of

Scientific Reports|  (2022) 12:21389 | https://doi.org/10.1038/s41598-022-24343-x nature portfolio



www.nature.com/scientificreports/

Algorithm | Bestscore | Bestmax | Mean |SD
SChoA 0.000329 5.9363 0.0329 | 0.2621
MPSO 0.76 4.4759 0.7954 | 0.2038
TACPSO 0.76 3.2125 0.8192 | 0.2746
ChCS 0.7938 4.12 1.3391 | 0.5144
Chimp 0.7818 6.0987 1.1026 | 0.4374
MChimp 0.88428 6.481 1.2928 | 0.4905
GWO 0.76723 5.4576 0.8195 | 0.3095
MFO 0.7673 3.1406 0.8107 | 0.2705
SCA 0.9269 5.869 1.3091 | 0.5904
TLBO 0.7659 4.4726 0.7949 | 0.241
PSO 0.7733 5.5713 0.8038 | 0.388

Table 22. The global optimal results of the algorithms on multi-objective cascade form FIR filter.

Algorithm | Bestscore | Bestmax | Mean |SD
SChoA 0.0003139 | 4.2657 0.0202 | 0.2194
MPSO 0.18182 1.312 0.1894 | 0.0788
TACPSO 0.63077 4.2677 0.6911 | 0.3971
ChCS 0.60953 4.8039 1.1896 | 1.0714
Chimp 0.19982 4.5335 0.6468 | 0.7323
MChimp 0.6607 3.7075 1.0543 | 0.706
GWO 0.18182 3.5682 0.2035 | 0.2158
MFO 0.1869 3.1628 0.2208 | 0.2365
SCA 0.18138 3.3655 0.2491 | 0.2542
TLBO 0.18163 1.8273 0.1877 | 0.0807
PSO 0.18138 4.4616 0.2271 | 0.3086

Table 23. The global optimal results of the algorithms on multi-objective parallel form FIR filter.

Algorithm | Best score | Best max | Mean SD
SChoA 1.40E-12 1.6981 0.00152 | 0.0367
MPSO 0.1818 0.8401 0.1839 0.032
TACPSO 1.70E-03 1.1337 0.0163 0.1056
ChCS 0.1813 0.4521 0.211 0.0672
Chimp 0.0026 1.0916 0.1772 0.1588
MChimp 0.0175 0.8503 0.19 0.1289
GWO 0.0045 0.9938 0.061 0.0988
MFO 2.69E-04 0.4235 0.0109 0.0502
SCA 6.33E-03 0.3667 0.044 0.0687
TLBO 6.24E-03 0.4219 0.0187 0.0539
PSO 1.90E-03 1.1095 0.0265 0.0955

Table 24. The global optimal results of the algorithms on multi-objective transpose direct form FIR filter.

lowest delay, area and power respectively than others. In future work, we shall develop the various enhanced
versions of the algorithms for the high level synthesis and model identification of the digital filterings. In the
end, we expect this work will encourage the young scientists of different domains, who are recently working on
MASs and digital filtering issues.
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Algorithm | Bestscore | Bestmax | Mean |SD
SChoA 1.2575 10.8814 1.4798 | 0.59
MPSO 1.3364 8.7989 1.4343 | 0.6093
TACPSO 3.1224 10.8766 3.3147 | 0.9774
ChCSs 3.1423 11.8204 4.4183 | 1.7818
Chimp 3.128 9.2131 4.1575 | 1.4901
MChimp 3.19 7.0705 4.0423 | 0.9261
GWO 1.3364 8.3395 1.6751 | 0.7541
MFO 1.352 11.063 1.5481 | 0.8915
SCA 1.3579 7.7763 1.8011 | 0.9896
TLBO 1.3345 7.8291 1.4539 | 0.4921
PSO 1.3356 11.288 1.4148 | 0.6667

Table 25. The global optimal results of the algorithms on multi-objective direct form of IIR filter.

Algorithm | Bestscore | Best max | Mean | SD
SChoA 1.2212 11.9833 1.6533 | 0.5468
MPSO 1.9538 6.2299 2.0264 |0.276
TACPSO 1.9557 6.7376 2.0407 | 0.506
ChCS 2.6172 6.0942 3.8342 | 1.1254
Chimp 2.6271 8.2912 4.113 1.5034
MChimp 2.6467 7.5037 4.0924 | 1.3276
GWO 1.9607 12.883 2.0724 | 0.6413
MFO 1.9585 8.3622 2.1725 | 0.8652
SCA 2.2205 5.4305 24115 | 0.4854
TLBO 1.9601 7.3456 2.0096 | 0.3732
PSO 1.9612 11.7147 2.1502 | 0.6205

Table 26. The global optimal results of the algorithms on multi-objective transpose direct form IIR-1 filter.

Algorithm | Bestscore | Best max | Mean | SD

SChoA 2.0165 16.0073 2.8357 | 1.0838
MPSO 3.2512 10.3841 3.3284 | 0.4046
TACPSO 2.2513 5.9836 2.3972 | 0.4758
ChCS 3.2525 9.4866 5.528 1.9865
Chimp 3.2352 9.3676 5.3458 | 1.9906
MChimp 3.2515 10.3747 52124 | 1.7995
GWO 2.2642 10.6177 2.4176 | 0.5913
MFO 2.5655 8.5887 2.643 0.6935
SCA 2.6265 5.4223 2.8308 | 0.3355
TLBO 2.4422 11.9996 2.5455 | 0.5322
PSO 2.2824 11.553 2.5888 | 0.8969

Table 27. The global optimal results of the algorithms on multi-objective transpose direct form IIR-2 filter.
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Algorithm | Bestscore | Bestmax | Mean |SD
SChoA 1.2025 16.372 1.3595 | 0.8439
MPSO 5.5071 16.367 5.5909 | 0.7689
TACPSO 1.2976 9.3635 1.536 1.0161
ChCSs 3.3397 10.7041 4.3451 | 1.769
Chimp 2.6432 6.8168 3.6225 | 1.1516
MChimp 3.236 16.237 4.4667 | 2.4085
GWO 1.2976 10.2413 1.3891 | 0.6186
MFO 1.2979 16.9928 1.5535 | 1.57
SCA 1.3658 11.6727 1.8209 | 1.012
TLBO 1.2976 8.3309 1.4338 | 0.5666
PSO 1.2971 14.609 1.4434 | 0.9212

Table 28. The global optimal results of the algorithms on multi-objective direct form IIR-2 filter.

Algorithm | Best score | Best max | Mean |SD
SChoA 0.5 2.013 0.5079 | 0.0741
MPSO 0.65385 1.9582 0.6575 | 0.0601
TACPSO 0.5012 1.728 0.5128 | 0.0975
ChCSs 0.50578 1.0401 0.6041 | 0.0847
Chimp 0.50526 2.1273 0.6325 | 0.1598
MChimp 0.5671 1.0451 0.6503 | 0.0487
GWO 0.501 1.8308 0.5132 | 0.0791
MFO 0.6538 2.164 0.6671 | 0.107
SCA 0.5091 0.6598 0.5288 | 0.0486
TLBO 0.5611 1.1453 0.5077 | 0.0509
PSO 0.50368 0.8542 0.5288 | 0.0486

Table 29. The global optimal results of the algorithms on multi-objective cascade form IIR-2 filter.

Algorithm | Bestscore | Bestmax | Mean |SD
SChoA 3.0008 7.6799 3.317 0.4696
MPSO 3.1822 4.9868 3.2335 |0.1301
TACPSO 3.1337 7.5895 3.2178 |0.3994
ChCS 3.216 4.5375 3.5132 | 0.391
Chimp 3.317 5.4233 3.7791 |0.73
MChimp 3.314 6.3322 3.8044 | 0.5872
GWO 3.15 6.1241 3.2197 |0.2744
MFO 3.124 5.3379 3.1013 |0.2628
SCA 3.192 5.1858 3.3309 |0.3969
TLBO 3.13 6.7998 3.15 0.2338
PSO 3.185 6.8619 3.2273 | 0.1997

Table 30. The global optimal results of the algorithms on multi-objective SS lattice form IIR filter.
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Algorithm | Bestscore | Bestmax | Mean |SD
SChoA 1.803 5.2311 2.1122 | 0.344
MPSO 1.899 3.7215 1.9432 | 0.1542
TACPSO 1.893 4.373 1.9619 | 0.2968
ChCS 2.23 3.9487 2.7475 | 0.4281
Chimp 2.14 521 2.6807 | 0.557
MChimp 222 4.8219 2.8517 | 0.437
GWO 191 4.458 1.955 0.14448
MFO 1.93 3.356 2.007 0.2276
SCA 2.07 5.099 22719 |0.3788
TLBO 1.976 3.646 2.0231 |0.159
PSO 1.9072 4.5145 2.0091 |0.2161

Table 31. The global optimal results of the algorithms on multi-objective DS-lattice form IIR filter.

Algorithm | Bestscore | Best max | Mean | SD
SChoA 0.81 2.1299 0.9591 | 0.0716
MPSO 0.946 1.9723 0.93 0.0573
TACPSO 0.945 1.6318 0.9593 | 0.0711
ChCS 0.954 1.2252 1.0415 | 0.1016
Chimp 0.947 1.0481 0.9675 | 0.0351
MChimp 0.953 2.0413 1.0416 | 0.1606
GWO 0.944 1.0653 0.9502 | 0.0118
MFO 0.9434 2.4627 0.9664 | 0.1171
SCA 0.955 1.1534 0.9624 | 0.0491
TLBO 0.963 1.34267 0.9598 | 0.0394
PSO 0.949 1.6057 0.8371 | 0.05

Table 32. The global optimal results of the algorithms on multi-objective parallel form IIR-2 filter.

Algorithm | Bestscore | Best max | Mean | SD
SChoA 0.97 1.7351 1.1153 | 0.1459
MPSO 1.2395 1.6089 1.247 0.0302
TACPSO 1.125 1.6106 1.167 0.0703
ChCS 1.295 1.4926 1.3552 | 0.0424
Chimp 1.271 1.6353 1.3436 | 0.069
MChimp 1.326 1.721 1.3737 | 0.0442
GWO 1.67 1.6461 1.2025 | 0.0397
MFO 1.175 1.5507 1.1931 | 0.0665
SCA 1.277 1.5052 1.2906 | 0.0672
TLBO 1.142 1.5474 1.1547 | 0.035
PSO 1.1845 1.7192 1.219 0.0543

Table 33. The global optimal results of the algorithms on multi-objective lattice ladder form IIR filter.
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Figure 12. The convergence graph of algorithms on multi-objective DF-FIR, LATFIR and CASFIR digital
filters.
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filters.
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Figure 16. The convergence graph of algorithms on multi-objective PARIIR and LADIIR digital filters.

Digital filters | SChoA | MPSO | TAPSO | ChCS | Chimp | MChimp | GWO |MFO |SCA |TLBO | PSO
DF-FIR 1636 |243 | 2.06 123|396 5.63 417|649 |186 [622 |223
LATFIR 0818 [ 151 12 648 | 2.28 323 846 |4.88 |201 |669 |5.34
CASFIR 09 153|124 713|235 345 259 441|108 [394 |235
PARFIR 0.98 144|129 743|245 35 261 407 |115 [391 |155
TDFFIR 0553 [1.023 |0814 [483 |532 1.66 267 [0.69 |254 |29 2.36
DF1IIR 1085 |1.86 1511 |815 [2.82 3.99 303 475|131 [451 | 167
TDFIIIR 119 211|174 9.02 (317|442 342|534 |152 [505 [291
TDF2IIR 1.05 193 [1.52 836 [2.93 411 313 493 |13 |47 171
DF2IIR 1041 |181  |146 8.1 2.79 3.79 298 |47 [126 |445 [162
CASIIR 0568 |1.065 [0.846 |448 |159 223 172|272 |071 |236 |321
SLATIIR 0703 | 131 1045|553 [1.96 2.76 338|084 321 |Ll6 [2.12
DLATIIR 1.05 195  [153 842 294 |42 318|502 |13 [478 [172
PARIIR 0777 |134 [1.085 |6.04 |222 2.93 2204 [352 [094 [335 [119
LADIIR 1673|233 [2.03 125|391 5.64 408 629 [186 |611 [217
Table 34. The Execution time of the algorithms on multi-objective digital filters.
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Digital filters | SChoA MFO PSO

F FRC |FCP |FRC |FCP |FRC |FCP
DE-FIR 10 2 15 4 19 5
LATFIR 6 2 9 2 11 4
CASFIR 3 3 5 4 6 3
PARFIR 4 3 5 3 6 4
TDFFIR 3 2 3 3 4 3
DFIIIR 8 3 12 5 13 4
TDF1IIR 7 4 8 4 9 4
TDF2IIR 4 3 5 4 7 4
DE2IIR 7 4 8 4 8 4
CASIIR 3 2 4 3 4 3
SLATIIR 5 2 6 4 6 4
DLATIIR 6 3 10 5 10 5
PARIIR 3 2 4 2 5 3
LADIIR 11 5 15 5 18 5

Table 35. Pareto front result for retimed filters using different evolutionary algorithm for benchmark circuit.
[a] FRC: Feasible Register Count. [b] FCP: Feasible Clock Period.

Digital filters | SChoA MFO™ PSO”
No. of slices No. of slices No. ofslices

F(-) Max. freq (MHz) | utilized Max. freq (MHz) | utilized Max. freq (MHz) | utilized
DF-FIR 160.78 27 156.9 41 136.4 67
LATFIR 180.48 54 179.1 64 143.8 88
CASFIR 117.183 124 106.9 174 115.4 193
PARFIR 115.76 84 115.34 109 97.34 166
TDFFIR 198.88 49 177.54 51 165.48 64
DF1IIR 732 63 48.19 80 63.45 86
TDFI1IIR 84.116 48 84.11 63 83.11 85
TDF2IIR 75.48 28 56.48 32 55.78 64
DF2IIR 68.855 86 68.85 102 68.85 102
CASIIR 93.31 32 83.31 46 80.31 46
SLATIIR 93.375 64 54.95 75 51.28 73
DLATIIR 66.588 94 38.56 156 36.15 156
PARIIR 196.5 32 194.56 49 188.45 63
LADIIR 28.186 79 20.96 109 16.58 193

Table 36. Comparison of SChoA- based method with MFO-based, PSO-based on different structures of
digital filters.
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% Performance improvement

Digital filters | MUF Area

F MFO |PSO | MFO |PSO
DEF-FIR 26.7 38.13 |34.15 |59.7
LATFIR 21.05 | 2551 |15.63 |38.64
CASFIR 2263 | 11.18 |28.74 |35.75
PARFIR 21.05 |18.92 |2294 (494
TDFFIR 12.02 | 20.18 3.92 2031
DF1IIR 2579 | 1537 |21.25 |26.74
TDF1IIR 2359 |15.05 |23.81 |[43.53
TDEF2IIR 33.64 | 3532 | 125 56.25
DEF2IIR 2471 | 6129 |15.69 |15.69
CASIIR 38.54 | 54.72 |30.43 |30.43
SLATIIR 43.76 | 52.37 |14.67 |12.33
DLATIIR 37.13 |30.18 |39.74 |40.51
PARIIR 1475 | 10.11 |34.69 |49.21
LADIIR 3448 | 4395 |27.52 |59.07

Table 37. Improvement of the SChoA-based method compared to MFO-based, PSO-based.

SChoA MFO Reduction | PSO Reduction
Digital filters Run time | Run time | (%) Run time | (%)
DF-FIR 1.57 6.01 73 2.06 23
LATFIR 0.768 5.42 77 1.17 33
CASFIR 0913 422 78 1.37 33
PARFIR 0.993 4.09 75 1.42 30
TDFFIR 0.568 2.71 75 0.92 36
DF1IIR 1.03 4.64 77 1.6 35
TDFI1IIR 1.02 4.54 78 1.59 35
TDEF2IIR 1.06 4.12 76 1.71 38
DEF2IIR 1.09 4.36 79 1.59 45
CASIIR 0.55 2.73 78 0.91 39
SLATIIR 0.68 3.38 78 1.75 61
DLATIIR 1.05 4.98 78 1.73 39
PARIIR 0.77 3.5 78 1.19 35
LADIIR 1.65 6.3 76 2.17 23

Table 38. Comparison of execution time for the various benchmark circuit.
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Figure 25. The ARF data flow graph.
w; =08 |Mean |5 6442.88 | 7007.66 |5 58912 | 6349.97 |5 5489.3 | 6032.12
wy =01 |sd 0 0062 |0.068 |0 0009 [0.009 |0 0.006 | 0.007
w3 = 0.1
wi=1 Mean |7.42 [3199.68 |3217.85 |7.08 |3074.88 |31422 |6.09 |2711.43 |3011.2
wy =08 |sd 0.538 |0.025 |0.021 |0340 |0.009 |0.005 |0.263 |0.005 | 0.003
wz = 0.1
wi=1 Mean | 7.3 321024 [3187.59 |7.14 |3089.28 |3142.2 |620 |2756.09 |3055.2
wy =01 |sd 0.544 |0.017 |0.015 |035 |0.010 [0.005 |0.28 [0.008 | 0.003
wz = 0.8

Table 39. Experimental outcomes of methods on IIR DFG filter.
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PSO MFO SChoA
Modes Static | Delay | Area Power | Delay | Area Power | Delay | Area Power
w; =0.8 Mean |[9.3 7855.04 | 8084.97 |9.08 7143.04 | 7324.19 |8.55 6345.09 | 7122.09
wy =0.1 sd 0.462 | 0.077 0.088 0.274 | 0.063 0.073 0.211 0.039 0.049
wz = 0.1
wi =1 Mean |15 374272 |3222.89 |14.84 |[3549.12 |3157.33 |12.99 |3410.67 |3021.83
wy =08 |sd 0782 [0.024 [0021 |0.548 |0.013 |0.009 |0.4154 |0.010 | 0.006
w3 =0.1
wi=1 |Mean |1516 [37232 |[315229 |15.08 |3694.08 |31422 |12.08 |3420.80 |3027.2
wy =01 |sd 0.618 [0.001 |0008 0274 |0.01 0.005 |0.201 |0.001 |0.003
w3 =0.8
Table 40. Experimental outcomes of methods on FIR DFG filter.
PSO MFO SChoA
Modes Static | Delay | Area Power Delay | Area Power Delay | Area Power
w1 =0.8 Mean | 8.3 11,340.8 | 12,394.53 | 8.12 11,183.04 | 12,099.8 |7.17 10,387.90 | 11,890.2
wy =0.1 sd 0.505 | 0.023 0.027 0.328 | 0.004 0.004 0.276 | 0.003 0.004
ws = 0.1
wy =1 Mean |18.44 |3627.2 3258.2 18.18 | 3543.04 3192.63 |17.16 | 3412.90 3032.29
wy =08 sd 0.787 | 0.016 0.017 0.388 | 0.011 0.014 0.276 | 0.008 0.007
ws = 0.1
w =1 Mean |18.6 3688.32 | 3187.59 18.36 | 3575.04 3157.33 | 17.38 | 3489.10 3064.66
wy = 0.1 sd 0.670 0.014 0.014 0.485 0.12 0.009 0.397 | 0.009 0.006
ws = 0.8
Table 41. Experimental outcomes of methods on ARF DFG filter.
PSO MFO SChoA
Modes Static | Delay | Area Power | Delay | Area Power | Delay | Area Power
w; =038 Mean |14 6924.8 6702.99 | 14 6902.4 6677.78 | 14 6764.8 6489.65
wy =0.1 sd 0 0.006 0.007 0 0.007 0.008 0 0.003 0.004
ws = 0.1
w =1 Mean |22.76 |4039.04 |3388.73 |24.62 |3873.6 3217.85 |23.16 |3714.5 3176.02
wy =0.8 sd 5.057 0.043 0.057 4.347 0.016 0.021 4.098 |0.012 0.017
ws = 0.1
wp =1 Mean |24.46 |4070.08 |3323.16 |24.74 |3954.56 |3182.55 |23.43 |3863.09 | 3049.12
wy =0.1 sd 3.95 0.043 0.057 3.433 | 0.15 0.013 3.09 0.009 0.014
w3 = 0.8
Table 42. Experimental outcomes of methods on EWF DFG filter.
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PSO MFO SChoA
Modes Static | Delay | Area Power | Delay | Area Power | Delay | Area Power
w; = 0.8 Mean |8.22 6996.48 | 7203.75 | 8.02 6458.88 | 6584.18 | 6.57 6183.11 | 6209.32
wy =0.1 sd 0.545 | 0.062 0.069 0.141 | 0.021 0.022 0.67 0.013 0.014
wz = 0.1
wi =1 Mean |15.94 |388448 |3333.84 |17.04 |3628.8 |3217.85 |16.57 |3433.66 |3100.2
wy =08 |sd 3449 [0033  [0027 |4.035 |0.02 0.016 |2908 |0.01 0.007
w3 =0.1
wi=1 |Mean |17.42 [3870.72 |3263.24 |17.48 |3728.96 |3197.68 |16.06 |3502.19 |3001.20
wy =01 |sd 3038 [0.025 [0025 2894 |0.28 0014 |2139 0018 | 0.008
w3 =0.8
Table 43. Experimental outcomes of methods on BPF DFG filter.

PSO MFO SChoA
Modes Static | Delay | Area Power | Delay | Area Power | Delay | Area Power
w; =038 Mean | 14.12 | 6904.64 |6353.97 | 14.02 |7040.96 |6509.13 |13.08 |6998.34 |6423.09
wy =0.1 sd 0.385 | 0.063 0.082 0.141 | 0.028 0.037 0.119 | 0.023 0.031
ws = 0.1
w =1 Mean |22.28 |4310.08 |3359.06 |23.66 |4184.32 |3253.15 |22.67 |4034.09 |3110.45
wy =08 sd 5.789 |0.019 0.032 4926 |0.016 0.024 4.098 |0.012 0.018
ws = 0.1
w =1 Mean |23.18 |4342.72 |3298.54 |25.02 |4257.28 |3192.63 |24.75 |4211.02 | 3009.29
wy =0.1 sd 5283 |0.016 0.029 4.321 0.012 0.014 3945 |0.008 0.010
ws = 0.8

Table 44. Experimental outcomes of methods on WDF DFG filter.
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Figure 26. The best outcomes for delay, occupied area and power in HLS of digital filter issues.

Data availibility

All data included in this study are available upon request by contact with the corresponding author.
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