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Enhanced chimp optimization 
algorithm for high level synthesis 
of digital filters
Mandeep Kaur1, Ranjit Kaur1 & Narinder Singh2*

The HLS of digital filters is a complex optimization task in electronic design automation that increases 
the level of abstraction for designing and scheming digital circuits. The complexity of this issue 
attracting the interest of the researcher and solution of this issue is a big challenge for the researcher. 
The scientists are trying to present the various most powerful methods for this issue, but keep in 
mind these methods could be trapped in the complex space of this problem due to own weaknesses. 
Due to shortcomings of these methods, we are trying to design a new framework with the mixture 
of the phases of the powerful approaches for high level synthesis of digital filters in this work. This 
modification has been done by merging the chimp optimizer with sine cosine functions. The sine 
cosine phases helped in enhancing the exploitation phase of the chimp optimizer and also ignored 
the local optima in the search area during the searching of new shortest paths. The algorithms have 
been applied on 23-standard test suites and 14-digital filters for verifying the performance of the 
algorithms. Experimental results of single and multi-objective functions have been compared in 
terms of best score, best maxima, average, standard deviation, execution time, occupied area and 
speed respectively. Furthermore, by analyzing the effectiveness of the proposed algorithm with the 
recent algorithms for the HLS digital filters design, this can be concluded that the proposed method 
dominates the other two methods in HLS digital filters design. Another prominent feature of the 
proposed system in addition to the stated enhancement, is its rapid runtime, lowest delay, occupied 
area and lowest power in achieving an appropriate response. This could greatly reduce the cost of 
systems with broad dimensions while increasing the design speed.

High-level synthesis (HLS) is a hot topic and a design process in which a high-level, functional description of 
a design is automatically compiled into an register transfer level setup that meets some user-defined design 
constraints. In re-timing, any difficult optimization problem can be alienated into independent sub-problems. 
If any problem or function have divided into ( m− 1 ) flip-flops, in that decreasing the overall time by these fac-
tor (m). Generally this process is apply to obtain synchronous circuits (SYC). And re-timing method is used to 
enhanced the speed of the SYC without changing the latency and functionality1. A re-timing method can also 
be generalized to locate non-critical gates that can be operated with low supply voltages to reduce overall system 
power consumption. The various re-timing strategies have developed by the researchers in the literature for the 
issues of power consumption such as2–4 respectively. In Ref.5, have developed a new framework for retiming and 
for the digital filters the digital signal processing blocks based evolutionary computation process. During this 
strategy takes the inputs form the user in the form of data flow graphs or matrices or obtains all optimal solu-
tions in the search domain.

In addition, the high level of synthesis of digital filtering is a big challenge for the engineers. In this issue 
researchers have solved various complacence’s of the power consumption in the terms of maximized frequency 
and reducing area. Last few decades, various recent MA’s are applied for tackling of these kinds of issues. And 
for the demand of the future more robust algorithms are developing, so that these can be used to fulfil the 
future requirements. For highlighting the important of this work we are discussing more by the following some 
references.

Digital filter can be categorized into two main groups: Finite Impulse Response (FIR)6 and Infinite Impulse 
Response (IIR)7. Filters8, are the major crucial systems in most electronic and computing machines. Filtering aims 
to extract information about the most relevant interesting signals, either by extracting frequency components or 
by separating desired components from unwanted signals or eliminating noise. As per view of the mathematical, 
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the designing of the digital filters according to a specified criterion, can be formulated as an optimization func-
tion where need to find the best suites specifications. Thus, the various robust stochastic algorithms during the 
last few decades has developed the different kinds of metaheuristic algorithms (MHAs). These are sophisticated 
MA’s, they are often a better alternative to traditional nature inspired algorithms, giving an excellent trade off 
amid the computing time and optimal solution’s quality, particularly for complex optimization functions or large 
dimension issues. Generally, the metaheuristic algorithm can be divided into different phases as per sources 
of inspiration9: (1) natural phenomena (NP) methods that imitate the principles of physics and chemistry. (2) 
Evolutionary methods that follow the natural evolution processes found in nature; and (3) swarm intelligence 
(SI) methods, including population-based algorithms that mimic the social behavior of insects or animals. In 
particular, Chimp Optimizer10, is a new population based method that has already started attracting attention. 
In this study we are trying to present the novel hybrid method with the mixture of two powerful algorithms 
such as ChOA with Sine Cosine, it is called SChoA. These powerful features of two methods play an important 
role for trapping the best solutions in the global search space. The sine cosine features helped in enhancing the 
exploitation phase of the chimp optimizer and also ignored the local optima in the search area during the search-
ing of new shortest paths. The main objective of this study is to introduce the powerful method for considering 
the high level synthesis of the complex dimension digital filters. The experimental numerical and statistical 
outcomes show that the proposed method performance is superior to other well-known MHAs in the literature. 
In summary, the main contributions of this paper are:

•	 A novel improved algorithm called SChoA method that includes features from Chimp and sine cosine func-
tions is proposed.

•	 The proposed method performance is developed for high-level synthesis (HLS) of datapaths in digital filters.
•	 proposed strategy is developed for solving single and multi-objective issues.
•	 Statistical and qualitative numerical result analyses assess the performance of the proposed method compared 

to other competitive algorithms.

The remainder of this paper is as follows: Th related works have been described in “Related work”. An over-
view about the Chimp Optimizer Algorithm (ChoA) are presented in “Chimp optimizer algorithm (ChoA)” 
respectively. “Problem formulation”, illustrates the all details of the high level synthesis (HLS) of the digital 
filters. “Modified SChoA version for high level synthesis of digital filters” describes the mathematical model of 
the proposed SChoA algorithm. “Results analysis and discussion of 23-standard test suites” and “Simulations 
and results of digital filters” presents the results and their analyses obtained by the proposed strategy and the 
competitor algorithms. “Conclusion and future work” concludes the paper.

Related work
MHAs recently are playing an most important role for digital filters issues. In fact, MHAs have provided extraor-
dinary performances in several practical problems of a broad domain of applications, e.g., feature selection11–14, 
optimization problems15, constrained engineering problems16, traveling salesman problems17, Case study Email 
spam detection18 respectively. For superior efficiency of the MA’s, various robust population based algorithms 
have been developed in the last few decades. This growing interest in population based algorithms coincides 
with the need for more efficient algorithms for finding the best solution’s of the complicated optimization func-
tions. Some of these metaheuristic methods, including Genetic algorithms (GAs)19, Particle swarm optimiza-
tion (PSO)20, Henry gas solubility optimization (HGSO)21, Simulated annealing algorithm (SA)22, Archimedes 
optimization algorithm (AOA)23, Cuckoo Search (CS) algorithm24, Lévy flight distribution (LFD)25 and Chimp 
optimizer algorithm (ChoA)10, One Half Personal Best Position Particle Swarm Optimizations (OHGBPPSO)26, 
Personal Best Position Particle Swarm Optimization (PBPPSO)27, Half Mean Particle Swarm Optimization Algo-
rithm (HMPSO)28, HAGWO29, Hybrid Particle Swarm Optimization (HPSO)30, HPSOGWO31, Hybrid MGBPSO-
GSA32, HGWOSCA33, MGWO34, MVGWO35, HSSAPSO36, SChoA37, HSSASCA38, HSSAHHO39, Hybrid Chimp-
Cuckoo search algorithm (ChCS)40, An enhanced chimp optimization algorithm for optimal degree reduction 
of Said-Ball curves41, Dynamic levy flight chimp optimization42, A weighted chimp optimization algorithm43, 
Niching chimp optimization for constraint multimodal engineering optimization problems44, Fuzzy-ChOA: an 
improved chimp optimization algorithm for marine mammal classification using artificial neural network45, 
Optimization of constraint engineering problems using robust universal learning chimp optimization46, Multi-
Objective chimp Optimizer:An innovative algorithm for Multi-Objective problems47, An enhanced chimp opti-
mization algorithm for continuous optimization domains48 and the SCA method was developed by Mirjalili 
et al.49 for real world optimization issues. This algorithm is the most robust method for complex issues. It has 
played an important role in the modifications of the basis algorithm for presenting the new one enhanced meth-
ods. The SCA method has been designed by sine and cosine trigonometric functions. These functions play an 
important role for superior exploration and exploitation phases of the algorithm. The following mathematical 
formulations are applied in this method for finding the new one position in the search domain.

where �xti  , r1, r2, r3 ∈ [0, 1] are illustrates the current position and random numbers and li is targeted global opti-
mal result. The above mathematical Eqs. (2.1)–(2.2) uses 0.5 ≤ r4 < 0.5 setting for exploitation and exploration.

(2.1)�xt+1
i =�xti + r1 × sin (r2)×

∣

∣r3 × lti − �xti
∣

∣

(2.2)�xt+1
i =�xti + r1 × cos (r2)×

∣

∣r3 × lti − �xti
∣

∣
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Recently, digital filtering is a big challenging optimization function. It is worth mentioning, that with the 
help of the robust nature inspired algorithms the various drawbacks of the digital filters have been resolved such 
as processing time and enhances the characteristics of the designed digital filters etc50,51. Mohanty et al.52, have 
developed a distributed arithmetic approach for reconfigurable block-based FIR filter, which is scalable for larger 
block-sizes and higher filter-lengths. A new algorithm based on African vultures’ lifestyle is developed by Abdol-
lahzadeh et al.53. This strategy simulates African vultures’ foraging and navigation behaviors. The performance 
of this approach is verified through 36 standard test suites. Abdollahzadeh et al.54 has presented the algorithm 
by gorilla troops’ social intelligence in nature, it is known as Gorilla Troops Optimizer (GTO). In this work, the 
gorillas’ collective life is scientifically framed, and new mechanisms are intended to execute exploitation and 
exploration. The robustness of the presented approach has been tested through 52 standard suites and engineering 
functions. A new approach that is stimulated through farmland fertility in nature is introduced by Shayanfar and 
Gharehchopogh55, which has been assessed by utilizing the complex issues. In addition, the overview of Whale 
Optimization Algorithm, Spotted Hyena Optimizer, symbiotic organisms search algorithms and its applications 
is presented by Gharehchopogh et al.56. Also, Luis and Arribas57, have proposed a new approach for the design 
of digital frequency selective FIR filters using an flowers pollination algorithm (FPA), with a novel multiple fit-
ness function, to get optimised filter coefficients that best approximate ideal specifications. Yadav et al.58, applied 
grasshopper optimization algorithm (GOA) to design a linear phase finite impulse response (FIR) low pass, high 
pass, band pass, and band stop filters. proposed methodology target to reach minimum absolute error difference 
fitness function, through selecting optimal filter coefficients. In59, the effectiveness of employing the swarm intel-
ligence (SI) based and population-based evolutionary computing techniques is investigated for determining the 
optimal solutions to the FIR filter design problem.

The research of applying nature inspired algorithms to digital filters design has attracted much attention in 
last few years due to its utilization in a wide range of complex optimization functions60. In general, digital filter 
is an optimization issue, in last few decades, regarding this issue various new strategies have been developed 
by the researchers for instance, such as; Lagos-Eulogio, Pedro, et al.61, have developed a new hybrid algorithm 
based on the combination of cellular particle swarm optimization (PSO) and differential evolution (DE) called 
CPSO-DE for the optimal parameter estimation of IIR digital filters. Wanga et al.62 have presented a novel 
design method that used a membrane computing method to design an optimal digital filter, their strategy that 
employed a tissue-like membrane system with ring-shaped topology structure. Panda et al.63, have presented an 
IIR system identification using the cat swarm optimization (CSO). Wang et al.64 have developed a framework 
called two-stage ensemble memetic algorithm (TSMA), TSMA employed to synthesize the strengths of the evo-
lutionary global search and local search techniques. The proposed TSMA applied to design high-order digital 
IIR filters, experimental results compared to 6 state-of-the-art algorithms. Kaur et al.65, have applied a new model 
to optimize the magnitude response and the phase response based on the greedy search method, binary suc-
cessive approximation (BSA) and evolutionary search (ES) simultaneously, along with finding the lowest order 
of the filter. Kumar and Rawat66 have employed cuckoo search algorithm (CSA), to get optimal coefficients of a 
fractional delay IIR (FD-IIR) filter, and to have an ideal frequency response characteristics. Upadhyay, P., et al.67, 
have combined the Differential Evolution (DE) with Wavelet Mutation (DEWM) to IIR system identification 
problem. Also, to develop proper IIR filter designing method as a multi-objective optimization problem, Wang, 
Yu, Bin Li, and Yunbi Chen68, have proposed a new local search operator enhanced multi-objective evolutionary 
algorithm (LS-MOEA). Saha et al.69, have Presented a hybrid method of Gravitational Search Algorithm (GSA) 
and Wavelet Mutation (WM) called GSAWM, which applied on design of an 8th-order IIR filter, GSAWM tar-
get to achieve better cut-off frequency sharpness, smaller pass band and stop band ripples. Additionally, in70, 
2-dimensional IIR Filter design method based on hybrid PSO and SA is presented.

Chimp optimizer algorithm (ChoA)
A novel population based method, is known as chimp optimizer recently originated by Khishe et al.10. The 
method is inspired by sexual motivation and individual intelligence of chimps. And it’s most famous for their 
group hunting. The hunting approach of this method is differ from the others. In this,strategy has used the four 
different phases such as driver, chaser, barrier and attacker respectively for searching the best score in the search 
domain.

All the working steps have been illustrated through the following mathematical formulations;
For chasing and driving the prey, has been used the following Eqs. (3.1)–(3.2);

where n illustrates the number of generations ,c,m and a are the coefficient vectors. These vectors c,m and a are 
evaluated through Eqs. (3.3)–(3.4)
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where r1 and r2 are illustrated random values lying between [0, 1] , m is denoted the chotic vector and l has use 
for reducing non-linearly from 2.5 to 0 through the generation process. In this stage the behavior of the search 
agents has applied through mathematically. Firstly in the initial stage the each search member position is chosen 
by the given random values. In the next iteration, the first four best solutions are stored for updating the new 
position of the search member in the search domain. This procedure has been evaluated through the following 
mathematical Eqs. (3.6-3.9);

When the random values are lies amid [−1, 1] , then the next position of the search member can be in any 
position amid its current location and the location of the target or prey.

As per all above mathematical formulations, the position of the search is evaluated by the Eq. (3.14);

At end, for position updating of each member has used following Eq. 3.15.

Pseudocode of chimp optimizer (ChoA). 
The pseudocode of ChoA is illustrated through Algorithm 1.

Algorithm 1 Pseudo-code of ChoA algorithm

Inputs: The population size N and total number of iterations t
Initialize the population Xi(i = 1, 2, . . . , N)
while t < tmaxiter do

for each member do
Define the crowd
By using is group strategy to update

end for
for each member do

if x < 1 then
Update position of current member

else if x > 1 then
Select a random member

end if
Update position of current member

end for
Update X ≈ Attacker, Barrier, Driver and Chaser
t+ 1

end while
Return Xattacker

(3.5)m =choticvalue

(3.6)da =|c1aa −m1.x|

(3.7)db =|c2ab −m2.x|

(3.8)dc =|c3ac −m3.x|

(3.9)dd =|c4ad −m4.x|

(3.10)x1 =aa − a1.da

(3.11)x2 =ab − a2.db

(3.12)x3 =ac − a3.dc

(3.13)x4 =ad − a4.dd

(3.14)xn+1 =
x1 + x2 + x3 + x4

4

(3.15)achimp(n+ 1) =

{

aprey(n)− x.d, if φ < 0.5

chaoticvalue if φ > 0.5
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Problem formulation
Retiming is a robust method for optimization which improves the sequential circuit performance. Generally, this 
method is applied for changing the positions of delay variables in a circuit without affecting the initial input and 
end outputs of the circuit. The brief details related of retiming are illustrates through the following subsections;

Clock period.  The main purpose of Retiming is transforming a digital filter graph to another digital filter graph by 
shifting the location of registers without moving the functionality of the circuits. Generally, it is used for reducing the 
delay variables count in the circuits. Because it could influence the clock period and delay variables, so it is obligatory 
to consider all phases into account. Additionally, it can be used to reduce switching operation which minimizes the 
dynamic power dissipation in circuits. A large amount of placing the component at the initial input node can reduce 
switching which plays a role for reducing power consumption. The main objective of retiming is to reduce the clock 
period. So, shifting the delay variable can be helpful in reducing the clock time period of a circuit.

Quantitative.  If the transforms digital flow graph g to a retimed digital flow graph gr then the final output or 
solution at the last is illustrates by a numerical quantity r(v) for all v. let w(e) and wr(e) are illustrates the weight 
of the edge e in the first digital flow graph g be w(e) and in the retimed digital flow graph gr be wr(e) . Finally, the 
weight at the each edge u e

→ v in the retimed digital flow graph g → gr are evaluated by the following math-
ematical formulation;

where r(u) and r(v) are retime output vectors.

Clock time period (CTP) minimization.  Retiming method is generally applied for the minimization of 
the CTP of the digital flow graphs. The least CTP for the digital flow graph, is the highest critical path computa-
tion time with no delay. The least feasible CTP, φ(g) , is evaluated by the following mathematical formulation;

where w(p) =
∑n−1

i=o (w(ei)) and t(p) =
∑n

i=o(vi) are illustrates weight and computational time of the 
path. Further, through the following phases have been illustrated how to finds a retimining solution vector 
r0 | φ(gr0 ) � φ(gr) . Here w(u, v) and D(u, v) are used in retiming method to illustrates least number of delay 
and maximum computational time of the path from u → v.

•	 In a digital flow graph u e
→ v , the edge weights are evaluated by the following equations; 

where N and Imax are illustrates the number of nodes and maximum node execution time in digital flow 
graph. 

•	 In this phase, the following formulations are applied for deciding the next new shortest path in u e
→ v;

	   if u  = v

where w(u, v) =
⌈

suv
m

⌉

.
	   if u = v

where w(u, v) = 0.
•	 In this phase the CTP has evaluated by two matrices w(u, v) and D(u, v) over the following conditions of 

{

r | φ(gr) � CTP
}

;
	   Feasibility constraint conditions;

Critical path (CP) constraint conditions;

where the feasibility condition is illustrate the delay variable on every edge non-negative and similarly, the 
critical path condition is to forces φ(g) � CTP . Similarly, if D(u, v) > CTP , then w(u, v)+ r(v)− r(u) ≥ 1 
should satisfy for CP execution time period � CTP.

•	 In this phase, the algorithm is implemented for obtaining the retime vectors.

Retiming for register minimization.  In circuit, if a single node has various output edges are connected to 
other nodes while the maximum delay variables needed for that output going edge is the highest delay variable of 
a single node. The brief details have been represented through the Fig. 1. These graphs are shows that here ’naive’ 

(4.1)wr(e) = w(e)+ r(v)− r(u)

(4.2)φ(g) = max
{

t(p) : w(p) = 0
}

(4.3)m = Imax × N

(4.4)w′(e) = m× w(e)− t(u)

(4.5)D(u, v) = m× w(u, v)− su,v + t(v)

(4.6)D(u, v) = t(v)

(4.7)r(u)− r(v) ≤ w(e) ∀ u
e
→ v

(4.8)r(u)− r(v) ≤ w(e)− 1 ∀ u
e
→ v | D(u, v) > CTP



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21389  | https://doi.org/10.1038/s41598-022-24343-x

www.nature.com/scientificreports/

implementation shows 1+ 3+ 7 = 11 registers on Fig. 1 and ’clever’ implementation shows max(1, 3, 7) = 7 
registers on Fig. 1. Similarly, with the help of following mathematical equation can be obtained the number of 
registers needed to apply the output edges of the node v in the retimed figure as:

where rv and gn are illustrates the total register output cost in the retimed circuit and gadget node. Here, the 
above function holds under three different constraints or conditions as fanout, feasibility and clock time period 
respectively. These conditions or subject to constraints have been illustrated through the followings;

Fanout condition:

Feasibility condition:

Clock time period condition:

These retiming techniques would provide us with one maximal clock frequency solution. The designer would 
not be able to explore the entire potential solution space of the filter circuit under consideration. The entire solu-
tion space for the considered digital filters circuit is analyzed in the present evolutionary retiming algorithms and 
different feasible solutions are obtained. Depending on the critical path and the register count as the constraint, 
the designer can select any solution of his preference. Evolutionary algorithms explores the solution space by 
preserving all the node attributes of the digital filters graph. A framework model is generated to understand 
the design space for Pareto-optimal solutions. This will help the decision maker to converge at a design specification.

High level synthesis (HLS).  HLS is the process of converting a high abstraction level description of a design to 
register transfer level description. This is done by using MATLAB HDL coder that generates the synthesizable VHDL 
or Verilog code that has been executed to HDL work flow and generates the hardware design. This save the design 
cycle time with the generation of synthesizable report that gives information about the improvement in the speed and 
complexity reduction of the design with respect to novel retiming algorithm. The Matlab HDL coder and Xilinx tool 
transforms the specification into a register transfer level (RTL) implementation that can synthesize into a Xilinx field 
programmable gate array (FPGA). HLS techniques focus on design space exploration with reduced design cycle time 
and allow many optimization techniques and transformations. Herein this work retiming transformations are to be 
incorporated into the design for performance enhancement. The design space exploration results are taken from MAT-
LAB and Viva do HLS. The retiming solutions in MATLAB are verified in Xilinx, along with clock period. Here the 
problem of optimally mapping a Data Flow Graph [DFG] specification of digital filters on to FPGA architecture has 
been done with the help of retiming transformation. This optimality is achieved using retiming based on meta heuristic 
algorithm(MHA). In this work, retiming based MHA algorithms are implemented on the different structures of the 
digital filters using HDL coder. A synthesisable RTL is obtained from input in which the location of the registers is 
altered in such a way that the overall clock period reduces, thereby increasing the clock frequency. This happens due to 
reduction in the critical path which bounds the speed of the design. Further, intelligent placement of registers is imple-
mented that minimized the area. It is observed that the operating clock frequency in the digital filter can be increased 
to a great extent after novel approach.

Clock period and number of registers are considered as the optimization requirement in the present work. Using 
MHA, multiple retimed solutions are generated with high speed and different output register counts. Depending on the 
area constraint, user can choose the retiming solution with particular register counts. The MHA approach helps to find 
all possible retimed solutions and obtaining synthesizable HDL of the considered filter. For this, model is designed which 
automatically generates the synthesizable HDL of the considered filter. Again the choice of HDL (VHDL or Verilog) 
can be given by the user. This optimization environment reduces lot of design cycle time for the considered digital filters. 

(4.9)rv = max
v→gn

wr(e)

(4.10)rv ≥ wr(e) ∀ v
e
→ gn

(4.11)r(u)− r(v) � w(e) ∀ u
e
→ v

(4.12)r(u)− r(v) � w(u, v)− 1 ∀ vertices u, v st D(u, v) > CTP

Figure 1.   The graphs for fanout and clever implementation.
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The designer can choose any solution depending on the time units for critical path and the number of registers. With 
the designed environment, the designer can choose the required solution and can get the synthesizable HDL.

Modified SChoA version for high level synthesis of digital filters
The sequential and recursive filtering of circuits is a complex optimization problem for the recent demand of the technol-
ogy. The scientists are trying to solve this issue with the help of new one presented algorithms. However, each and every 
algorithm is not able to tackle these complex problems while these methods can be trapped in these types of complex 
issues. So, robust methods are required to resolve the complexity of these functions. According to present demand we 
are trying to present the new modified version SChoA for handling these complexities. This modified version is the 
mixture of two population based algorithms such as chimp and sine cosine methods. These trigonometric functions 
have been applied over the position update equation of the chimp optimizer for enhancing the exploitation phase. In 
addition, this enhancement, is developed for tackling various complex issues as slow diversity, premature convergence 
and slow convergence speed etc. Here all algorithms have been applied to solve the retiming issue as well as clock time 
period and area are the given constraints. Let v and eij illustrate the set of nodes and edges, where each edge is linked 
amid (i, j) vertices like i  = j . In data flow graphs, delay is denoted the registers while linking nodes by an edge illustrated 
by weight vector wij . The following three quantities are evaluates is the main prospectus of this implementation.

•	 the least number of registers amid two paths on any path.
•	 the least execution time required amid two paths on any path.
•	 the high-level synthesis (HLS) of datapaths in digital filters.

In this stage, we are explain the implementation steps of the proposed method, that how to insert these digital 
filter functions with the proposed algorithm.

System inequality.  The main task of the proposed method that is minimize the fitness function t(l, m, r) 
for t : g e

→ gr . The subject to constraints as followings;

•	 l: critical path
•	 m: Registers
•	 r: Total time required for evaluation

Also, find the output area of this issue to get all global retimed outputs. The many retimed outputs m created 
required to have;

Here the following cost function has been applied for calculating the global output given by 
T(x) = {t1(x), t2(x), . . . , tm(x)} , where m illustrates the global outputs. The following mathematical formula-
tion has been consider for optimization are

Parameters.  In this research the various population based methods have been runned parallel for fair comparison. 
During this implementation has been used thirty search members and five hundred maximum number of generations.

Initialization.  In the search domain the decision variable values of the given function are the same as the 
location of the search members of the population. The location of the each member of the crowd is assign as the 
following mathematical formulation (5.4);

Where n and d are illustrates the total number of search member in the search domain and dimension respec-
tively. The fitness values of the each search member can be evaluate by the following mathematical Eq. (5.5);

(5.1)l ={l1 ≥ 0, l2 ≥ 0, . . . , lm ≥ 0}

(5.2)m ={m1 ≥ 0,m2 ≥ 0, . . . ,mm ≥ 0}
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where n and fci are illustrates the total of number search members and fitness outputs of the ith member. Similarly, 
another two matrices can be formulate for the last node z (or target) of the graph by the following mathematical 
equations;

where n, d and fzi are illustrates the number of nodes, dimension of the function and the fitness value of the 
ith node.

New location and distance b/w nodes.  In this stage, the position of the search member in the search 
domain and distance of the given node is calculated by the following Eqs. (5.8)–(5.12), here these mathematical 
equations are illustrates the new location of the variable of the search member. Further, the Eqs. (3.1)–(3.5), are 
illustrates the distance b/w the position of the variable of the search member and the position of decision vari-
ables of the target.

For modified the location of the each member of the crowd in every generations with the aims of the improv-
ing the extractability of the proposed method has applied the following mathematical Eq. (5.13).

where ns,G and MG are illustrates the number of search member, current iteration and maximum generations. 
Therefore, the search member of the crowd update their locations during the search process in the search area 
with respect to the target in the last generations.

Leader search member position.  The leader search member position modified by the following math-
ematical Eq. (5.14);

Lastly the following Eq. (5.15) has been used for updating the position of new path in the retimed data flow graph;

where as and at illustrate the updated location of new path by search member and location of the last node or 
target position.

Fitness function.  The following fitness function71 has been applied for testing the best solution of the retim-
ing problem with least cost path over the following subject to three different properties;

where R, M and Lmax are illustrates the critical path, number of registers and longest path of the filter.
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(5.8)r2 =(2π)× rand

(5.9)x∗1 =aattacker − cos(r2)× a1.dattacker

(5.10)x∗2 =abarrier − sin(r2)× a2.dbarrier

(5.11)x∗3 =achaser − cos(r2)× a3.dchaser
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Subject to constraints.  Here subject to constraints are hold over three different properties such as;

•	 Prop-1: The weight (w) of the graph must be capable of rewriting as the weight (w) of the edge of the original 
graph, with the retimed value of each node. This can be mathematical formulate in the following form; 

 where z0 and zk illustrate the start and end nodes in z of the retimed graph. The above mathematical formula-
tion can be rewritten in the following form; 

 where v is represent the retimed vector.
•	 Prop-2: In a retimed data flow graph (DFG), the weight (w) of the blocked way including the loop bound 

and repeated filing of this graph, should not exchange. In DFG the loop of a cycle is determined by the total 
time needed to run that particular circle. This is evaluated by summing up all nodes in the graph or cycle. 
And the generation bound illustrates the highest loop bound of every cycle in this graph.

•	 Prop-3: The initial and last node of the edge in the data flow graph way would remain the same. This can be 
evaluated through the following mathematical equation; 

 If any output not fulfil these conditions would be the global output value with a given cost fitness function. 
We may penalize retimed output that do not fulfil the conditions with the value of the penalty that discharges 
these individuals during the selection process. The cost of the given function is evaluated in terms of number 
of registers and critical path after retiming. So, it is calculated by the above fitness function (5.16).

Stopping condition.  Lastly, the stopping criteria has been applied for updating the new one best path for 
the search member in the data flow graph. This process repeated again and again until it satisfies the criteria of 
prevention for example it reaches the highest generations or the output is earliest found.

Pseudocode of the proposed algorithm. 
The pseudocode of modified SChoA version is illustrated in Algorithm 2.

Algorithm 2 Pseudo-code of SChoA algorithm

Inputs: The crowd size N and total number of generations/iterations t
Initialize crowd xi(i = 1, 2, . . . , N)
while t < total no’s of generations do

for each agents do
Define the search members group
Via utilizing is cluster approach to amend m,c and l
Use m,c,l for evaluate a and then d

end for
for all member do

if φ < 0.5 then
if |x| < 1 then

Amend the location of search member via Eq.(5.14)
else if |x| > 1 then

Chose a random member
end if

else if φ > 0.5 then
Amend the location of search member via Eq.(5.14)

end if
end for
update m,c,l and a
Update attacker, chaser, barrier and driver by Eq’s. (5.8)-(5.12)
t+ 1

end while
Return xattacker
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=

j=k−1
∑

i=0

wv
zj→zj+1
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Results analysis and discussion of 23‑standard test suites
For evaluating the performance of the enhanced version has been used 23-standard test suites. These functions 
have been divided into three different phases such as 07-uni-modal, 06-multi-modal and 10-fixed dimension 
multi-modal test suites respectively. These test suites have been reported in the appendix table S1. The conver-
gence performance and robustness of the enhanced algorithm have been compared with recent powerful opti-
mizers such as Chimp, TACPSO, SCA and MPSO etc. Further, the analysis and discussions of the results have 
been illustrated in details in the following sub-sections:

Constant setting and standard test suites.  All the evolutionary methods have been coded in the Mat-
lab R2018a during the implementation. And algorithms have been runned on the system Intel(R) Core(TM) 
i3-8130U, RAM 8GB and Win 10. In these experiments have been applied different constant settings such as 
30-number of search agents and 500- number of iterations respectively. It is constantly advantageous to use a 
standard test suite with dissimilar features to suitably and assertively verify the robustness of MA’s on altered 
standard test suites and compare it with recent MA’s. The diversity of these test suites permits detecting and 
analyzing the capability of the proposed method from dissimilar standpoints. In uni-modal test suites have only 
one global optimum with no local optima. Generally, these test suites are highly suitable for comparing the con-
vergence and exploitative ability of the MA’s. Additionally, the multi-modal and fixed dimension multi-modal 
test suites face the survival of numerous local optimum outputs and more than one global optimum.

Here, the 23-test suites have been used to validate the robustness and efficiency of the enhanced version 
compared to with others recent MA’s. These test suites have been divided into three categories such as uni-
model, multi-modal and fixed dimension multi-modal functions. These test suites have been illustrated through 
appendix table S1.

Discussion.  The performance of the algorithms have been tested on 23-test suites and experimental results 
are illustrated in the table. The robustness of the algorithms have been verified in terms of best minimum cost, 
maximum cost, average and standard deviation etc. Here the least and maximum cost of the fitness test suites 
illustrates the best performance of the evolutionary algorithms. And the statistical outputs have also been used 
for testing the robustness of the algorithms. All these results have been computed at the last iteration for every 
evolutionary algorithm on every test suite to get the best global optima solution, to compare meaningful best 
outputs.

Assessment of exploitation capability.  Firstly, the performance of the evolutionary algorithms have been tested 
on uni-modal test suites (F1–F7). Generally, these test suites are applied to evaluate the exploitation phase. The 
results of algorithms on these test suites have been illustrated through Tables 1, 2, 3 and 4. All the results of these 
tables gives strong evidence that the enhanced algorithm has been able to provide the better exploitation abil-
ity as compared to others. As mentioned earlier, these standard test suites are most suitable for these functions. 
Experimental outputs prove that the SChoA algorithm is highly functional. Furthermore, these experimental 
solutions prove that the proposed strategy can be highly effective and robust in giving the accurate and best 
optima for the high complex space test suites as compared to others.

Capability assessment.  Further, the performance of the evolutionary algorithms have been verified on multi-
modal ( F8–F13 ) and fixed dimension multi-modal ( F14–F23 ) test suites. The all results of algorithms on these 
test suites have been illustrated through Tables 1, 2, 3 and 4. These test suites have many local and the number 
of decision variables increases exponentially with the size of the test suite compared to the uni-modal test suite. 
Generally, these test suites are used to assess the exploration ability and suitability of the evolutionary algo-
rithms. All results of tables, shows that the enhanced strategy achieves a higher detection ability and superior 
exploitation ability.

Accuracy.  In this subsection, the average scores obtained by the evolutionary algorithms on 23-test suites have 
been discussed briefly in the Table 2. The average values have been divided into two categories like worst average 
score (W) and best average score (B) etc. Generally, the least average score denotes the accuracy of the evolution-
ary algorithms for the best outputs. In the Table 2, we can see easily that the proposed strategy is able to find the 
best optima solutions in at least average scores for the maximum standard test suites in the highly complex space. 
Hence these results give strong evidence that the proposed strategy can find the accurate solutions for the highly 
complex test suites as compared to others.

Stability.  The standard deviation is used to verify the solution stability of the evolutionary algorithms. In 
this phase, the performance of the evolutionary algorithms have been discussed on the behalf of statistically. 
The standard deviation values obtained by the evolutionary algorithms on the 23-test suites have been plotted 
through Fig. 2. In this graph, we can see easily that the standard deviation values of the proposed strategy on 
23-test suites are near to 0, it means that the proposed strategy is stable on the test suites that were performed. 
Additionally, the least standard score shows the best convergence performance of the evolutionary algorithms. 
Hence, here, it can be concluded that the proposed methodology can able to fastly trap the best global optima 
solution in the search space as compared to others.

Convergence performance.  In this phase we are discussing the convergence performance of the evolutionary 
algorithms on 23-test suites. All these graphs have been plotted through Figs. 3, 4 and 5. In this graph the x-axis 
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and y-axis are denoted the number of iterations and best solutions respectively. These graphs show the evolu-
tionary algorithm how much takes a number of iterations or time for finding the best score in the search space 
during the search process. Additionally, as per Berg et al.72, this behavior can assure that evolutionary methods 
ultimately converge to a point and are found locally.

So, being these reasons, we can discuss and as per reasoned to the proposed methodology. The search mem-
bers move from high score to low scores, so with the assumption of growth in proposed methodology, the overall 
chimps and their fitness are improved during the iterations. With this methodology, we save the best score for 
finding the next one best score and this value helps the search member during the search process in the search 
space for searching the next best score. On the basis of these graphs, we can conclude that the proposed strategy 
is able to trap the best score in least numbers of generations or time as compared to others. And could be capable 
of resolving very complex issues easily.

Here, the proposed method have demonstrated their efficiency and capability over traditional optimizers for 
generating the topology, rules and optimal parameters that deliver the superior classification performance with 
concerning to the quality of the global result, avoiding local minima and computational cost. So,the proposed 
method can be more helpful for addressing the complex domain issues and new Challenges.

Simulations and results of digital filters
In this work, an enhanced version of chimp optimizer have been applied on 14- different data filters such as DF-
FIR, LATFIR, CASFIR, PARFIR, TDFFIR, DF1IIR, TDF1IIR, TDF2IIR, DF2IIR, CASIIR, SLATIIR, DLATIIR, 
PARIIR and LADIIR for evaluating the several outputs. Under designing the complex filters high level synthesis is 
a large paramount stage for that. Generally, the high-level optimization methodology has been applied for reduc-
ing the designing period time at the lower levels, leading to superior circuit indices73. In this work is synthesized 
using MATLAB HDL coder and Viva do HLS. All the benchmarks are synthesized on the Virtex family in term 
of maximum usable frequency, Critical path delay and no of slices utilized in term of flipflps, LUTs, no of DSP 
slices etc. Other HLS tool available in the market are Stratus HLS from Cadence, HDL coder from MATLAB, 
Intel FPGA, Viva do HLS from Xilinx.

During implementation, Matlab HDL coder is preferred. It generates synthesizable VHDL code from MAT-
LAb , Simulink models. The HDL coder provide the workflow advisor that automates the program that be used 
for programming for Xilinx. The Xilinx High-Level Synthesis (HLS) compiler provides a programming environ-
ment similar to those available for application development on both standard and specialized processors. The 
programming model of an FPGA was centered on register-transfer level (RTL) descriptions which illustrates 
how the programming model difference affects implementation time and achievable performance for differ-
ent computation platforms. During this methodology, the number of registers can exceed which may be the 

Table 1.   The performance of algorithms on the 23-test suites.

Test suites SChoA Chimp

F1–23 Min Max Mean S.D Min Max Mean S.D

F1 3.44E−33 7.27E+04 2.41E+03 3.65E+03 1.19E−05 6.04E+04 3.36E+04 2.79E+04

F2 2.93E−20 5.92E+12 2.38E+08 1.74E+09 3.77E−05 3.47E+12 6.41E+11 1.28E+12

F3 3.64E−08 1.38E+05 1.04E+04 2.11E+04 4.30E+01 1.27E+05 5.58E+04 5.17E+04

F4 1.77E−11 9.56E+01 1.08E+01 2.36E+01 5.64E−02 8.83E+01 5.41E+01 3.77E+01

F5 1.86E+01 3.10E+08 7.06E+06 3.36E+07 2.90E+01 2.99E+08 1.45E+08 1.35E+08

F6 1.20E−03 7.90E+04 1.02E+03 2.29E+03 3.72E+00 6.57E+04 3.30E+04 2.91E+04

F7 3.91E−04 1.78E+02 1.16E−02 1.66E−01 1.80E−03 1.02E+02 5.69E+01 4.70E+01

F8 1.04E+00 4.98E+02 3.64E−01 1.88E+00 6.86E+00 4.45E+02 2.64E+02 1.97E+02

F9 0.00E+00 4.88E+02 2.75E+00 1.50E+00 5.78E+00 4.24E+02 2.75E+02 1.84E+02

F10 2.22E−14 2.09E+01 2.42E+00 5.54E+00 2.00E+01 2.07E+01 2.00E+01 4.46E−02

F11 0.00E+00 6.00E+02 1.09E+01 2.51E+01 1.14E−05 5.53E+02 3.30E+02 2.98E+02

F12 0.00E+00 7.14E+08 1.07E+07 6.47E+07 3.06E−01 4.99E+08 2.80E+08 2.31E+08

F13 9.99E−01 6.40E+01 1.07E+00 2.05E+00 9.98E−01 1.08E+01 2.91E+00 3.02E+00

F14 −1.03E+00 0.00E+00 −1.02E+00 2.40E−03 −1.03E+00 −2.51E−01 −1.00E+00 1.23E−01

F15 6.80E−04 1.85E−01 2.00E−03 9.70E−03 1.30E−03 8.09E−02 2.10E−03 5.80E−03

F16 3.98E−01 2.53E+00 4.10E−01 9.70E−02 3.98E−01 2.12E+00 4.25E−01 8.30E−02

F17 3.98E−01 4.72E−01 4.00E−01 1.08E−02 3.99E−01 1.33E−01 4.01E−01 9.01E−02

F18 3.00E+00 8.22E+01 3.06E+00 6.17E−01 3.00E+00 4.14E+01 3.21E+00 1.79E+00

F19 −3.86E+00 0.00E+00 −3.83E+00 5.46E−02 −3.85E+00 −2.25E+00 −3.77E+00 2.90E−01

F20 −3.82E+00 −1.16E+00 −3.63E+00 2.19E−01 −3.13E+00 −2.42E+00 −2.76E+00 2.89E−01

F21 −1.01E+01 −1.16E+00 −4.80E+00 2.72E−02 −8.82E−01 −7.64E−01 −8.69E−01 2.79E−02

F22 −1.04E+01 −5.20E−01 −4.88E+00 8.38E−02 −5.00E+00 −5.68E−01 −3.95E+00 1.20E+00

F23 −1.04E+01 −2.10E−01 −4.32E+00 8.38E−02 −5.00E+00 −6.68E−01 −3.95E+00 1.20E+00
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constraints to the designer. Here, we are trying to present the superior quality of solution for these issues. The 
various recent algorithms and modified algorithms have been applied for verifying the accuracy of the solutions 
of this issue. The matlab code of all the algorithms have been runned over the system with Intel (R) Core (TM) 
i3-8130 U processor and 8GM of RAM. In this implementation the various parameter values applied like number 
of search agents (30) and number of 500 iterations respectively.

The numerical solutions of the digital filters have been reported in Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 and 34 in the terms of least minimum, highest 
maximum, average, standard deviation, execution time, occupied area and speed respectively. The performance 
of the algorithms have been illustrated over single and multi-objective functions. Under this study have been 
considered two categories of functions for evaluated the high level synthesis of the digital filters such as (1) 
14-single objective digital filters and (2) 14-multi-objective digital filters. In Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, have illustrated the performance of the algorithms on the 14-single objective digital filters. The 
numerical solutions in these tables shows that the proposed method gives the best score as comparison to others. 
In Figs. 6, 7, 8, 9 and 10 of these filters also proven that the proposed algorithm is able to provide the best optima 
and accurate solution in the least time and in the least number of iterations or runs. So, the proposed algorithm 
can be able to prove its own efficiency to reduce the complexity of these filters.

Similarly, in Tables 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, have been reported the algorithms 
solutions on the multi-objective digital filters. The outputs of the algorithms are revealed that the proposed 
method is capable of presenting the best and accurate global optima solutions on these multi-objective func-
tions. The convergence performance of the algorithms have been plotted through the Figs. 12, 13, 14, 15 and 
16. These graphs give the proof of the best solutions trapping performance of the algorithms. And proven that 
the proposed method easily and quickly trapping the best and accurate global solution with the least number 
of iterations and time.

In Tables 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, the execution time of the algorithms on the 
single and multi-objective digital filters have been illustrated. The results show that the proposed algorithm can 
be trapping the best global optima solution in the complex search domain easily and fastly outperforms others. 
The execution time performance of the algorithms on the single and multi-objective digital filters have been 
plotted through Figs. 11, 12, 13, 14, 15, 16 and 17. These graphs give strong evidence that the proposed method 
is able to trap the best goal fastly as comparison than others.

The average values of the algorithms have been illustrated through a Fig. 18. This graph has been plotted over 
the average values of the algorithms on the multi-objective digital filters, these values are shown in Tables 20, 
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33. Generally, the least value of mean represents the accuracy of the 
optimizer algorithm for the best global optima. These figures give strong evidence of the superior accuracy of the 
proposed algorithm as comparison with others on these multi-objective digital filters. Finally, we can say that the 
proposed methodology is able to present accurate and superior global optima solutions for these complex filters.

Table 2.   Comparison of mean outputs of evolutionary algorithms on 23-standard test suites.

Test suites SChoA Chimp TACPSO SCA MPSO

F1 B W W W W

F2 B W W W W

F3 B W W W W

F4 B W W W W

F5 B W W W W

F6 B W W W W

F7 B W W W W

F8 B W W W W

F9 B W W W W

F10 B W W W W

F11 B W W W W

F12 W W B W W

F13 B W W W W

F14 W W W W B

F15 B W W W B

F16 W W W W B

F17 B W B W W

F18 B W W W B

F19 W W W W B

F20 B W W W W

F21 W W W W B

F22 B W W W W

F23 W W W W B
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Figure 2.   The standard deviation (SD) values of evolutionary algorithms on 23-standard test suites.

Table 3.   The performance of algorithms on the 23-test suites.

Test suites TACPSO SCA

F1–23 Min Max Mean S.D Min Max Mean S.D

F1 1.00E−02 6.17E+04 3.58E+03 5.30E+03 5.57E+01 6.43E+04 1.31E+04 2.27E+04

F2 1.19E+00 7.34E+10 2.94E+08 4.63E+09 9.60E−03 5.16E+12 1.03E+10 2.31E+11

F3 7.72E+02 1.08E+05 7.64E+04 2.99E+04 3.49E+03 1.20E+05 4.82E+04 4.16E+04

F4 1.05E+01 8.30E+01 2.09E+01 1.16E+01 3.19E+01 9.17E+01 6.65E+01 2.67E+01

F5 2.76E+01 1.93E+08 8.67E+06 4.31E+07 1.80E+05 1.52E+08 7.34E+07 7.44E+07

F6 2.24E−01 5.93E+04 1.58E+03 4.66E+03 4.28E+00 6.84E+04 7.92E+03 1.60E+04

F7 1.18E−01 1.55E+02 1.66E+00 8.94E+00 1.02E+00 7.51E+01 1.82E+01 2.24E+01

F8 7.39E+01 4.39E+02 1.34E+02 7.89E+01 7.06E+01 4.38E+02 1.81E+02 1.05E+02

F9 8.36E+01 4.29E+02 1.42E+02 7.66E+01 0.00E+00 4.60E+02 1.60E+02 1.42E+02

F10 4.26E+00 2.08E+01 6.71E+00 4.00E+00 9.60E−01 2.06E+01 8.85E+00 8.04E+00

F11 1.27E−01 5.94E+02 1.77E+01 4.79E+01 1.53E+00 4.14E+02 1.29E+02 1.52E+02

F12 1.60E+00 7.01E+08 2.68E+06 3.53E+07 1.37E+01 7.02E+08 3.40E+08 3.46E+08

F13 9.98E−01 3.81E+01 2.37E+00 2.05E+01 9.98E−01 1.37E+01 2.02E+00 2.72E+00

F14 −1.02E+00 −8.01E−01 −9.07E−01 1.11E−01 −1.03E+00 0.00E+00 −1.02E+00 6.24E−02

F15 7.83E−04 1.65E−01 7.83E−04 0.00E+00 1.50E−03 3.70E−02 2.20E−03 4.20E−03

F16 3.98E−01 4.49E−01 4.00E−01 7.60E−03 4.02E−01 1.87E+00 4.78E−01 2.61E−01

F17 3.98E−01 3.14E−01 4.00E−01 1.84E−02 3.99E−01 1.34E+00 4.23E−01 9.71E−02

F18 3.00E+00 7.72E+01 3.22E+00 3.78E+00 3.00E+00 5.89E+01 3.23E+00 2.78E+00

F19 −3.86E+00 −3.06E+00 −3.85E+00 8.01E−02 −3.82E+00 0.00E+00 −3.79E+00 1.71E−01

F20 −2.81E+00 −1.40E+00 −2.07E+00 5.98E−01 −2.80E+00 −2.80E+00 −2.60E+00 3.69E−01

F21 −4.61E+00 −3.38E−01 −9.41E−01 1.25E+00 −4.97E−01 −4.97E−01 −4.93E−01 8.30E−01

F22 −9.12E−01 −3.52E−01 −6.76E−01 2.15E−01 −4.83E+00 −4.83E+00 −2.79E+00 1.74E+00

F23 −9.12E−01 −3.52E−01 −6.76E−01 2.15E−01 −4.83E+00 −2.98E+00 −2.79E+00 1.74E+00
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In this phase, we are discussing the standard deviation values (sd) of the algorithms. The sd values of each 
algorithm have been plotted by the graph or Fig. 19 with respect to x-axis and y-axis respectively. These values 
are illustrates through Tables 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33. Generally, these values near to 
zero represent the stability and fast convergence performance of the algorithm. This graph gives strong evidence 
that the proposed methodology all standard deviation results are near to zero which presents the proof of global 
optima solution stability and fast convergence performance of the proposed method outperform than others. 
Here, we can conclude that the proposed method is able to trap the best global optima with least number of 
iterations and time as comparison than others.

This paper has proposed a novel approach based on the recent meta-heuristic algorithm of SChoA. After 
using this approach in digital filter synthesis, it was found that, relative to other approaches, the proposed process 
has a greater ability to achieve optimal solutions in the same initial state (the initial population and the same 
number of iterations). In our suggested method, SChoA algorithm was applied separately to each node, where 
the location is modified according to the retiming strategy to which the SChoA algorithm is applied. In this way, 
the SChoA algorithm is applied to all the nodes available on the path. This enables the proposed algorithm to 
solve the current restrictions of identifying operator execution quickly and accurately. Lattice Ladder IIR filter 
system is taken into the account as an example to evaluate different outcomes using evolutionary algorithms 
based retiming approach. By significantly reducing the longest activities in a retimed DFG, the clock performance 
increases. It is by lowering while using this as next critical path in the system. The count of registers will rise in 
the process that could be the designer’s limit.

SChoA, MFO, PSO are highlighted here as the evolutionary algorithm based on Pareto, although there are 
other algorithms available on Pareto that may be considered for comparative analysis. The results of the algo-
rithms have been illustrated in Table 35. In the entire solution space, the decision vectors that are not dominated 
can be represented as optimal Pareto and entail an optimal Pareto front. The Pareto front has been shown in two 
dimensions (Path delay and number of registers) to manipulate the objectives. The Pareto fronts identified using 
the information gathered for the analysed filters from the objective solution space are shown in the Figs. 20, 21, 
22, 23 and 24 where the blue line indicates the relevant information obtained by the proposed process, while the 
red line reflects the algorithm data based on the MFO and the green line shows the algorithm-related data based 
on the PSO. In addition, the number of registers has been used in the vertical axis to clearly represent the data, 
which provides a clearer comparison of the three methods. In the Lattice Ladder IIR filter, the most appropriate 
solution fulfilling the goals is with a clock period of 5 time units and register count of 11. Besides that, even if 
clock period is chosen a limit, then with clock period as 3 and register count as 14 from the search space can 
be considered. From the design space if register count is a constraint, then response with clock time as 5 and 
register count as 11. An entry into the potential solution space would come from the one that does not alter the 

Table 4.   The performance of algorithms on the 23-test suites.

Test suites MPSO

F1–23 Min Max Mean S.D.

F1 3.43E−01 6.50E+04 9.43E+03 1.38E+04

F2 6.24E−01 1.20E+09 3.45E+08 5.42E+09

F3 3.36E+04 2.19E+05 5.70E+04 2.48E+04

F4 1.53E+01 7.13E+01 3.92E+01 1.67E+01

F5 5.94E+02 2.57E+08 2.32E+07 3.73E+07

F6 5.10E−02 7.35E+04 1.22E+04 1.76E+04

F7 5.95E−02 1.09E+02 1.24E+01 1.87E+01

F8 1.19E+02 4.36E+02 2.30E+02 1.03E+02

F9 1.26E+02 4.60E+02 2.34E+02 1.03E+02

F10 1.51E+00 2.08E+01 9.55E+00 7.26E+00

F11 1.99E−01 5.69E+02 7.49E+01 1.11E+02

F12 5.08E+00 5.28E+08 7.48E+07 1.15E+08

F13 9.98E−01 1.80E+01 1.92E+00 2.78E+00

F14 − 1.03E+00 2.01E−01 − 1.02E+00 5.98E−02

F15 7.83E−04 1.59E−01 2.00E−03 1.03E−02

F16 3.98E−01 4.00E−01 3.98E−01 4.62E−04

F17 3.98E−01 3.00E−01 4.01E−01 1.67E−02

F18 3.00E+00 5.31E+01 3.14E+00 2.28E+00

F19 − 3.82E+00 − 2.99E+00 − 3.86E+00 5.72E−02

F20 − 3.20E+00 − 1.62E+00 − 3.17E+00 1.18E−01

F21 − 5.10E+00 − 3.44E−01 − 4.93E+00 5.30E−01

F22 − 5.13E+00 − 7.21E−01 − 4.12E+00 6.30E−01

F23 − 5.13E+00 − 7.21E−01 − 4.87E+00 6.30E−01
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circuit functionality. This process will proceed until all feasible solutions are obtained. The designer may select 
either solution refers to a time units for critical paths and the registers count.

Consequently, the findings certainly showed selection in view of register and path latency, leading to an 
improvement in the design stage of the filters for the optimum solution. The solution space that provides the path 
lower than the initial critical path that fulfils all the retiming features is calculated by all feasible routes from the 
source node to the destination node. In the DLAT-IIR, the Pareto set at a path delay of 3 time units and a register 
count of 6 is the most suitable option that meets both objectives. However, if only a path delay is considered a 

Figure 3.   The convergence graph of algorithms on 07-Uni-modal test suites.
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restriction, the solution can be interpreted as a path delay with 3 and register 10 as a register count. For the regis-
ter count as a restriction, another approach in terms of path delay as 5 and register count as 6. A 37.13%, 30.18% 
improvement in the MUF and area, 39.74% and 40.51% in relative to MFO, PSO based algorithms. The pareto 
optimal front for the consideration of 14-digital filters are shown in Figs. 20, 21, 22, 23 and 24. The retimed best 
optima results have been evaluated during this work for the single and multi-objective digital filters. Generally 
the search domain is finalized at each path from initial node to final node which provides the path less than the 
critical way that fulfills all the given conditions or properties.

The information obtained through the simulations of the three methods are listed in the tabulated form, i.e. 
SChoA-Proposed Method, MFO-based Method, PSO-based Method. In all the methods, the initial population 
and the maximum number of iterations are equal to 30 and 500. The results of the HLS of the digital filters have 

Figure 4.   The convergence graph of algorithms on 06-Multi-modal test suites.
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been tabulated in Table 36 where the maximum frequency available and the occupied area, that is the number 
of slices register used for the implementation of the operators and registers.

Table 37 summarises the percentage of the improvement achieved by the proposed SChoA-based method 
than other methods (MUF-based and PSO-based) while synthesising each digital filter. Table 37 clearly illustrates 
that in the DF-FIR, the current method have significantly improve MUF by 26.70% and 38.13% as compared to 
the MFO-based and PSO- based method. And the proposed method have provided improved MUF by 61.29% 
compared to the PSO-based method for DF2IIR. And compared to the MFO-based and PSO-based methods, 

Figure 5.   The convergence graph of algorithms on 10-Fixed dimension multi-modal test suites.
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the proposed method used fewer slices. For the optimum frequency, the proposed method in LAT FIR, DLATIIR 
filters synthesis revealed the best compared to the MFO-based, PSO-based, with 21.05%, 25.51% and 37.13%, 
30.18% improvement. The best outcome for utilized slice registers was observed in the DF-FIR synthesis, with an 
improvement of 59.70% compared to the PSO-based method and an improvement of 39.74% in the DLAT-IIR 
synthesis compared to the MFO-based method. Important improvements have been identified in the Tables 36 
and 37 to reach an optimal solution in terms of throughput. Our proposed method outperformed the other two 
with respect to two parameters (MUF and Area) for the filter synthesis. In Table 38, have been compared the 

Table 5.   The global optimal results of the algorithms on single-objective direct form FIR filter.

Algorithm Best score Best max Mean SD

SChoA 2.001 210.9273 2.5948 1.2636

MPSO 6.6 17.025 6.6645 2.675

TACPSO 9.2 27.1034 9.4398 1.6964

ChCS 12.866 25.446 16.526 4.5525

Chimp 13.0723 23.3669 16.541 3.9507

MChimp 13.0784 21.7749 16.2532 3.3444

GWO 4.848 20.4637 5.2975 1.6976

MFO 4.8 21.4217 5.3021 2.1577

SCA 5.956 17.3476 6.443 1.4032

TLBO 4.8 17.4918 5.236 1.3733

PSO 4.8132 25.245 5.2916 1.6579

Table 6.   The global optimal results of the algorithms on single-objective lattice form FIR filter.

Algorithm Best score Best max Mean SD

SChoA 2 8.7279 2.0438 0.3101

MPSO 5.0211 12.0759 5.0548 0.3904

TACPSO 5.22 9.5391 50.866 0.4684

ChCS 8.0374 10.087 8.6119 1.1925

Chimp 5.0001 10.9958 8.0069 1.4896

MChimp 5.0001 10.8877 7.0041 1.9999

GWO 5.1021 11.4891 5.0486 0.402

MFO 5.0236 9.1648 5.1644 0.5723

SCA 5.0281 6.6956 5.0664 0.313

TLBO 5.0126 7.2683 5.022 0.4521

PSO 5.2981 9.35 5.0453 0.3978

Table 7.   The global optimal results of the algorithms on single-objective cascade form FIR filter.

Algorithm Best score Best max Mean SD

SChoA 2 10.5065 2.3025 0.3447

MPSO 2.001 9.3818 2.942 0.868

TACPSO 2.9 9.247 3.0367 0.65831

ChCS 3.196 6.8026 3.8655 0.9922

Chimp 3.227 9.5168 4.5794 1.5258

MChimp 3.234 9.6698 4.4008 1.4324

GWO 2.903 8.5665 2.9799 0.9398

MFO 2.9706 8.0757 3.0968 0.532

SCA 3.1388 6.3783 3.3795 0.5173

TLBO 2.9035 7.2913 2.9704 0.3702

PSO 2.9025 6.4123 3.0817 0.7337
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execution time taken by the evolutionary algorithm for the 14- different digital filters. The results of this table give 
strong evidence that the proposed algorithm is able to tackle these issues in least time as comparison with others.

By comparing the performance of models, it would be reported that the optimum operating frequency for 
Lattice Ladder IIR filter has enhanced from 17.884 to 28.186 MHz that is improved by 57.6% whereas the number 
of slices used get declined by 23.52%. From the statistic it has been seen that the proportion of latches does get 
controlled well with desired clock period for the evolutionary retiming algorithm. For the performance analysis 
which including area and delay, models are evaluated and HLS has been used to optimize register transfer logic. 
The improvement in the clock rate of FIR and IIR digital filters during novel retiming algorithm are shown in 

Table 8.   The global optimal results of the algorithms on single-objective parallel form FIR filter.

Algorithm Best score Best max Mean SD

SChoA 2 5.4738 2.022 0.192

MPSO 2.002 5.1575 2.026 0.2498

TACPSO 2.001 6.4194 2.0833 0.4673

ChCS 2.0016 6.335 2.5378 1.009

Chimp 2.006 7.8854 2.5811 0.9513

MChimp 2.002 6.4369 2.6 1.1154

GWO 2.0014 6.5121 2.057 0.3269

MFO 2.0251 6.9538 2.6812 0.4188

SCA 2.0366 5.2195 2.1308 0.2818

TLBO 2.121 4.2772 2.0341 0.2066

PSO 2.22 7.5669 2.0868 0.4047

Table 9.   The global optimal results of the algorithms on single-objective transpose direct form FIR filter.

Algorithm Best score Best max Mean SD

SChoA 2 3.6206 2.0119 0.028

MPSO 2.0102 2.4326 2.0075 0.0774

TACPSO 2.011 2.7873 2.0114 0.0577

ChCS 2.0048 3.3692 2.2721 0.4116

Chimp 2.7864 3.8314 2.9155 0.2382

MChimp 2.0024 3.1075 2.2946 0.317

GWO 2.0014 3.2125 2.0192 0.0736

MFO 2.1375 3.8634 2.1857 0.1873

SCA 2.0013 3.7071 2.207 0.2173

TLBO 2.0011 2.6426 2.004 0.0336

PSO 2.0033 3.1933 2.0333 0.0881

Table 10.   The global optimal results of the algorithms on single-objective direct form IIR filter.

Algorithm Best score Best max Mean SD

SChoA 3.2 17.6002 3.9344 0.891

MPSO 11.8 14.5335 11.8185 0.172

TACPSO 5.4613 12.6305 5.6023 0.7837

ChCS 6.0057 13.4063 7.6548 2.4924

Chimp 5.0039 16.2935 7.5746 3.2657

MChimp 5.9984 18.6078 7.6327 2.6068

GWO 3.8025 12.1505 3.9137 0.5437

MFO 4.2 13.7726 4.4028 1.1605

SCA 3.9341 19.219 5.2136 1.9907

TLBO 3.8 14.7553 3.9283 0.7514

PSO 3.8054 17.9583 4.0331 1.4121



20

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21389  | https://doi.org/10.1038/s41598-022-24343-x

www.nature.com/scientificreports/

Table 37. It highlights that after implementing the novel approach, the stepladder of the different arrangements 
are whittled down. The declination of the register count accelerates the design’s clock rate and trim down the 
feature size that further enhances performance level. Summing up, on the basis of all simulations, we concluded 
that the proposed methodology can tackle the complex digital filters issues strongly.

HLS of digital filters design.  Under this phase, the proposed strategy has been implemented on the high 
level of synthesis. HLS (high level synthesis) is a paramount phase during designing the digital filters. Normally, 
HL optimization decreases design period at minor stages, foremost to superior circuit indices73. HLS is a plat-

Table 11.   The global optimal results of the algorithms on single-objective transpose direct form IIR-1 filter.

Algorithm Best score Best max Mean SD

SChoA 3.202 12.7328 3.6757 0.6346

MPSO 3.8 12.2121 3.9407 0.6259

TACPSO 3.8 11.0269 3.9342 0.7674

ChCS 5.8134 7.2297 6.3365 0.75

Chimp 4.767 8.2288 6.4463 1.2141

MChimp 6.4115 14.1893 8.561 2.3742

GWO 3.8025 17.1272 3.9723 0.8946

MFO 3.8 13.1308 4.0081 0.9875

SCA 4.1692 12.5974 4.7104 0.9022

TLBO 3.8565 11.818 3.9181 0.6547

PSO 3.8348 16.1025 4.0567 0.8181

Table 12.   The global optimal results of the algorithms on single-objective transpose direct form IIR-2 filter.

Algorithm Best score Best max Mean SD

SChoA 2.0001 12.5078 2.9885 1.4321

MPSO 3 12.4903 3.1886 0.883

TACPSO 2.4995 11.521 2.6825 0.9083

ChCS 4 7.9303 5.7231 1.7345

Chimp 4.0007 11.673 6.9392 2.5919

MChimp 2.5025 13.7468 6.1608 3.548

GWO 2.4954 10.0096 2.6144 0.5615

MFO 2.794 12.999 3.1936 1.532

SCA 2.5071 11.1921 2.7635 0.7914

TLBO 2.4188 6.3385 2.4787 0.3085

PSO 2.4933 9.9725 2.6297 0.5863

Table 13.   The global optimal results of the algorithms on single-objective direct form IIR-2 filter.

Algorithm Best score Best max Mean SD

SChoA 3.2 12.9193 3.3646 0.8452

MPSO 4.2 17.3297 4.3595 0.9658

TACPSO 3.8 13.9067 4.1401 1.18

ChCS 8.0985 13.968 8.7321 1.4725

Chimp 3.8059 13.111 6.6859 2.7878

MChimp 7.2021 21.7115 8.5815 1.9148

GWO 3.8081 18.757 3.9466 0.9807

MFO 5.6 16.4038 0.8728 1.2778

SCA 3.8125 17.2306 4.0884 1.2642

TLBO 3.8253 8.1135 3.976 1.4236

PSO 3.8555 18.922 3.989 1.0307
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form of very big scale integration (VLSI) design where in behavioral explanation is transformed into a physical 
representative76,77. The HLS is the initial stage in synthesizing a circuit and data flow graph (DFG) is utilized 
to illustrate the behavioral explanation, which defines the operators’ type and the connections amid them. The 
assumed DFG has been demonstrated by the Eq. (7.1);

The digital filters (DF’s) are commonly utilized for videos, process signals, images, communication applications, 
digital signal processing etc. The auto regressive filter (ARF), finite impulse response (FIR), the band-pass filter 

(7.1)Y = (((a+ b)× (c × d))+ ((e + f )× (g × h)))+ ((e + f )× (g × h))

Table 14.   The global optimal results of the algorithms on single-objective cascade form IIR-2 filter.

Algorithm Best score Best max Mean SD

SChoA 2.5 3.575 2.5108 0.0531

MPSO 2.5005 4.9231 2.5279 0.1585

TACPSO 2.5216 3.5783 2.5382 0.1522

ChCS 2.5058 3.6604 2.7769 0.3768

Chimp 2.55 3.4886 2.7318 0.3048

MChimp 2.5038 4.9792 3.0672 0.6584

GWO 2.5004 3.936 2.5105 0.0783

MFO 3.007 3.663 3.0072 0.0549

SCA 2.5152 3.985 2.581 0.1983

TLBO 2.5164 4.0363 2.5219 0.133

PSO 2.5023 4.3532 2.5245 0.1113

Table 15.   The global optimal results of the algorithms on single-objective SS lattice form IIR filter.

Algorithm Best score Best max Mean SD

SChoA 3.008 12.8731 5.6723 0.9228

MPSO 5.8 9.7896 5.8452 0.3542

TACPSO 5.8 8.8013 5.8184 0.8814

ChCS 8.6 10.888 9.2427 0.8772

Chimp 7.0058 12.2945 8.6923 1.7725

MChimp 7.001 11.7942 8.92525 1.6074

GWO 5.8002 7.8945 5.9101 0.8274

MFO 5.8003 9.2786 5.8841 0.6319

SCA 5.8134 9.3424 5.9071 0.8333

TLBO 5.821 7.0899 5.8131 0.9801

PSO 5.8006 6.9432 5.8376 0.7524

Table 16.   The global optimal results of the algorithms on single-objective DS-lattice form IIR filter.

Algorithm Best score Best max Mean SD

SChoA 2 10.9322 2.8544 1.2677

MPSO 4 10.285 4.2051 1.402

TACPSO 4.001 10.048 4.0543 0.4422

ChCS 6.8 14.6637 10.0989 2.7477

Chimp 6.60003 11.2271 9.0192 1.6648

MChimp 5.401 10.575 8.3921 1.5678

GWO 5.3987 9.0144 5.4457 0.5861

MFO 4.0308 11.6615 4.2051 1.002

SCA 4.0549 12.4323 4.3074 0.8712

TLBO 4 8.1319 4.1035 0.6592

PSO 4.0098 11.8028 4.1792 0.6182
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(BPF), the infinite impulse response (IIR), the elliptic wave filter (EWF) and the wave digital filter (WDF) are 
the DF’s used in this work. The DFG of the ARF used in this text has been demonstrated by Fig. 2578.

The following fitness function has been considered for evaluating the area, power and delay by the proposed 
strategy and verify the accuracy by the results of MFO74 and PSO74 algorithms:

where F is illustrated the fitness function, w1,w2,w3 are describes the weights of the power, delay and area terms, 
lt is represented the schedule length of sample evaluated, a(t) is illustrated the total number of registers and tran-
sistors in the operators, pt is denoted the power consumption of operators, lmax is denoted the long scheduled 
length in the current crowd,amax is denoted the largest area in the current crowd and pmax is denoted the highest 
power in the current crowd respectively.

Further accurately illuminates on the best optima results attained by the newly proposed method in the 
subsequent period of this subdivision. These outcomes have been confirmed over the recent literature solutions 
achieved by MFO74 and PSO74. The code of the algorithms have been runned on Matlab-R2015a under the system 
with 8GM of RAM and Intel (R) Core (TM) i3-8130 U processor. The various constants values have been fixed 
for getting the best outcomes viz total no ’s of search members are 30, total no’s of generations are 100, total no’s 
of operational units and sources are 5 etc. The experimental outcomes of the HLS of the digital filters have been 
described through Tables 39, 40, 41, 42, 43, 44. Similarly, the best outcomes of the newly developed approach for 
power, occupied area and lowest delay are presented by Fig. 26. All outcomes have assessed on three modes such 
as w1 = 0.8 , w2 = 1,w3 = 1 and w1 = 1 , w2 = 0.8 , w3 = 1 and w1 = 1 , w2 = 1 , w3 = 0.8 etc. For every mode, the 
average of the assimilated reaction for a 50-times effecting for the newly developed approach has been tabulated 
beside with their appropriate the standard deviation(sd). Here keep in mind that, the standard scores (sd) have 
been reported for a comparison and superior presentation of the result with respect to the power consumption 
and largeness of the occupied area.

The outcomes of Tables 39, 40, 41, 42, 43, 44, shows that the proposed method is able to give a highly 
accurate and superior outcome in terms of area, power and delay than others. All outcomes of IIR, FIR, ARF, 
EWF, BPF and WDF-DFG have been attained through changing the constant values of ( w1 , w2 , w3 ) and a major 

(7.2)F = w1 ×
lt

lmax
+ w2 ×

at

amax
+ w3 ×

pt

pmax

Table 17.   The global optimal results of the algorithms on single-objective parallel form IIR-2 filter.

Algorithm Best score Best max Mean SD

SChoA 2 4.2505 2.0195 0.1317

MPSO 2.0071 5.4267 2.0371 0.156

TACPSO 2.02 5.5167 2.0503 0.23

ChCS 2.0001 3.7446 2.035 0.203

Chimp 2.005 4.1569 2.5059 0.3589

MChimp 2.0074 4.3069 2.0832 0.4109

GWO 2.005 4.6426 2.0102 0.9913

MFO 2.115 4.5478 2.0275 0.6174

SCA 2.0119 3.9378 2.0593 0.9146

TLBO 2.0151 4.4391 2.0126 0.1107

PSO 2.0002 4.5202 2.0213 0.1946

Table 18.   The global optimal results of the algorithms on single-objective lattice ladder form IIR filter.

Algorithm Best score Best max Mean SD

SChoA 2.1665 8.2876 2.2429 0.291

MPSO 2.3917 9.2255 2.4234 0.3751

TACPSO 2.2917 9.5753 2.3845 0.6318

ChCS 8.3662 12.1782 9.8557 1.4494

Chimp 2.4272 7.3386 5.2377 1.8086

MChimp 2.3932 9.0506 6.8039 1.8742

GWO 2.3591 10.2187 2.5273 0.7707

MFO 2.2583 8.6259 2.322 0.7706

SCA 2.5332 8.0528 2.6882 0.6164

TLBO 2.2583 4.2576 2.1846 0.3147

PSO 2.3472 10.7821 2.5034 0.9692
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improvement in the global optimal outcome responses of the MA’s observed. For illustration, the best delay 
will be attained, linked to the other two modes, when supposing a weight of 0.8 for w1 , this factor is associated 
to the delay, and supposing a coefficient of 0.1 for w2 and w1 as the coefficients of the occupied area and power. 
The same is true for the other two modes. All least scores in Tables 39, 40, 41, 42, 43, 44 of the newly developed 
algorithm revealed are able to give the highly effective and accurate solutions for the occupied area and the 
least power consumption than MFO74 and PSO74 algorithms. In addition, the outcomes of Table 40 proved that 
the mean scores for the delay have been attained by the new method in comparison to others. These outcomes 

Figure 6.   The convergence graph of algorithms on single-objective DF-FIR, LATFIR and CASFIR digital filters.
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revealed that the new method is capable of decreasing the delay period than other for HLS issues. Therefore, 
the new strategy is competent to deliver the paramount outcome response in terms of delay, area and power 
consumption for HLS in VLSI circuits.

Summing up, the performance of the proposed algorithm shows that it is able to provide the high quality 
of the global optimal solutions outperforming the original algorithms. The powerful features of the proposed 
method can deal with the NP-hard applications of different domains. So this approach would be helpful in 
handling complex real-world problems.

Figure 7.   The convergence graph of algorithms on single-objective PARFIR, TDFFIR and DF1IIR digital filters.
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Conclusion and future work
In the paper, a enhanced version of chimp optimizer with sine cosine functions have been designed for the high 
level synthesis (HLS) of digital filter data-paths in terms of best score, execution time, occupied area and speed. 
The sine and cosine functions are helped of the algorithms in fluctuating toward or outward searching the global 
optima solutions. These functions are also able in ignoring the local optima and forcing for trapping the global 
optima fastly in the search domain. The performance of the algorithms have been tested on 23-standard test 

Figure 8.   The convergence graph of algorithms on single-objective TDF1IIR, TDF2IIR and DF2IIR digital 
filters.
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suites and 14-different digital filters of single and multi-objective functions in terms of minimum, maximum, 
average, standard deviation, execution time, occupied area and speed. The simulation results of the proposed 
strategy shows that the proposed strategy is able to successfully solve the high level synthesis of datapaths in 
digital filters problem in terms of area and speed respectively as comparison than to others. It is also able to trap 
highly accurate global optima solutions in the search area with least number of iterations and time than others.

Figure 9.   The convergence graph of algorithms on single-objective CASIIR, SLATIIR and DLATIIR digital 
filters.
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Figure 10.   The convergence graph of algorithms on single-objective PARIIR and LADIIR digital filters.

Table 19.   The execution time of the algorithms on single-objective digital filters.

Digital filters SChoA MPSO TAPSO ChCS Chimp MChimp GWO MFO SCA TLBO PSO

DF-FIR 1.57 2.22 1.93 11.74 3.711 3.886 3.71 6.015 1.77 5.8 2.06

LATFIR 0.783 1.305 1.075 5.926 2.016 2.866 2.15 3.426 0.94 3.2 1.17

CASFIR 0.913 1.533 1.257 7.306 2.42 3.661 2.59 4.223 1.1 4 1.37

PARFIR 0.993 1.558 1.306 7.397 2.45 3.51 2.6 4.09 1.16 3.9 1.42

TDFFIR 0.568 1.04 0.836 4.42 1.57 2.2 1.69 2.71 0.71 2.5 0.92

DF1IIR 1.034 1.805 1.44 7.965 2.77 3.923 2.98 4.64 1.25 4.4 1.6

TDF1IIR 1.02 1.794 1.443 8.013 2.751 3.914 2.95 4.64 1.24 4.4 1.59

TDF2IIR 1.064 1.92 1.52 8.31 2.89 4.106 3.12 4.92 1.3 4.6 1.71

DF2IIR 1.019 1.798 1.43 7.95 2.73 3.87 2.93 4.61 1.24 4.1 1.59

CASIIR 0.557 1.04 0.826 4.43 1.55 2.216 1.69 2.73 0.7 2.5 0.91

SLATIIR 0.68 1.31 1.03 5.51 1.95 2.75 2.11 3.38 0.87 3.2 1.15

DLATIIR 1.05 1.95 1.54 8.33 2.94 4.165 3.17 4.98 1.3 4.7 1.73

PARIIR 0.777 1.336 1.08 6.03 2.064 2.932 2.21 3.5 0.94 3.3 1.19

LADIIR 1.675 2.33 2.03 12.42 3.9 5.63 4.08 6.328 1.87 6.1 2.17
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Further, for the SChoA evolutionary algorithms, maximum improvement analysed in the frequency, the 
occupied area for DR- FIR is 38.13%, 59.70% and for DF2-IIR is 61.29%, 15.69% ,for LAT-IIR is 52.37% , 14.67% 
and also for LAD-IIR is 43.95%, 59.07%. This could greatly reduce the cost of systems with broad dimensions 
while increasing the design speed. Practically, the entire framework is saving the designer resources and time. 
In addition, the SChoA is competent to effectively solve the HLS of datapaths in digital filters issue in terms of 

Figure 11.   The graph of execution time of algorithms on single-objective digit filters.

Table 20.   The global optimal results of the algorithms on multi-objective of direct form FIR filter.

Algorithm Best score Best max Mean SD

SChoA 0.0046 11.8261 0.6708 1.054

MPSO 5.4383 11.6974 5.4888 0.3805

TACPSO 5.4383 11.4401 5.6124 0.829

ChCS 10.8411 11.358 10.856 0.0759

Chimp 9.943 11.9379 10.3059 0.4513

MChimp 9.00396 11.5773 9.1815 0.4439

GWO 6.3861 12.9561 6.5973 0.604

MFO 5.4383 17.5802 5.6966 0.9476

SCA 9.049 10.8017 9.1355 0.5581

TLBO 5.4383 10.7239 5.5887 0.5822

PSO 6.3402 10.9351 6.8387 0.6043

Table 21.   The global optimal results of the algorithms on multi-objective lattice form FIR filter.

Algorithm Best score Best max Mean SD

SChoA 0.001098 4.005 0.121 0.195

MPSO 0.24138 3.0009 0.2556 0.161

TACPSO 0.2385 3.4205 0.2724 0.2842

ChCS 0.36038 5.7828 1.2438 1.1965

Chimp 0.33717 1.2334 0.6302 0.3216

MChimp 0.35147 2.7265 0.8032 0.7314

GWO 0.24181 1.971 0.2554 0.1235

MFO 0.24138 3.2128 0.2755 0.2571

SCA 0.24312 4.0598 0.2655 0.1923

TLBO 0.239 1.4698 0.245 0.0688

PSO 0.24192 5.4632 0.2693 0.2744



29

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21389  | https://doi.org/10.1038/s41598-022-24343-x

www.nature.com/scientificreports/

lowest delay, area and power respectively than others. In future work, we shall develop the various enhanced 
versions of the algorithms for the high level synthesis and model identification of the digital filterings. In the 
end, we expect this work will encourage the young scientists of different domains, who are recently working on 
MA’s and digital filtering issues.

Table 22.   The global optimal results of the algorithms on multi-objective cascade form FIR filter.

Algorithm Best score Best max Mean SD

SChoA 0.000329 5.9363 0.0329 0.2621

MPSO 0.76 4.4759 0.7954 0.2038

TACPSO 0.76 3.2125 0.8192 0.2746

ChCS 0.7938 4.12 1.3391 0.5144

Chimp 0.7818 6.0987 1.1026 0.4374

MChimp 0.88428 6.481 1.2928 0.4905

GWO 0.76723 5.4576 0.8195 0.3095

MFO 0.7673 3.1406 0.8107 0.2705

SCA 0.9269 5.869 1.3091 0.5904

TLBO 0.7659 4.4726 0.7949 0.241

PSO 0.7733 5.5713 0.8038 0.388

Table 23.   The global optimal results of the algorithms on multi-objective parallel form FIR filter.

Algorithm Best score Best max Mean SD

SChoA 0.0003139 4.2657 0.0202 0.2194

MPSO 0.18182 1.312 0.1894 0.0788

TACPSO 0.63077 4.2677 0.6911 0.3971

ChCS 0.60953 4.8039 1.1896 1.0714

Chimp 0.19982 4.5335 0.6468 0.7323

MChimp 0.6607 3.7075 1.0543 0.706

GWO 0.18182 3.5682 0.2035 0.2158

MFO 0.1869 3.1628 0.2208 0.2365

SCA 0.18138 3.3655 0.2491 0.2542

TLBO 0.18163 1.8273 0.1877 0.0807

PSO 0.18138 4.4616 0.2271 0.3086

Table 24.   The global optimal results of the algorithms on multi-objective transpose direct form FIR filter.

Algorithm Best score Best max Mean SD

SChoA 1.40E−12 1.6981 0.00152 0.0367

MPSO 0.1818 0.8401 0.1839 0.032

TACPSO 1.70E−03 1.1337 0.0163 0.1056

ChCS 0.1813 0.4521 0.211 0.0672

Chimp 0.0026 1.0916 0.1772 0.1588

MChimp 0.0175 0.8503 0.19 0.1289

GWO 0.0045 0.9938 0.061 0.0988

MFO 2.69E−04 0.4235 0.0109 0.0502

SCA 6.33E−03 0.3667 0.044 0.0687

TLBO 6.24E−03 0.4219 0.0187 0.0539

PSO 1.90E−03 1.1095 0.0265 0.0955
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Table 25.   The global optimal results of the algorithms on multi-objective direct form of IIR filter.

Algorithm Best score Best max Mean SD

SChoA 1.2575 10.8814 1.4798 0.59

MPSO 1.3364 8.7989 1.4343 0.6093

TACPSO 3.1224 10.8766 3.3147 0.9774

ChCS 3.1423 11.8204 4.4183 1.7818

Chimp 3.128 9.2131 4.1575 1.4901

MChimp 3.19 7.0705 4.0423 0.9261

GWO 1.3364 8.3395 1.6751 0.7541

MFO 1.352 11.063 1.5481 0.8915

SCA 1.3579 7.7763 1.8011 0.9896

TLBO 1.3345 7.8291 1.4539 0.4921

PSO 1.3356 11.288 1.4148 0.6667

Table 26.   The global optimal results of the algorithms on multi-objective transpose direct form IIR-1 filter.

Algorithm Best score Best max Mean SD

SChoA 1.2212 11.9833 1.6533 0.5468

MPSO 1.9538 6.2299 2.0264 0.276

TACPSO 1.9557 6.7376 2.0407 0.506

ChCS 2.6172 6.0942 3.8342 1.1254

Chimp 2.6271 8.2912 4.113 1.5034

MChimp 2.6467 7.5037 4.0924 1.3276

GWO 1.9607 12.883 2.0724 0.6413

MFO 1.9585 8.3622 2.1725 0.8652

SCA 2.2205 5.4305 2.4115 0.4854

TLBO 1.9601 7.3456 2.0096 0.3732

PSO 1.9612 11.7147 2.1502 0.6205

Table 27.   The global optimal results of the algorithms on multi-objective transpose direct form IIR-2 filter.

Algorithm Best score Best max Mean SD

SChoA 2.0165 16.0073 2.8357 1.0838

MPSO 3.2512 10.3841 3.3284 0.4046

TACPSO 2.2513 5.9836 2.3972 0.4758

ChCS 3.2525 9.4866 5.528 1.9865

Chimp 3.2352 9.3676 5.3458 1.9906

MChimp 3.2515 10.3747 5.2124 1.7995

GWO 2.2642 10.6177 2.4176 0.5913

MFO 2.5655 8.5887 2.643 0.6935

SCA 2.6265 5.4223 2.8308 0.3355

TLBO 2.4422 11.9996 2.5455 0.5322

PSO 2.2824 11.553 2.5888 0.8969



31

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21389  | https://doi.org/10.1038/s41598-022-24343-x

www.nature.com/scientificreports/

Table 28.   The global optimal results of the algorithms on multi-objective direct form IIR-2 filter.

Algorithm Best score Best max Mean SD

SChoA 1.2025 16.372 1.3595 0.8439

MPSO 5.5071 16.367 5.5909 0.7689

TACPSO 1.2976 9.3635 1.536 1.0161

ChCS 3.3397 10.7041 4.3451 1.769

Chimp 2.6432 6.8168 3.6225 1.1516

MChimp 3.236 16.237 4.4667 2.4085

GWO 1.2976 10.2413 1.3891 0.6186

MFO 1.2979 16.9928 1.5535 1.57

SCA 1.3658 11.6727 1.8209 1.012

TLBO 1.2976 8.3309 1.4338 0.5666

PSO 1.2971 14.609 1.4434 0.9212

Table 29.   The global optimal results of the algorithms on multi-objective cascade form IIR-2 filter.

Algorithm Best score Best max Mean SD

SChoA 0.5 2.013 0.5079 0.0741

MPSO 0.65385 1.9582 0.6575 0.0601

TACPSO 0.5012 1.728 0.5128 0.0975

ChCS 0.50578 1.0401 0.6041 0.0847

Chimp 0.50526 2.1273 0.6325 0.1598

MChimp 0.5671 1.0451 0.6503 0.0487

GWO 0.501 1.8308 0.5132 0.0791

MFO 0.6538 2.164 0.6671 0.107

SCA 0.5091 0.6598 0.5288 0.0486

TLBO 0.5611 1.1453 0.5077 0.0509

PSO 0.50368 0.8542 0.5288 0.0486

Table 30.   The global optimal results of the algorithms on multi-objective SS lattice form IIR filter.

Algorithm Best score Best max Mean SD

SChoA 3.0008 7.6799 3.317 0.4696

MPSO 3.1822 4.9868 3.2335 0.1301

TACPSO 3.1337 7.5895 3.2178 0.3994

ChCS 3.216 4.5375 3.5132 0.391

Chimp 3.317 5.4233 3.7791 0.73

MChimp 3.314 6.3322 3.8044 0.5872

GWO 3.15 6.1241 3.2197 0.2744

MFO 3.124 5.3379 3.1013 0.2628

SCA 3.192 5.1858 3.3309 0.3969

TLBO 3.13 6.7998 3.15 0.2338

PSO 3.185 6.8619 3.2273 0.1997
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Table 31.   The global optimal results of the algorithms on multi-objective DS-lattice form IIR filter.

Algorithm Best score Best max Mean SD

SChoA 1.803 5.2311 2.1122 0.344

MPSO 1.899 3.7215 1.9432 0.1542

TACPSO 1.893 4.373 1.9619 0.2968

ChCS 2.23 3.9487 2.7475 0.4281

Chimp 2.14 5.21 2.6807 0.557

MChimp 2.22 4.8219 2.8517 0.437

GWO 1.91 4.458 1.955 0.14448

MFO 1.93 3.356 2.007 0.2276

SCA 2.07 5.099 2.2719 0.3788

TLBO 1.976 3.646 2.0231 0.159

PSO 1.9072 4.5145 2.0091 0.2161

Table 32.   The global optimal results of the algorithms on multi-objective parallel form IIR-2 filter.

Algorithm Best score Best max Mean SD

SChoA 0.81 2.1299 0.9591 0.0716

MPSO 0.946 1.9723 0.93 0.0573

TACPSO 0.945 1.6318 0.9593 0.0711

ChCS 0.954 1.2252 1.0415 0.1016

Chimp 0.947 1.0481 0.9675 0.0351

MChimp 0.953 2.0413 1.0416 0.1606

GWO 0.944 1.0653 0.9502 0.0118

MFO 0.9434 2.4627 0.9664 0.1171

SCA 0.955 1.1534 0.9624 0.0491

TLBO 0.963 1.34267 0.9598 0.0394

PSO 0.949 1.6057 0.8371 0.05

Table 33.   The global optimal results of the algorithms on multi-objective lattice ladder form IIR filter.

Algorithm Best score Best max Mean SD

SChoA 0.97 1.7351 1.1153 0.1459

MPSO 1.2395 1.6089 1.247 0.0302

TACPSO 1.125 1.6106 1.167 0.0703

ChCS 1.295 1.4926 1.3552 0.0424

Chimp 1.271 1.6353 1.3436 0.069

MChimp 1.326 1.721 1.3737 0.0442

GWO 1.67 1.6461 1.2025 0.0397

MFO 1.175 1.5507 1.1931 0.0665

SCA 1.277 1.5052 1.2906 0.0672

TLBO 1.142 1.5474 1.1547 0.035

PSO 1.1845 1.7192 1.219 0.0543
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Figure 12.   The convergence graph of algorithms on multi-objective DF-FIR, LATFIR and CASFIR digital 
filters.
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Figure 13.   The convergence graph of algorithms on multi-objective PARFIR, TDFFIR and DF1IIR digital 
filters.
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Figure 14.   The convergence graph of algorithms on multi-objective TDF1IIR, TDF2IIR and DF2IIR digital 
filters.
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Figure 15.   The convergence graph of algorithms on multi-objective CASIIR, SLATIIR and DLATIIR digital 
filters.
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Figure 16.   The convergence graph of algorithms on multi-objective PARIIR and LADIIR digital filters.

Table 34.   The Execution time of the algorithms on multi-objective digital filters.

Digital filters SChoA MPSO TAPSO ChCS Chimp MChimp GWO MFO SCA TLBO PSO

DF-FIR 1.636 2.43 2.06 12.3 3.96 5.63 4.17 6.49 1.86 6.22 2.23

LATFIR 0.818 1.51 1.2 6.48 2.28 3.23 8.46 4.88 2.01 6.69 5.34

CASFIR 0.9 1.53 1.24 7.13 2.35 3.45 2.59 4.41 1.08 3.94 2.35

PARFIR 0.98 1.44 1.29 7.43 2.45 3.5 2.61 4.07 1.15 3.91 1.55

TDFFIR 0.553 1.023 0.814 4.83 5.32 1.66 2.67 0.69 2.54 2.9 2.36

DF1IIR 1.085 1.86 1.511 8.15 2.82 3.99 3.03 4.75 1.31 4.51 1.67

TDF1IIR 1.19 2.11 1.74 9.02 3.17 4.42 3.42 5.34 1.52 5.05 2.91

TDF2IIR 1.05 1.93 1.52 8.36 2.93 4.11 3.13 4.93 1.3 4.7 1.71

DF2IIR 1.041 1.81 1.46 8.1 2.79 3.79 2.98 4.7 1.26 4.45 1.62

CASIIR 0.568 1.065 0.846 4.48 1.59 2.23 1.72 2.72 0.71 2.36 3.21

SLATIIR 0.703 1.31 1.045 5.53 1.96 2.76 3.38 0.84 3.21 1.16 2.12

DLATIIR 1.05 1.95 1.53 8.42 2.94 4.2 3.18 5.02 1.3 4.78 1.72

PARIIR 0.777 1.34 1.085 6.04 2.22 2.93 22.04 3.52 0.94 3.35 1.19

LADIIR 1.673 2.33 2.03 12.5 3.91 5.64 4.08 6.29 1.86 6.11 2.17
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Figure 17.   The graph of execution time of algorithms on multi-objective digit filters.

Figure 18.   The average values of the proposed algorithm on 14-multi-objective digital filters.
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Figure 19.   The standard deviation values of the proposed algorithm on 14-multi-objective digital filters.

Figure 20.   The pareto graph of algorithms on multi-objective DF-FIR, LATFIR and CASFIR digital filters.
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Figure 21.   The pareto graph of algorithms on multi-objective PARFIR, TDFFIR and DF1IIR digital filters.

Figure 22.   The pareto graph of algorithms on multi-objective TDF1IIR, TDF2IIR and DF2IIR digital filters.
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Figure 23.   The pareto graph of algorithms on multi-objective CASIIR, SLATIIR and DLATIIR digital filters.

Figure 24.   The pareto graph of algorithms on multi-objective PARIIR and LADIIR digital filters.
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Table 35.   Pareto front result for retimed filters using different evolutionary algorithm for benchmark circuit. 
[a] FRC: Feasible Register Count. [b] FCP: Feasible Clock Period.

Digital filters SChoA MFO PSO

F FRC FCP FRC FCP FRC FCP

DF-FIR 10 2 15 4 19 5

LATFIR 6 2 9 2 11 4

CASFIR 3 3 5 4 6 3

PARFIR 4 3 5 3 6 4

TDFFIR 3 2 3 3 4 3

DF1IIR 8 3 12 5 13 4

TDF1IIR 7 4 8 4 9 4

TDF2IIR 4 3 5 4 7 4

DF2IIR 7 4 8 4 8 4

CASIIR 3 2 4 3 4 3

SLATIIR 5 2 6 4 6 4

DLATIIR 6 3 10 5 10 5

PARIIR 3 2 4 2 5 3

LADIIR 11 5 15 5 18 5

Table 36.   Comparison of SChoA- based method with MFO-based, PSO-based on different structures of 
digital filters.

Digital filters SChoA MFO74 PSO75

F (-) Max. freq (MHz)
No. of slices 
utilized Max. freq (MHz)

No. of slices 
utilized Max. freq (MHz)

No. ofslices 
utilized

DF-FIR 160.78 27 156.9 41 136.4 67

LATFIR 180.48 54 179.1 64 143.8 88

CASFIR 117.183 124 106.9 174 115.4 193

PARFIR 115.76 84 115.34 109 97.34 166

TDFFIR 198.88 49 177.54 51 165.48 64

DF1IIR 73.2 63 48.19 80 63.45 86

TDF1IIR 84.116 48 84.11 63 83.11 85

TDF2IIR 75.48 28 56.48 32 55.78 64

DF2IIR 68.855 86 68.85 102 68.85 102

CASIIR 93.31 32 83.31 46 80.31 46

SLATIIR 93.375 64 54.95 75 51.28 73

DLATIIR 66.588 94 38.56 156 36.15 156

PARIIR 196.5 32 194.56 49 188.45 63

LADIIR 28.186 79 20.96 109 16.58 193
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Table 37.   Improvement of the SChoA-based method compared to MFO-based, PSO-based.

 % Performance improvement

Digital filters MUF Area

F MFO PSO MFO PSO

DF-FIR 26.7 38.13 34.15 59.7

LATFIR 21.05 25.51 15.63 38.64

CASFIR 22.63 11.18 28.74 35.75

PARFIR 21.05 18.92 22.94 49.4

TDFFIR 12.02 20.18 3.92 20.31

DF1IIR 25.79 15.37 21.25 26.74

TDF1IIR 23.59 15.05 23.81 43.53

TDF2IIR 33.64 35.32 12.5 56.25

DF2IIR 24.71 61.29 15.69 15.69

CASIIR 38.54 54.72 30.43 30.43

SLATIIR 43.76 52.37 14.67 12.33

DLATIIR 37.13 30.18 39.74 40.51

PARIIR 14.75 10.11 34.69 49.21

LADIIR 34.48 43.95 27.52 59.07

Table 38.   Comparison of execution time for the various benchmark circuit.

Digital filters

SChoA MFO Reduction PSO Reduction

Run time Run time (%) Run time (%)

DF-FIR 1.57 6.01 73 2.06 23

LATFIR 0.768 5.42 77 1.17 33

CASFIR 0.913 4.22 78 1.37 33

PARFIR 0.993 4.09 75 1.42 30

TDFFIR 0.568 2.71 75 0.92 36

DF1IIR 1.03 4.64 77 1.6 35

TDF1IIR 1.02 4.54 78 1.59 35

TDF2IIR 1.06 4.12 76 1.71 38

DF2IIR 1.09 4.36 79 1.59 45

CASIIR 0.55 2.73 78 0.91 39

SLATIIR 0.68 3.38 78 1.75 61

DLATIIR 1.05 4.98 78 1.73 39

PARIIR 0.77 3.5 78 1.19 35

LADIIR 1.65 6.3 76 2.17 23
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Figure 25.   The ARF data flow graph.

Table 39.   Experimental outcomes of methods on IIR DFG filter.

Modes Static

PSO MFO SChoA

Delay Area Power Delay Area Power Delay Area Power

w1 = 0.8 Mean 5 6442.88 7007.66 5 5891.2 6349.97 5 5489.3 6032.12

w2 = 0.1 sd 0 0.062 0.068 0 0.009 0.009 0 0.006 0.007

w3 = 0.1

w1 = 1 Mean 7.42 3199.68 3217.85 7.08 3074.88 3142.2 6.09 2711.43 3011.2

w2 = 0.8 sd 0.538 0.025 0.021 0.340 0.009 0.005 0.263 0.005 0.003

w3 = 0.1

w1 = 1 Mean 7.3 3210.24 3187.59 7.14 3089.28 3142.2 6.20 2756.09 3055.2

w2 = 0.1 sd 0.544 0.017 0.015 0.35 0.010 0.005 0.28 0.008 0.003

w3 = 0.8
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Table 40.   Experimental outcomes of methods on FIR DFG filter.

Modes Static

PSO MFO SChoA

Delay Area Power Delay Area Power Delay Area Power

w1 = 0.8 Mean 9.3 7855.04 8084.97 9.08 7143.04 7324.19 8.55 6345.09 7122.09

w2 = 0.1 sd 0.462 0.077 0.088 0.274 0.063 0.073 0.211 0.039 0.049

w3 = 0.1

w1 = 1 Mean 15 3742.72 3222.89 14.84 3549.12 3157.33 12.99 3410.67 3021.83

w2 = 0.8 sd 0.782 0.024 0.021 0.548 0.013 0.009 0.4154 0.010 0.006

w3 = 0.1

w1 = 1 Mean 15.16 3723.2 3152.29 15.08 3694.08 3142.2 12.08 3420.80 3027.2

w2 = 0.1 sd 0.618 0.001 0.008 0.274 0.01 0.005 0.201 0.001 0.003

w3 = 0.8

Table 41.   Experimental outcomes of methods on ARF DFG filter.

Modes Static

PSO MFO SChoA

Delay Area Power Delay Area Power Delay Area Power

w1 = 0.8 Mean 8.3 11,340.8 12,394.53 8.12 11,183.04 12,099.8 7.17 10,387.90 11,890.2

w2 = 0.1 sd 0.505 0.023 0.027 0.328 0.004 0.004 0.276 0.003 0.004

w3 = 0.1

w1 = 1 Mean 18.44 3627.2 3258.2 18.18 3543.04 3192.63 17.16 3412.90 3032.29

w2 = 0.8 sd 0.787 0.016 0.017 0.388 0.011 0.014 0.276 0.008 0.007

w3 = 0.1

w1 = 1 Mean 18.6 3688.32 3187.59 18.36 3575.04 3157.33 17.38 3489.10 3064.66

w2 = 0.1 sd 0.670 0.014 0.014 0.485 0.12 0.009 0.397 0.009 0.006

w3 = 0.8

Table 42.   Experimental outcomes of methods on EWF DFG filter.

Modes Static

PSO MFO SChoA

Delay Area Power Delay Area Power Delay Area Power

w1 = 0.8 Mean 14 6924.8 6702.99 14 6902.4 6677.78 14 6764.8 6489.65

w2 = 0.1 sd 0 0.006 0.007 0 0.007 0.008 0 0.003 0.004

w3 = 0.1

w1 = 1 Mean 22.76 4039.04 3388.73 24.62 3873.6 3217.85 23.16 3714.5 3176.02

w2 = 0.8 sd 5.057 0.043 0.057 4.347 0.016 0.021 4.098 0.012 0.017

w3 = 0.1

w1 = 1 Mean 24.46 4070.08 3323.16 24.74 3954.56 3182.55 23.43 3863.09 3049.12

w2 = 0.1 sd 3.95 0.043 0.057 3.433 0.15 0.013 3.09 0.009 0.014

w3 = 0.8
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Table 43.   Experimental outcomes of methods on BPF DFG filter.

Modes Static

PSO MFO SChoA

Delay Area Power Delay Area Power Delay Area Power

w1 = 0.8 Mean 8.22 6996.48 7203.75 8.02 6458.88 6584.18 6.57 6183.11 6209.32

w2 = 0.1 sd 0.545 0.062 0.069 0.141 0.021 0.022 0.67 0.013 0.014

w3 = 0.1

w1 = 1 Mean 15.94 3884.48 3333.84 17.04 3628.8 3217.85 16.57 3433.66 3100.2

w2 = 0.8 sd 3.449 0.033 0.027 4.035 0.02 0.016 2.908 0.01 0.007

w3 = 0.1

w1 = 1 Mean 17.42 3870.72 3263.24 17.48 3728.96 3197.68 16.06 3502.19 3001.20

w2 = 0.1 sd 3.038 0.025 0.025 2.894 0.28 0.014 2.139 0.018 0.008

w3 = 0.8

Table 44.   Experimental outcomes of methods on WDF DFG filter.

Modes Static

PSO MFO SChoA

Delay Area Power Delay Area Power Delay Area Power

w1 = 0.8 Mean 14.12 6904.64 6353.97 14.02 7040.96 6509.13 13.08 6998.34 6423.09

w2 = 0.1 sd 0.385 0.063 0.082 0.141 0.028 0.037 0.119 0.023 0.031

w3 = 0.1

w1 = 1 Mean 22.28 4310.08 3359.06 23.66 4184.32 3253.15 22.67 4034.09 3110.45

w2 = 0.8 sd 5.789 0.019 0.032 4.926 0.016 0.024 4.098 0.012 0.018

w3 = 0.1

w1 = 1 Mean 23.18 4342.72 3298.54 25.02 4257.28 3192.63 24.75 4211.02 3009.29

w2 = 0.1 sd 5.283 0.016 0.029 4.321 0.012 0.014 3.945 0.008 0.010

w3 = 0.8
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Figure 26.   The best outcomes for delay, occupied area and power in HLS of digital filter issues.
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