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Quality measures for fully 
automatic CT histogram‑based fat 
estimation on a corpse sample
Sebastian Schenkl 1,3, Michael Hubig 1,3*, Holger Muggenthaler 1, 
Jayant Subramaniam Shanmugam 1, Felix Güttler 2, Andreas Heinrich 2, Ulf Teichgräber 2 & 
Gita Mall 1

In a previous article a new algorithm for fully automatic ‘CT histogram based Fat Estimation and 
quasi-Segmentation’ (CFES) was validated on synthetic data, on a special CT phantom, and tested 
on one corpse. Usage of said data in FE-modelling for temperature-based death time estimation is 
the investigation’s number one long-term goal. The article presents CFES’s results on a human corpse 
sample of size R = 32, evaluating three different performance measures: the τ-value, measuring the 
ability to differentiate fat from muscle, the anatomical fat-muscle misclassification rate D, and the 
weighted distance S between the empirical and the theoretical grey-scale value histogram. CFES-
performance on the sample was: D = 3.6% for weight exponent α = 1, slightly higher for α ≥ 2 and much 
higher for α ≤ 0. Investigating τ, S and D on the sample revealed some unexpected results: While large 
values of τ imply small D-values, rising S implies falling D and there is a positive linear relationship 
between τ and S. The latter two findings seem to be counter-intuitive. Our Monte Carlo analysis 
detected a general umbrella type relation between τ and S, which seems to stem from a pivotal 
problem in fitting Normal mixture distributions.

Abbreviations
Mj	� Material with index j (1 ≤ j ≤ J)
Ξ	� Index for materials of interest: Ξ = F for ‘fat’ and Ξ = M for ‘muscle’
G	� {0, … ,N-1} set of the N possible grey-scale values in CT slice
G0	� Interval in G containing E0 = 0 HU and approximately all grey-scale values n in G indicating materials 

F or M
Q	� Number of pixels in CT slice
QΞ	� Number of pixels of material Ξ in CT slice
Q	� {1, … ,Q} : = {1, … , QF, QF + 1, … ,QM + QF} index set of all Q = QF + QM pixels in a slice. The values QΞ 

vary from slice to slice
QΞ	� {1, … ,QΞ} index set of Ξ-pixels in slice with number QΞ of Ξ-pixels after suitable renumbering with 

Ξ = F, M. The sets QΞ vary from slice to slice
Y	� (y1, … , yQ) Single CT slice with grey-scale values yq at the q = 1,…Q pixels in G
YΞ	� (yΞ1, … , yΞQ) partial CT slice of Ξ-pixels in slice Y
Ψ	� (Y1, … ,YR) sample of CT scans Yr of R bodies’ abdomina with r = 1, … , R
Yr	� (Yr,1, … , Yr,L(r)) sequence of slices Yr,l with l = 1, … , L(r) of abdominal scan Yr
Yr,l	� (Yr,l,1, … , yr,l,Q) sequence of pixel grey-scale values yr,l,q in G of slice Yr,l with q = 1, … , Q
YΛ,r	� Series (r = 1,…,R) of simulated CT slices: z = 0.5 <  =  > : Λ = A; z = 0.3 <  =  > : Λ = B
EΞ	� Expectation value of Ξ-pixel grey-scale value in one slice Yr,l
SΞ	� Standard deviation of Ξ-pixel grey-scale value in one slice Yr,l
z	� QF/Q ratio of fat pixels or fat ratio in one slice Yr,l
REz	� |z+  − z*|/z+ relative error of estimator z*
Θ	� (EF, EM, SF, SM, z) parameter vector of interest
Φ	� Φ(y,E,S) Normal distribution pdf evaluated at grey-scale value y in G with expectation value E and 

standard deviation S
fΞ	� fΞ(y,Θ) = Φ(y,EΞ,SΞ) grey-scale value pdf on G of material Ξ evaluated at grey-scale value y
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f	� f(y,Θ) = z fF(y,Θ) + (1-z) fM(y,Θ) overall grey-scale value pdf on G evaluated at grey-scale value y
X	� X(Y) = (x0(Y), … , xN-1(Y)) empirical grey-scale value histogram of slice Y
XΞ	� Partial histogram of material Ξ in slice with: X = XF + XM
X(Θ)	� Histogram computed by X(Θ) : = Q f(G ,Θ)
τ	� τ(Y) fat-muscle separability
S	� Sα(X(Y),X(Θ)) WLS distance between X(Y) and X(Θ) with weight exponent α
Ij	� Interval in G with: For all pixels indices q: Estimation of quasi-segmentation: Pixel q associated with 

material Mj <=> yq in Ij
aj	� Constant grey value associated with material Mj for quasi-segmentation
W(Y)	� Quasi-segmentation result for slice Y: Pixel image of same format as Y with: wq : = aj <=> yq in 

Ij <=> pixel in W(Y) with index q associated with material Mj
d	� dα(Y,W*(Y)) FM misclassification of slice Y (d = 0 correctly classified, d = 1 misclassified)
D	� Dα(Y,W*(Y)) mean FM misclassification over all slices Y of scan Y
F	� Fα(Ψ,W*(Ψ)) mean sample FM misclassification over all scans Y of sample Ψ
tFM	� Threshold fat/muscle in G
v	� CT slices’ voxel volume
ρΞ	� Mass density of material Ξ
mΞ	� V ρΞ QΞ mass of material Ξ

In forensic temperature based death time estimation (TDE) casework rectal temperature measurement is the 
method of choice, the geometry and material parameters of the measurement locus’s actual surrounding are 
important for modelling the cooling process. Its low conductivity (see e.g.1 Table 6.23) makes body fat quantity 
and localization a potentially important issue in modelling post mortem temperature decline. The Finite Ele-
ment Method (FEM) for TDE was developed to compute physics-based body core cooling. Using a CT scan to 
generate an FE mesh2,3 seems promising. One step is segmentation: matching a ‘material label’ to each of the 
CT scans pixels. The CT grey-scale values of body fat from muscle- and organ tissue are similar (see e.g.2,3), 
making segregating challenging. In4 we described an algorithm “CT histogram-based Fat Estimation and quasi-
Segmentation” (CFES) for fat—muscle segmentation which was applied to only one human corpse and validated 
against synthetic and CT phantom data. The actual paper now presents CFES results on a sample of R = 32 CT 
scans of human corpses.

All three quality measures used, the τ-value (signal theory based), the anatomical misclassification rate D, 
and the distance measure S applied to the grey-scale value histogram, depend on CFES’s weighting exponent α 
(see4) directly as S or indirectly, as τ and D do.

Methods
The study was reviewed and approved by the ethics committee of the University Hospital Jena. All of our 
experiments were performed in accordance with the relevant guidelines and regulations (see subsection ‘Ethics 
approval’ below).

Fat tissue (fat, abbreviated ‘F’) has an expectation value of the CT attenuation equivalent below the water 
value (0 HU), while the value of muscle-, organ-, and connective tissues (muscle or ‘M’) is slightly above 0 HU 
(see e.g.5).

We will use the assumption that to any pixel in every slice a material type Mi can be assigned unambiguously 
accepting a small amount of misclassification. The term FM frequency denotes the number of pixels of a fixed 
grey-scale value in a CT slice.

In statements, true for fat as well as for muscle, we write Ξ as a symbol to be substituted by the letter ‘F’ for fat 
or by an ‘M’ for muscle. For any finite set D the symbol #D means the number of elements in D. For any function 
f and any set B in the preimage of f, the term f(B) stands for the set of images f(b) of elements b in B. The asterisk 
‘*’ attached to a quantity-symbol means the estimated value of the quantity, whereas an attached cross ‘+’ means 
the true value of the indexed quantity. Generally symbols without ‘*’ or ‘+’ index are random variables. If depend-
ence of a random variable on the real number parameter α is emphasized, the variable is indexed by ‘α’. For any 
quantity U—which is interpreted as a random variable—and any set V in the image of U the symbol μV(U) stands 
for the mean of the quantity U, where the variation of U is bounded to the set V of possible U-values. For our 
list of symbols we assume for conciseness, that the slice contains fat and muscle pixel only. This is not the case in 
reality which is considered by constraining to the image parts where F and M are the only components. We use 
the abbreviations LS for Least Squares and WLS for Weighted Least Squares to specify estimation procedures.

For conciseness we will omit arguments or indices of quantity symbols if the omitted parts are unambigu-
ously clear from the context.

We suppose the random variables yq for q = 1, … , Q in a slice Y to be stochastically independent.
The problem of fat-muscle quasi-segmentation, called FM quasi-segmentation in the following, makes it nec-

essary to distinguish the partial histograms XF and XM of the grey-scale value histogram X(Y) of a slice Y. As XF 
and XM are connected to the grey-scale value distributions fF and fM which are amalgamated to f = z∙fF + (1 − z)∙fM 
we chose the approach to firstly estimate z, fF and fM from the data. This enables us to directly compute the pixel 
numbers QF and QM solving the additional problem of FM quantification. Moreover the FM quasi-segmentation 
problem can be solved via definition of a threshold tFM in the grey-scale value histogram segregating XF as effec-
tive as possible from XM.

For all computations we used the 8-bit CT image version resulting in N = 256 possible grey-scale values. 
Though this is a reduced grey-scale value resolution compared to the original 12-bit version, it yielded a better 
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filling of the histograms compartments. Since the images were of format 512 × 512 pixels, we had Q = 262,144 
pixels bearing grey-scale values for our histograms X(Y).

The signal‑to‑signal separation measure τ
The classical signal-to-noise ratio (SNR) (see e.g.6) in the field of digital image processing is usually defined as 
the quotient of the mean signal amplitude μ(signal) and the standard deviation of the noise σ(noise):

As the SNR was originally designed to quantify the detectability of a narrow signal peak in a broad band of 
noise in frequency domain, its concept has to be adapted to our detection scenario, where the separability of two 
distinctly narrow signals peaks has to be measured. We will define something like an analogon τ to the SNR for 
our FM separation problem. The measure τ will be referred to as a ‘signal-to-signal ratio’. The grey-scale value 
pdfs fΞ(y,Θ) of fat (Ξ = F) and muscle (Ξ = M) in a CT slice are Normal distributions Φ(y,EΞ,SΞ) (see6) in good 
approximation, completely determined by their moments EΞ, SΞ. Therefore we look for a separability measure τ 
depending on EΞ, SΞ. The separability τ should become better with growing distance of the maxima EF and EM. 
The τ value should be rising with falling widths SF and SM making the peaks in the grey value histogram sharper. 
Both effects lead to smaller overlap of fF and fM. The problem shows obvious parallels to the problem addressed 
by Welch’s t-test7. Thus the FM separability τ, as applied to a CT slice Y, is defined as:

Inserting the definition of the pixel numbers QF = z∙Q and QM = (1 − z)∙Q of the components F and M into 
(2 we yield:

Since there is no direct access to the actual values of the variables EF, EM, SF, SM, z one has to approximate them 
in formula (3) by using estimators EF*, EM*, SF*, SM*, z* instead, yielding an estimator τ* for τ.

The anatomical FM misclassification measure D
The quality of the quasi-segmentation result W*(Y) is determined by an informed observer, comparing 
W*(Y) to the single CT image Y. This is formalized by the function d(Y, W*(Y)), called the (single slice FM) 
misclassification:

Given a CT scan Y = {Y1, … , YL} of an human abdomen we define the (FM) misclassification rate D(Y, 
W*(Y)) as the mean of the single-slice FM misclassification:

The (sample FM) misclassification rate F(Ψ,W*(Ψ)) refers to a sample Ψ = {Y1, … , YR} of CT scans Yr of 
different human abdomina analogously:

The values d(Y, W*(Y)), D(Y, W*(Y)) and F(Ψ,W*(Ψ)) depend on the CFES’ parameter value α via W*(Y) 
of the scans Y in Ψ. If this fact will be emphasized in the following we will append an index α to the respective 
symbol, as in: W*α(Y), d(Y, W*α(Y)), D(Y, W*α(Y)), F(U, W*α(U)). If we talk generally about the influence of 
parameter α on FM misclassification, we use the symbols dα, Dα, Fα.

The weighted least squares distance Sα
The (WLS) distance Sα(X(Y), X(Θ)) of a slice Y with reference to a parameter vector Θ, which was used as tar-
get parameter for CFES’ nonlinear estimation process, can be thought of as another quality measure defined. 
It is computed from the empirical histogram X(Y) : = {x0(Y), … , xN-1(Y)} and the theoretical histogram X(Θ) 
: = {x0(Θ), … , xN-1(Θ)} as follows:

As a seemingly evident hypothesis we primarily assume:
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(S)	� For any CT slice Y: A small value of the distance Sα(X(Y), X(Θ)) between measured grey value histogram 
X(Y) and theoretical grey value histogram X(Θ) given an actual value of the parameter Θ, or a high value 
of the FM separability τα(Y), should lead to a good FM quantification in terms of a correctly estimated 
value of the FM proportion parameter z as well as to a good FM quasi-segmentation measured via the 
single-slice FM misclassification dα(Y,W*(Y)).

The minimisation of (7) as well as the formulae for the sensitivity analysis of the WLS approach are described 
in more detail in the supplementary information. There we derive the equations (S1.3) for small deviations of 
the WLS parameter estimation, the components of the Jacobi matrix (S2.1)–(S2.13), the components of the 
estimators covariance matrix (S3.3) and explain our assumption (S4.3) for the covariance matrix of the input, 
the grey-scale value histogram.

The sample of human body scan data
CFES was applied to CT scans of human abdomens. The abdomen’s upper and lower bounds were defined by 
anatomical landmarks: The central diaphragm region characterizes the upper scan limit, while the visible con-
junction of the upper part of os pubis (facies symphysialis) marks the lower limit.

After excluding three of the originally 35 corpses from the sample due to missing CT data or due to artefacts 
deteriorating the CT scan, the sample consisted of R = 32 human bodies of 11 female and 21 male subjects. The 
prosecution had levied on the bodies and ordered the CT scans as well as the autopsies. For every body age 
(mean = 57.41 y, stddev. = 20.22 y), body weight (mean = 71.37 kg, stddev. = 16.59 kg), body height (mean = 1.70 m, 
stddev. = 0.08 m) and body mass index (mean = 24.43 kg/m2, stddev. = 4.92 kg/m2) were registered.

For all of the scans Y a LightSpeedVCT (GE Medical Systems) was used with a filtered back projection recon-
struction, a ‘body’ filter type and with a spiral pitch factor of 0.984. Table 1 shows an overview of our scan’s CT 

Table 1.   CT parameter of the corpse sample (three of the originally 35 corpses excluded).

LFD Tube-voltage (kVp) Tube-current (mAs) Convolution kernel Spacing between slices (mm) Slice thickness (mm)

1 120 99 Standard 3.00 3.75

2 120 120 Standard 3.00 3.75

3 120 156 Standard 3.75 3.75

5 120 400 Standard 3.00 3.75

6 120 500 Standard 0.625 0.625

7 120 500 Standard 0.625 0.625

8 120 141 Bone 3.00 0.625

9 120 500 Standard 0.625 3.75

10 120 500 Standard 0.625 0.625

11 120 460 Standard 0.625 0.625

12 120 99 Standard 0.625 0.625

13 120 400 Standard 0.625 0.625

14 120 500 Bone Plus 0.625 0.625

15 120 99 Standard 0.625 0.625

17 120 500 Standard 0.625 0.625

18 120 490 Standard 0.625 0.625

19 120 500 Standard 0.625 0.625

20 120 500 Standard 0.625 0.625

21 140 445 Bone Plus 0.625 0.625

22 120 500 Standard 0.625 0.625

23 120 500 Standard 0.625 0.625

24 120 370 Standard 0.625 0.625

26 120 500 Standard 0.625 0.625

27 120 500 Standard 0.625 0.625

28 120 500 Standard 0.625 0.625

29 140 350 Standard 0.625 0.625

30 120 425 Standard 0.625 0.625

31 120 490 Standard 0.625 0.625

32 120 500 Standard 0.625 0.625

33 140 350 Standard 0.625 0.625

34 140 350 Standard 0.625 0.625

35 140 350 Standard 0.625 0.625
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parameter values. For our pixel-volume calculation the parameter ‘Spacing between slices’ (column 5 of Table 1), 
was relevant rather than the parameter ‘Slice Thickness’ (column 6 of Table1).

Former usage of study material
The CT-data and its CFES-evaluations were used in the thesis27 of Schenkl, who is the first author of the present 
article.

Ethics approval
The study was reviewed and approved by the ethics committee of the University Hospital Jena. According to the 
ethics committee’s statement written consents of the kinship for the abdominal CT slices shown in the article were 
not needed since the bodies were confiscated by the local prosecution who directed the CT scans for investiga-
tions. Moreover, the representations of the slices are totally anonymized.

Results
Quality parameters: single analysis.  Figure 1A presents misclassification rate Fα(Ψ,W*(Ψ)) as a func-
tion of α. The optimum exponent α = 1 with Fα = 0.036 = 3.6% is marked. Figure 1b is the a misclassification rate 
Dα histogram for α = 1.

Figure 1c, d show the mean separability μYr(τ*α)- and the mean μYr(lnSα) histogram respectively, taken over 
all CT slices Yr,l for an abdominal scan Yr for each one of the R bodies.

Quality parameters: multiple parameters analysis
In Fig. 2a a scatterplot of mean separability μYr(τα*) (X-axis) versus misclassification rate Dα (Y-axis is shown 
while Fig. 2b presents a scatterplot of the mean log minimal distance μYr(ln Sα) and misclassification rate Dα (for 
both α = 1). Figure 2c is a scatter plot of mean separability μYr(τ*α) (X-axis) and mean log WLS distance μYr(lnSα) 
(Y-axis) with α = 1 showing a distinctive linear relation (Linear regression analysis: R2 = 0.772, p < 0.001, slope 
a = 0.007 and intercept b = 20.145).

Figure 2d–f present an example slice with μYr(τα*) = 170.24/Dα = 4% with single-slice misclassification dα = 0 
but low mean separability τα* = 128.35 and middle-to-high log distance ln Sα = 23.38 for α = 1.

As slope a > 0 contradicts the naive intuition (S) (‘high separability τα causes low distance Sα’), we further 
studied the effect using simulated images.

Figure 1.   (a) Mean FM misclassification rate Fα for whole body CT sample Ψ as a function of weight exponent 
α. (b) Histogram of the FM misclassification rate Dα for α = 1. (c) Histogram of μYr(τ*α) with α = 1. (d) Histogram 
of μYr(ln Sα) for α = 1.
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Figure 2.   (a) Scatterplot: FM misclassification rate Dα and mean FM separability μYr(τα*) of all individual 
scans Yr in the sample Ψ for α = 1. Triangle inserted to show non-function type relation. (b) Scatterplot: FM 
misclassification rate Dα and mean log WLS distance μYr(ln Sα) of all individual scans Yr in sample Ψ for α = 1. 
(c) Scatterplot: mean log WLS distance μYr(ln Sα) and mean FM separability μYr(τ*α) of each individual scan Yr 
in the sample Ψ with α = 1. The drawn line represents a linear model fitted with by a least square approach. (d) 
Example slice from scan LFD_5: Original CT slice. (e) Example slice from scan LFD_5: Grey value histograms: 
measured: X (thin line), fitted: X(Θ) (fat line), partial fat: XF(Θ) (dotted line), partial muscle XM(Θ), fat vertical 
line: threshold tFM. (f) Example slice from scan LFD_5: Quasi segmented image (light grey: muscle, dark grey: 
fat, white boundary area: bones), the weight exponent was α = 1.
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Quality parameters: Monte Carlo analysis of mean log WLS distance μYr(ln Sα) 
and mean FM separability μYr(τα*)
We used two series YA,1, … ,YA,R and YB,1, … ,YB,R (R = 20) of simulated images (Fig. 3a,b) with EF = −80 HU, 
EM = 50 HU and S = SF = SM = 10 HU, 12 HU, 14 HU, 15 HU, 17 HU, 20 HU, 25 HU, 30 HU, 35 HU, 40 HU, 45 HU, 
55 HU, 60 HU, 70 HU, 80 HU, 90 HU, 100 HU, 150 HU, 200 HU, 250 HU. For series A and B respectively z was 
set z = 0.3 and z = 0.5. All images YA,r and YB,r were evaluated by CFES algorithm with α = 1. The true values and 
the estimated values of EF, EM, SF, SM, z, and the quality parameters ln Sα, the true and the estimated value of τα 
were recorded.

The τα
+ vs. τα*—scatterplots in Fig. 3c, d respectively represent the full sample YA,r (r = 1, … ,R) and the YA,r 

with τα
+-range of [0, 400] only.

Figure 4a is the scatterplot of ln Sα vs. τα over the YA,r—and the YB,r sample (A: z = 0.3: fat rings, B: z = 0.5: 
fat rectangles). The standard deviation value S labels every data point. A dashed rectangle marks the area × [0, 
700] × [20.5, 24.5] of Fig. 2c.

The center of Fig. 4b repeats Fig. 4a with associated histograms X (thin line), XΞ*(Θ) (dotted: Ξ = F, dashed: 
Ξ = M), X*(Θ) shown for the marks S = 12 HU, 25 HU, 40 HU, 60 HU, 100 HU.

Figure 4c investigates the ‘umbrella’ in Fig. 4a, b. It shows a 3-D scatterplot (YA,r or YB,r excluded if S ≤ 5 or 
S ≥ 100 or if REZ ≥ 0.2.) of separability τα*, logarithmic distance ln Sα and the relative error REZ =|z+  − z*|/z+ of 
z-estimation (Black filled bubbles = YA,r (z = 0.3), void bubbles = YB,r (z = 0.5)). The view is leading through the 
left and right front sides as well as through the top side of the cube.

Figure 4d presents the Gaussian estimation of our WLS estimation z*’s standard deviation S(z*) with α = 0, 
where WLS = LS and EF = −80 HU; EM = 50 HU, z = 0.3 (graph for z = 0.5 is nearly identical), S = SF = SM varied 
between S = 20 HU and S = 90 HU (Fig. 4d left) and with ΔE : = EM − EF between S = 20 HU and S = ΔE/2 = 130 HU 

Figure 3.   (a) Monte Carlo simulated CT image YA,r with components fat (dark grey), muscle (light grey), 
air (black). The true image parameters were: EF

+ = −80 HU, EM
+ = 50 HU, SF

+ = SM
+  = 70 HU, z+ = 0.3. (b) 

Grey-scale value histograms X (empirical), X(Θ) (fitted via CFES with α = 1), XF(Θ), XM(Θ) with: Thin line: 
measured, fat line: estimated, dotted: fat, dashed: muscle. (c and d) Scatterplots of mean true value μYA,r (τα

+) 
vs. mean estimated value μYA,r (τα*) with z = 0.3. (c) The diagrams containing all of the synthetic images YA,r 
generated. (d) Diagram as in the upper right part only diagrams YA,r were considered with standard deviations 
S = SF

+  = SM
+  ≥ 70 HU. The parameter S = SF

+  = SM
+ labels the data-points. The weight exponent α = 1 was used in 

Sα.
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respectively (Fig. 4d right). The curves in Fig. 4d were generated for α = 0, since this guarantees the weighting to 
be of no influence. The latter was preferable as for each of the values r = 1–3 the weight-matrix else would have 
been different for every two slices else, thus introducing noise in the evaluation.

General results
As examples of the CFES performance Fig. 5a,d,g,j show four slices Y, their grey-scale value histograms X(Y), 
X(Θ*), XF(Θ*), XM(Θ*) (Fig. 5b,e,h,k) and the respective quasi-segmentation results W*(Y) (Fig. 5c,f,i,l). Hori-
zontal image-line 1, 2, 3, 4 corresponds to LFD 06, 22, 24, 16 (see Table 1) respectively. While the first three slices 
(a), (d), (g) lead to acceptable results, slice (j) was added as a poor result caused by weak contrast and artefacts. 
LFD 16 was excluded from our statistical evaluations.

Figure 4.   (a) Scatterplot for the variables FM separability τα* and logarithm of weighted least squares sum ln 
Sα of the Monte Carlo images YA,r and YB,r with r = 1, … , 20 (where A: z = 0.3 and B: z = 0.5). The data-points 
are labelled with the number of their grey-scale value histograms true standard deviations S+  = SF

+  = SM
+. 

The dashed rectangle on the left side marks the τα* − ln Sα—area of the diagram in Fig. 2d. (b) In the middle: 
Scatterplot for the variables FM separability τα* and logarithm of weighted least squares sum ln Sα of the Monte 
Carlo images YA,r with r = 1, … , 20. The data-dots are labelled with the value of their grey-scale value histograms 
true standard deviations S+  = SF

+  = SM
+. Encircling the central scatterplot five empirical and estimated grey-scale 

value histograms X (thin, drawn), X(Θ) (fat, drawn), XF(Θ) (fat, dashed), XM(Θ) (fat, dotted) are presented, 
each is connected to its corresponding data-dot in the central scatterplot by a fat drawn pointer-line. (c) 3-D 
scatterplot of the variables FM separability estimator τα*, the logarithm of the weighted least squares distance 
ln Sα and relative error REz of the z-estimator for the image-series YA,r and YB,r with r = 1, … , R. Black bubbles 
: A: z = 0.3 void bubbles: B: z = 0.5. Images YA,r and YB,r were excluded if S ≤ 5 or S ≥ 100 as well as if REZ ≥ 0.2. 
The weighting exponent was set to α = 1. (d) Computed diagrams of the z-estimator’s standard deviation S(z*) 
as a function of the standard deviations S = SF = SM of the partial fat and muscle distributions in the scenario YA 
and YB with EF = −80 HU, EM = 50 HU, z = 0 and ranges 20 HU ≤ S ≤ 90 HU (A: left) and 20 HU ≤ S ≤ 130 HU (B: 
right). Note the different ranges on the ordinate. The graphs were generated with a true fat ratio value z+  = 0.3. 
However the choice of the true fat ratio value z+ had virtually no influence on the result when it was changed 
from z+  = 0.3 to z+  = 0.5. The weight exponent was chosen α = 0 which means z* is an LS-estimator rather than 
an WLS estimator as it is in the case α = 1.
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Discussion
General discussion.  The exponent α’s calibration in the paper4 yielded optimum values α = −1 for synthetic 
CT images and α = −1 for the real-world phantom. Application of CFES to our body CT scan sample Ψ and 
evaluating the misclassification rate Fα(Ψ, W*(Ψ)) leads to Fig. 1a. This indicates α = 1 to be the optimal parameter 
value with Fα = 3.6% for our body sample though the values for α = −1, α = 2 and α = 3 lie only slightly above: The 
Fα-values for α = −3, − 2, − 1 are Fα = 54%, 30%, 6% which is distinctively higher.

The three quality measures τα, Dα and Sα are a posteriori quantities. This is evident for Dα, and for Sα. Only 
for synthetic CT images the separability τα

+ could be determined in advance. τα can only be estimated from a 
priori parameter estimators as described in4. The parameter τα obtains its justification from analogies in signal 

Figure 5.   Four slices Y in (a), (d), (g), (j) from four different persons at different abdominal positions. 
Respective histograms with thin line = measured data X, thick line = fitted histogram X(Θ*) , partial histograms 
XF(Θ*), XM(Θ*) in (b), (e), (h), (k) and quasi-segmentation results W*(Y) in (c), (f), (i), (l). The parameter α was 
α = 1.
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processing and in statistics in contrast to the WLS difference Sα, whose minimality is necessary for estimating 
the parameter vector Θ. The misclassification rate Dα is relying on a priori expert knowledge.

Quality measures should quantify firstly the suitability of the input data (the separability of fat from muscle 
in a CT-image), secondly the efficacy of the segmentation (WLS fitting of the model X(Θ) to the histogram X 
and computation of the threshold tFM) and at last the correctness of the result (the anatomical correctness of FM 
segmentation). Our measures τα, Sα and Dα cover all three aspects: τα measures the shape of the X(Y) to quantify 
the CT-image Y’s suitability for CFES application, Sα judges the final ‘distance’ between X and X(Θ) only, while 
Dα evaluates W*(Y) without distinction of genesis.

In4 we gave a synopsis of tissue segmentation studies which we review in Table 2 for their quality measures.
Our choice of τα, Sα and Dα may be partly explained since we were not able to determine a gold standard as 

e.g. manual dissection. Sα as the minimized quantity of quasi-segmentation seems to be a natural choice. As 
we knew the single material grey-scale value pdf to be Gaußian, we did not want to use non-parametric fitting 
methods as e.g.8. Usage of τα was inspired by the t-test statistic, used for deciding whether two Gaußians have 
different expectation values. Moreover there are similarities of τα to the signal theoretic quantity of signal to 
noise ratio (SNR), quantifying the separability of two signals in frequency domain. Finally the misclassification 
rate Dα seemed to be a canonical choice for a measure of the pure CFES-output quality.

In the slice of Fig. 2d–f the dα implies good quality, whereas Sα indicates low quality, therefore we will investi-
gated in more detail the interrelations between the three quality measures. Yet for α-calibration there is no better 
parameter than Dα or Fα since the usage of Sα as a quality measure for fat quantification runs into problems we 
will discuss below.

As CT numbers generally depend on temperature (see26), the question arises whether the results presented 
are robust against sample temperature changes. The results in26, using conventional polychromatic 120kVp 
CT (CPI) (as well as virtual monoenergetic images by dual energy measurements (VMI) with 40kVp, 50 kVp, 
60 kVp, 70 kVp, 100 kVp, 120 kVp, 140 kVp), seem to give evidence to the hypothesis of robustness: The tem-
perature-changes in an interval of [10 °C, 60 °C] led to changes of [− 40 HU, − 80 HU] in the grey-level values 
for fat-substitute and of [50 HU, 60 HU] for muscle-substitute in CPI (see Fig. 5 in26) which lie in the range of 
inter-personal grey-level value variations of our study. Furthermore26 indicates that there is no influence of the 
convolution kernel chosen on the temperature dependence of the grey-level values (see Fig. 5 in26) for CPI. The 
paper26 implies possibilities for further research on quasi-segmentation e.g. by using VMI and/or temperature 
control for improving CFES-results.

Relations between the three quality measures
In Fig. 2a the sample’s location in the triangle tells us that high values of the μYr(τα*) seem to force low values 
on Dα (see (8A)), whereas high values of Dα constrain μYr(τα*) to low values (see (8B)). Nevertheless, there are 
abdominae with low values of Dα and of μYr(τα*) (see (8C)):

(8A)µYr

(

τ ∗α
)

↑=> Dα ↓

(8B)Dα ↑=> µYr

(

τ ∗α
)

↓

Table 2.   Studies in literature about CT fat segmentation: quality measures.

Author, year, citation Quality measure

Otsu8, 1979 Variance analysis inspired, threshold k optimization of η(k), η(k) : = VInterclass/VTotal of levels non-
parametric

Mitsopoulos9, 1998 Comparison to sliced cadavers, correlation analysis

Rogalla10, 1998 Comparison to phantom, standard error

Yoshizumi11, 1999 Comparison to cadavers, planimetry, correlation analysis

Glasbey12, 2002 Comparison to simulated CT images, RMSE, bias, std.deviation

Dobrowolsky13, 2004; Romvary14, 2006 Comparison to butchered pigs, fat-muscle ratio, linear regression

Pednekar15, 2005 Comparison to manual segmented images, true negative/positive pixels

Johansen16, 2007 Comparison to estimation on carcasses, linear regression

Kongsro17, 2008 Comparison to measurement results of manual dissections, linear regression

McEvoy18, 2008 Std. dev. of local maximum estimator in grey-scale value histogram

Oshima19, 2008 No measure published

McEvoy20, 2009 No measure published

Checchini21, 2011 Correlation analysis estimated fat volume vs. BMI

Kanaly22, 2011 Comparison to informed observers results

Subramaniam23, 2012 Lung tissue inhomogeneity measurement method, validated by distinguishability of end-inspira-
tion- and end-exspiration heterogeneity

Kim24, 2013 Comparison to dual-energy X-ray absorptiometry results, correlation analysis

Kullberg25, 2017 Comparison to manual CT-segmentation results, correlation analysis



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20147  | https://doi.org/10.1038/s41598-022-24358-4

www.nature.com/scientificreports/

While (8A) and (8B) match our intuition (S) about relations of the quality measures, the last vertex of the triangle 
[(8C): low μYr(τα*) and low Dα] seems to contradict them grossly at first sight. Note however, that the minimum 
value of μYr(τα*) for Dα = 0% is μYr(τα*) ≈ 200. A ‘linear approximation’ to the upper bound of the relation is for 
α = 1:

where the line A μYr(τα*) + B is estimated by connecting the two data-points (x0, y0) = (103.0 , 21.35%) for scan 
LFD_19 and (x1, y1) = (654.0, 0.0%) for scan LFD_23 by:

 

Figure 2d–f displays slice 119 of scan LFD_5 as an example of a slice Yr,l with low dα and with low τα* as well. 
This suggests the hypothesis of the threshold tFM to be robust against fluctuations of τα.

Figure 2b is a scatterplot of μYr(ln Sα) vs. Dα for α = 1. As in Fig. 2a we see a relation, not a functional graph 
but a ‘formed cloud’ filling one corner of the first quadrant. In analogy to Fig. 2a we see on Fig. 2b high values 
of μYr(ln Sα) seem to force low values of Dα [see (12A)], contradicting intuition (S), whereas high values of Dα 
constrain low values of μYr(ln Sα) [see (12B)] contradicting (S) as well. The third corner of the triangle meets 
intuition (S): low μYr(ln Sα) coincides with low Dα [see (12C)].

The upper boundary approximation line of the cloud is:

Estimating the line C μYr(ln Sα) + G by connecting the data-points (x0, y0) = (21.62 , 21.35%) (scan LFD_19) 
and (x1, y1) = (23.88, 5.6%) (scan LFD_27) gives:

Figure 2c is the scatterplot (α = 1) of μYr(ln Sα) vs. μYr(τα*). The distinct linear relationship with positive slope 
was significant in by linear regression analysis, which is a contradiction (16) to (S):

The deviations (8C), (12A), (12B), (16) from (S) were investigated, using the simulated CT images (YA,r)r=1,…,R 
and (YB,r)r=1,…,R (see Fig. 3a, b).

Figure 3c shows a scatterplot of τα
+ vs. τα* with ranges [0, 6000] on the X- and on the Y-axis for sample YA,r. 

The matching of τα
+ and τα* is almost perfect here, becoming slightly weaker in the region near (0,0). Zooming in 

on a range of [0, 400] for τα
+ we notice strong deviations of the estimator values τα* in Fig. 3d. Note that the range 

of our sample Ψ’s mean separabilities μYr(τα*) is [0, 600]: The correlation of τα
+ and τα* of our sample Ψ would 

have to be estimated from the zoomed in representation in Fig. 3d rather than from the diagram in Fig. 3c. The 
correlation of τα

+ and τα* refutes the objection to the positive correlation μYr(τ*α) − μYr(lnSα) in Fig. 2c: “Maybe 
there is a negative correlation in the analogous μYr(τ+

α) − μYr(lnSα) diagram, which cannot be detected as τ+
α is not 

accessible for our real-world-sample Ψ, but the μYr(τ*α) − μYr(lnSα) diagram shows a positive correlation caused by 
a flaw of CFES generating a locally negative correlation between τα

+ and τα*?” Despite the noise in Fig. 2c there 
is a distinctly positive relation, so the objection can be rejected.

The relations between τα* and ln Sα are demonstrated in Fig. 4a as scatterplot of τα* vs. ln Sα with α = 1 for 
the images YA,r (square marks). The partial graph over τα*-range [1150, 3000] corresponds with (S): Rising τα* is 
correlated with falling ln Sα and vice versa:

The curve in the range of [1150, 3000] is a function graph without random noise.
In the complementary partial graph over τα*-range [0, 1150] the curve is more noisy. Its tendency contradicts 

(S) since rising τα* coincides with rising ln Sα:

(8C)∃ : Dα ↓ ∧µYr

(

τ ∗α
)

↓

(9)0 ≤ Dα ≤ A · µYr

(

τ ∗α
)

+ B

(10)A∗ =
y1 − y0

x1 − x0
=

21.35%− 0.0%

103.0− 654.0
= −0.03875%

(11)B∗ = y1 − A∗ · x1 = 0.0+ 0.03875 · 654.0 = 25.3425%

(12A)µYr(ln Sα) ↑=> Dα ↓

(12B)Dα ↑=> µYr(ln Sα) ↓

(12C)∃ : µYr(ln Sα) ↓ ∧Dα ↓

(13)0 ≤ Dα ≤ C · µYr(lnSα)+ G

(14)C∗ =
y1 − y0

x1 − x0
=

5.6%− 21.35%

23.88− 21.62
= −6.97%

(15)G∗ = y1 − C∗ · x1 = 5.6%+ 6.97% · 23.88 = 172.0%

(16)µYr

(

τ ∗α
)

↑=> µYr(ln Sα) ↑

(17)∀τ ∗α ∈ [1150, 3000] :
(

τ ∗α ↑<=> ln Sα ↓
)
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The two τα*-ranges are associated to two ranges of S = SF = SM in the synthetic sample A: ‘τα* in [1150, 
3000]’ corresponds to ‘S in [10 HU, 25 HU] whereas ‘τα* in [0, 1150]’ is associated to S ≥ 25 HU. Though 
ΔE = EM − EF = EF

+  = 50 HU –(-80 HU) = 130 HU, even S = 25 HU means only a moderate grey-scale value dis-
tributions densities fM and fF overlap.

The area of the sample Ψ’s scatterplot μYr(τ*α) vs. μYr(lnSα) in Fig. 2c can be realized as the dashed rectangle 
in the τα* vs. ln Sα—scatterplot Fig. 4a: This area lies on the left side of [0, 1150] with trend (17) and comprises a 
vast variation of the ln Sα—values in the scatterplot of the synthetic samples A and B. The trend in Fig. 2c seems 
to be fairly linear despite varying fat-proportions z in the real-worlds CT scan sample Ψ. It does not depend on 
the fat-proportion z, since the umbrella-form with the fuzzy left end shows up in both plots of Fig. 4a. While the 
top of the umbrella at about τα* = 25 sank from ca. ln Sα = 25 to ca. ln Sα = 23.7 for z rising from z = 0.3 to 0.5, the 
maximum-location on the τα*-axis is nearly identical.

To see, how the overlap between z∙fF and (1 − z)∙fM of a slice is associated to its position on the umbrella, 
Fig. 4b shows the τα* vs. ln Sα scatterplot of (YA,r)r=0,…,R again. Additionally, we present five of the grey-scale 
value histograms X(Y), X(Θ), XF(Θ), XM(Θ) associated to the scatterplots data-points for the parameter values 
S = SF = SM = 12 HU, 25 HU, 60 HU, 100 HU, 150 HU. The umbrella’s top lies at S = 25 HU, and it is obvious, that 
the increasing overlap of the partial histograms XF(Θ) and XM(Θ) increasingly deteriorates z-estimation quality 
when moving from the right to the left side of the umbrella. The z-estimation quality can be recognized roughly 
from the overlap area under XF(Θ) and XM(Θ).

The importance of the umbrella—phenomenon can be demonstrated by relating it to the relative error REz 
: =|z* − z+|/z+ of our target variable z. In Fig. 4c, a 3-D scatterplot of τα* vs. ln Sα vs. REz for (YA,r)r=1,…,R (black 
bubbles) and (YA,r)r=1,…,R (white bubbles) with the additional constraints: 5 HU ≤ S ≤ 100 HU and REz < 0.2 is 
shown. It demonstrates the abrupt strong rising of the error REz in the target variable z* if the data points leave 
the right side of the ‘umbrella’ in Fig. 4a (which can be found projected on the bottom of the coordinate cube in 
Fig. 4c as well) and proceed to the left side.

As reason for the umbrella form of the τα* vs. ln Sα scatterplot (Fig. 4a), for the fuzziness and for the rise of 
the relative error REz on the left side of the umbrella (in Fig. 4c), a sort of pseudo-overfitting of the model f(y,Θ) 
can be hypothesized. While the well-known effect of overfitting is associated to using a model with too many 
parameters, our self-coined term ‘pseudo-overfitting’ means usage of a model with the correct number of param-
eters (in our case: 5 parameters: EF, EM, SF, SM, z) if the model is a mixture of distributions of the same type (in 
our case: the normal distribution mixture f(g,Θ) = z fF(g,Θ) + (1 − z) fM(g,Θ) ) and with an empirical distribution 
geometrically similar to a (mixture of less) distribution(s) of the same type (in our case: X(Y) seems to consist of 
only one normal distribution like in Fig. 4b the grey value distribution for S = 150 HU). Here we have to take into 
account similar effects as those caused by classical overfitting: The fitting process uses the seemingly redundant 
parameters to model some of the apparently random deviations, which leads to virtually getting ‘better’ results 
in terms of Sα though the separability τα decreases (see Figs. 2c and 4a). Associated with smaller values of Sα and 
τα one notes a dramatic loss in the estimators z*’s exactness which was measured by the relative error REz of the 
z-estimator z* (see Fig. 4d).

A principal constraint in fitting Gaußian mixtures
A large proportion of the problems reported in 4.1 and 4.2 seems to come from a principal difficulty in fitting 
Gaußian mixtures as we did for estimating the parameter vector Θ: The grey value histogram X(Y) of a CT slice Y 
containing fat- and muscle components only was assumed to be a mixture of the Gaußian components XF and XM 
for fat F and muscle M respectively. Figure 4d demonstrates an exponential growth of the z-estimator’s standard 
deviation S(z*) for linearly increasing standard deviation S = SF = SM of the F- and the of the M-component. This 
is made plausible by comparing the graph on the left side of Fig. 4 (lower right part) (z = 0.5, 20 HU ≤ S ≤ 90 HU) 
to the graph on the right side (z = 0.5, 20 HU ≤ S ≤ 130 HU): though the curve seems to be geometrically identical, 
the ordinates range has grown by a factor of order 20 while the domain was enlarged from [20 HU, 90 HU] to [20 
HU, 130 HU] only. This effect does not depend on the actual value of z: The shown graphs with a true parameter 
value of z = 0.3 are virtually indistinguishable from analogous ones–which therefore are not shown here—with 
true parameter value z = 0.5. The computation results presented in Fig. 4d strikingly demonstrate the fact that the 
exactness S(z*) of z-estimation is rapidly deteriorating with increasing overlap of the single-material—normal 
distributions in the grey-scale value histogram. Given a distance of ΔE = EM − EF = 50 HU − (− 80 HU) = 130 HU 
between the maxima in the histogram, a value of S = SF = SM ≥ 60 HU leads to an approximate z-estimator standard 
deviation S(z*) ≥ 0.1 while S ≥ 90 HU causes S(z*) ≥ 1.0. Note that z is a ratio from the interval [0, 1] which makes 
an estimator z* with S(z*) ≥ 1 nearly useless.

The difficulty in fitting Gaussian mixtures discussed above and particularly the swiftly growing standard devia-
tion S(z*) of the z-estimator with rising standard deviation of SF = SM seems to be no consequence of our special 
fitting algorithm WLS chosen: Due to the high number of pixels in a CT slice it is possible to apply asymptotic 
propositions to the probability distribution of the estimator. Jennrich28 shows, that if the data’s (in our case the 
grey-value histogram X) probability distribution lies in the exponential family (the multinomial distribution of 
our case belongs to this family) the Fisher Scoring algorithm for iteratively finding the Maximum Likelihood 
Estimator (MLE) value is identical to the Gauss–Newton algorithm which iteratively detects the Non-linear 
Least Squares estimator’s (NLLS) value, which is detected by CFES as well. Hence the probability distribution of 
z* computed here via CFES (NLLS estimation respectively) is nearly identical to the distribution of the MLE of 
z which asymptotically is the most effective estimator (see29,30), at least in case α = 0.

(18)∀τ ∗α ∈ [0, 1150] :
(

τ ∗α ↑<=> ln Sα ↑
)
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Note further that the standard deviation S(z*)’s rapid rising with growing overlap between HF and HM are 
not reported in the fat segmentation literature (see8–25) except maybe hinted in8.

A practical consequence of this issue will be to choose CT parameter values minimizing the single-material 
distribution standard deviations SF and SM.

Data availability
The datasets analysed during the current study are not publicly available since they consist of individual CT-scans. 
Each single slice is linked to a DICOM-file containing experiment parameter data and sensible case information. 
The DICOM-files are essential for the computations. The bodies were confiscated by the local prosecution who 
directed the CT scans for investigations.
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