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Quality measures for fully
automatic CT histogram-based fat
estimation on a corpse sample

Sebastian Schenkl*3, Michael Hubig®3*, Holger Muggenthaler?,
Jayant Subramaniam Shanmugam?, Felix Gittler?, Andreas Heinrich?, Ulf Teichgréber? &
Gita Mall*

In a previous article a new algorithm for fully automatic ‘CT histogram based Fat Estimation and
quasi-Segmentation’ (CFES) was validated on synthetic data, on a special CT phantom, and tested

on one corpse. Usage of said data in FE-modelling for temperature-based death time estimation is
the investigation’s number one long-term goal. The article presents CFES’s results on a human corpse
sample of size R =32, evaluating three different performance measures: the t-value, measuring the
ability to differentiate fat from muscle, the anatomical fat-muscle misclassification rate D, and the
weighted distance S between the empirical and the theoretical grey-scale value histogram. CFES-
performance on the sample was: D =3.6% for weight exponent a =1, slightly higher for «a =2 and much
higher for a < 0. Investigating T, S and D on the sample revealed some unexpected results: While large
values of Timply small D-values, rising S implies falling D and there is a positive linear relationship
between T and S. The latter two findings seem to be counter-intuitive. Our Monte Carlo analysis
detected a general umbrella type relation between t and S, which seems to stem from a pivotal
problem in fitting Normal mixture distributions.

Abbreviations

M Material with index j (1<j<]J)

=) Index for materials of interest: E=F for ‘fat’ and £ =M for ‘muscle’

G {0, ... ,N-1} set of the N possible grey-scale values in CT slice

G Interval in G containing E,=0 HU and approximately all grey-scale values n in G indicating materials
ForM

Q Number of pixels in CT slice

Qs Number of pixels of material & in CT slice

Q {L,....Q}:=1{1,...,Qp Qp+1, ... ,Qy+ Qp} index set of all Q= Qp+ Q) pixels in a slice. The values Qg
vary from slice to slice

Qs {1, ... ,Qg} index set of E-pixels in slice with number Qg of E-pixels after suitable renumbering with
2=F M. The sets Qg vary from slice to slice

Y (Y1 - » Yo) Single CT slice with grey-scale values y, at the q=1,...Q pixels in G

Yz (Yais --- » Yzq) partial CT slice of E-pixels in slice Y

v (Y,, ... ,Yg) sample of CT scans Y, of R bodies’ abdomina withr=1, ... ,R

Y, (Yy1 - » Yo () sequence of slices Y,; with1=1, ..., L(r) of abdominal scan Y,

Y, (Y110 -+ > Yr1) sequence of pixel grey-scale values y,  in G of slice Y,; with =1, ..., Q

Yo, Series (r=1,...,R) of simulated CT slices: z=0.5<=>: A=A;z=0.3<=>:A=B

Eg Expectation value of Z-pixel grey-scale value in one slice Y;;

Se Standard deviation of E-pixel grey-scale value in one slice Y,

z Qy/Q ratio of fat pixels or fat ratio in one slice Y,

RE, |z* —z*|/z* relative error of estimator z*

(€] (Ep Eps Sp Sy 2) parameter vector of interest

o] ®(y,E,S) Normal distribution pdf evaluated at grey-scale value y in G with expectation value E and
standard deviation S

fz fz(y,0) = O(y,Ez,Sg) grey-scale value pdf on G of material E evaluated at grey-scale value y
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f(y,0) =z fx(y,0) + (1-z) fy,(v,®) overall grey-scale value pdf on G evaluated at grey-scale value y
X(Y) = (x0(Y), ... , xx.1(Y)) empirical grey-scale value histogram of slice Y

s Partial histogram of material £ in slice with: X =Xg + Xy

(®) Histogram computed by X(®) :=Q f(G,0)
7(Y) fat-muscle separability
S.(X(Y),X(®)) WLS distance between X(Y) and X(®) with weight exponent a
Interval in G with: For all pixels indices q: Estimation of quasi-segmentation: Pixel q associated with
material Mj<=>y, in

3 Constant grey value associated with material M; for quasi-segmentation

W(Y) Quasi-segmentation result for slice Y: Pixel image of same format as Y with: w, :=a;<=>y, in

[;<=>pixel in W(Y) with index q associated with material M,

d d. (Y, W*(Y)) FM misclassification of slice Y (d =0 correctly classified, d =1 misclassified)

D D, (Y, W*(Y)) mean FM misclassification over all slices Y of scan Y

F F.(¥,W*(¥)) mean sample FM misclassification over all scans Y of sample ¥

tem Threshold fat/muscle in G

v CT slices’ voxel volume

Ps Mass density of material 2

mg V ps Qg mass of material £

In forensic temperature based death time estimation (TDE) casework rectal temperature measurement is the
method of choice, the geometry and material parameters of the measurement locus’s actual surrounding are
important for modelling the cooling process. Its low conductivity (see e.g.! Table 6.23) makes body fat quantity
and localization a potentially important issue in modelling post mortem temperature decline. The Finite Ele-
ment Method (FEM) for TDE was developed to compute physics-based body core cooling. Using a CT scan to
generate an FE mesh?’ seems promising. One step is segmentation: matching a ‘material label’ to each of the
CT scans pixels. The CT grey-scale values of body fat from muscle- and organ tissue are similar (see e.g.>?),
making segregating challenging. In* we described an algorithm “CT histogram-based Fat Estimation and quasi-
Segmentation” (CFES) for fat—muscle segmentation which was applied to only one human corpse and validated
against synthetic and CT phantom data. The actual paper now presents CFES results on a sample of R=32 CT
scans of human corpses.

All three quality measures used, the t-value (signal theory based), the anatomical misclassification rate D,
and the distance measure S applied to the grey-scale value histogram, depend on CFES’s weighting exponent a
(see?) directly as S or indirectly, as T and D do.

Methods

The study was reviewed and approved by the ethics committee of the University Hospital Jena. All of our
experiments were performed in accordance with the relevant guidelines and regulations (see subsection ‘Ethics
approval’ below).

Fat tissue (fat, abbreviated ‘F’) has an expectation value of the CT attenuation equivalent below the water
value (0 HU), while the value of muscle-, organ-, and connective tissues (tmuscle or ‘M’) is slightly above 0 HU
(see e.g.”).

We will use the assumption that to any pixel in every slice a material type M; can be assigned unambiguously
accepting a small amount of misclassification. The term FM frequency denotes the number of pixels of a fixed
grey-scale value in a CT slice.

In statements, true for fat as well as for muscle, we write E as a symbol to be substituted by the letter ‘F’ for fat
or by an ‘M’ for muscle. For any finite set D the symbol #D means the number of elements in D. For any function
fand any set B in the preimage of f, the term f(B) stands for the set of images f(b) of elements b in B. The asterisk
* attached to a quantity-symbol means the estimated value of the quantity, whereas an attached cross ‘+’ means
the true value of the indexed quantity. Generally symbols without *’ or ‘+” index are random variables. If depend-
ence of a random variable on the real number parameter a is emphasized, the variable is indexed by ;> For any
quantity U—which is interpreted as a random variable—and any set V in the image of U the symbol 1y,(U) stands
for the mean of the quantity U, where the variation of U is bounded to the set V of possible U-values. For our
list of symbols we assume for conciseness, that the slice contains fat and muscle pixel only. This is not the case in
reality which is considered by constraining to the image parts where F and M are the only components. We use
the abbreviations LS for Least Squares and WLS for Weighted Least Squares to specify estimation procedures.

For conciseness we will omit arguments or indices of quantity symbols if the omitted parts are unambigu-
ously clear from the context.

We suppose the random variables y, for =1, ..., Q in a slice Y to be stochastically independent.

The problem of fat-muscle quasi-segmentation, called FM quasi-segmentation in the following, makes it nec-
essary to distinguish the partial histograms X; and X of the grey-scale value histogram X(Y) of a slice Y. As Xy
and Xy, are connected to the grey-scale value distributions f; and fy; which are amalgamated to f=z-fy + (1 - z)-fyy
we chose the approach to firstly estimate z, f; and f; from the data. This enables us to directly compute the pixel
numbers Qg and Qy; solving the additional problem of FM quantification. Moreover the FM quasi-segmentation
problem can be solved via definition of a threshold tg in the grey-scale value histogram segregating X as effec-
tive as possible from X,

For all computations we used the 8-bit CT image version resulting in N'=256 possible grey-scale values.
Though this is a reduced grey-scale value resolution compared to the original 12-bit version, it yielded a better
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filling of the histograms compartments. Since the images were of format 512 x 512 pixels, we had Q=262,144
pixels bearing grey-scale values for our histograms X(Y).

The signal-to-signal separation measure t
The classical signal-to-noise ratio (SNR) (see e.g.%) in the field of digital image processing is usually defined as
the quotient of the mean signal amplitude p(signal) and the standard deviation of the noise o(noise):

1 (signal)
o (noise)

SNR:= 1)

As the SNR was originally designed to quantify the detectability of a narrow signal peak in a broad band of
noise in frequency domain, its concept has to be adapted to our detection scenario, where the separability of two
distinctly narrow signals peaks has to be measured. We will define something like an analogon t to the SNR for
our FM separation problem. The measure T will be referred to as a ‘signal-to-signal ratio’. The grey-scale value
pdfs f(y,®) of fat (E=F) and muscle (E=M) in a CT slice are Normal distributions ®(y,Ez,Sz) (see®) in good
approximation, completely determined by their moments Eg, Sz. Therefore we look for a separability measure t
depending on Eg, Sz. The separability T should become better with growing distance of the maxima Ey and E,,.
The t value should be rising with falling widths Sy and Sy; making the peaks in the grey value histogram sharper.
Both effects lead to smaller overlap of f; and f,. The problem shows obvious parallels to the problem addressed
by Welch’s t-test’. Thus the FM separability T, as applied to a CT slice Y, is defined as:

Ey — Ep
/1 1 2 (2)
@SM + @SF

Inserting the definition of the pixel numbers Qr=2z-Q and Qy=(1 — z)-Q of the components F and M into
(2 we yield:

oY) =

-(EF — E
r(y)zﬁ (EF SzM) o

Since there is no direct access to the actual values of the variables Eg, Ey, Sg, Syp» z one has to approximate them
in formula (3) by using estimators Ep*, Ey*, Sp*, S\ *, z* instead, yielding an estimator t* for t.

The anatomical FM misclassification measure D

The quality of the quasi-segmentation result W*(Y) is determined by an informed observer, comparing
WH*(Y) to the single CT image Y. This is formalized by the function d(Y, W*(Y)), called the (single slice FM)
misclassification:

No anatomical error detected comparing Y to W* (Y)

0
* o .
d(y,w (Y))‘_{ 1 if Anatomical error detected comparing Y to W* (Y) )

Given a CT scan Y={Y,, ..., Y;} of an human abdomen we define the (FM) misclassification rate D(Y,
W*(Y)) as the mean of the single-slice FM misclassification:

1 1
D(Y, W) =py (d(Y, W (1)) = 2 > d(Y, W (V) = 2 > d(Y, W*(V)) )
— YeY YeY

The (sample FM) misclassification rate F(¥,W*(¥)) refers to a sample ¥ ={Y,, ... , Y} of CT scans Y, of
different human abdomina analogously:

1 1
F(W, W) =y (D(Y, WD) = 25 > DL, WD) = & > D(Y, WD) 6)

Yew Yew

The values d(Y, W*(Y)), D(Y, W*(Y)) and F(¥,W*(¥)) depend on the CFES’ parameter value a via W*(Y)
of the scans Y in V. If this fact will be emphasized in the following we will append an index a to the respective
symbol, as in: W* (Y), d(Y, W*,(Y)), D(Y, W*,(Y)), F(U, W*,(U)). If we talk generally about the influence of
parameter a on FM misclassification, we use the symbols d,, D, F,.

The weighted least squares distance S,

The (WLS) distance S (X(Y), X(©)) of a slice Y with reference to a parameter vector ®, which was used as tar-
get parameter for CFES’ nonlinear estimation process, can be thought of as another quality measure defined.
It is computed from the empirical histogram X(Y) :={x,(Y), ... , xn.1(Y)} and the theoretical histogram X(®)
:={x((®), ..., Xx.1(©)} as follows:

S (X(Y), X(©)):= Z (n(Y) = 22(©))* - (V)"

nEG()

(7)

As a seemingly evident hypothesis we primarily assume:
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LFD Tube-voltage (kVp) | Tube-current (mAs) | Convolution kernel | Spacing between slices (mm) | Slice thickness (mm)
1 120 99 Standard 3.00 3.75
2 120 120 Standard 3.00 3.75
3 120 156 Standard 3.75 3.75
5 120 400 Standard 3.00 3.75
6 120 500 Standard 0.625 0.625
7 120 500 Standard 0.625 0.625
8 120 141 Bone 3.00 0.625
9 120 500 Standard 0.625 3.75
10 120 500 Standard 0.625 0.625
11 120 460 Standard 0.625 0.625
12 120 99 Standard 0.625 0.625
13 120 400 Standard 0.625 0.625
14 120 500 Bone Plus 0.625 0.625
15 120 99 Standard 0.625 0.625
17 120 500 Standard 0.625 0.625
18 120 490 Standard 0.625 0.625
19 120 500 Standard 0.625 0.625
20 120 500 Standard 0.625 0.625
21 140 445 Bone Plus 0.625 0.625
22 120 500 Standard 0.625 0.625
23 120 500 Standard 0.625 0.625
24 120 370 Standard 0.625 0.625
26 120 500 Standard 0.625 0.625
27 120 500 Standard 0.625 0.625
28 120 500 Standard 0.625 0.625
29 140 350 Standard 0.625 0.625
30 120 425 Standard 0.625 0.625
31 120 490 Standard 0.625 0.625
32 120 500 Standard 0.625 0.625
33 140 350 Standard 0.625 0.625
34 140 350 Standard 0.625 0.625
35 140 350 Standard 0.625 0.625

Table 1. CT parameter of the corpse sample (three of the originally 35 corpses excluded).

(S) For any CT slice Y: A small value of the distance S,(X(Y), X(®)) between measured grey value histogram
X(Y) and theoretical grey value histogram X(®) given an actual value of the parameter ®, or a high value
of the FM separability t,(Y), should lead to a good FM quantification in terms of a correctly estimated
value of the FM proportion parameter z as well as to a good FM quasi-segmentation measured via the
single-slice FM misclassification d,(Y,W*(Y)).

The minimisation of (7) as well as the formulae for the sensitivity analysis of the WLS approach are described
in more detail in the supplementary information. There we derive the equations (S1.3) for small deviations of
the WLS parameter estimation, the components of the Jacobi matrix (52.1)-(S2.13), the components of the
estimators covariance matrix (S3.3) and explain our assumption (S4.3) for the covariance matrix of the input,
the grey-scale value histogram.

The sample of human body scan data

CFES was applied to CT scans of human abdomens. The abdomen’s upper and lower bounds were defined by
anatomical landmarks: The central diaphragm region characterizes the upper scan limit, while the visible con-
junction of the upper part of os pubis (facies symphysialis) marks the lower limit.

After excluding three of the originally 35 corpses from the sample due to missing CT data or due to artefacts
deteriorating the CT scan, the sample consisted of R=32 human bodies of 11 female and 21 male subjects. The
prosecution had levied on the bodies and ordered the CT scans as well as the autopsies. For every body age
(mean=57.41y, stddev.=20.22 y), body weight (mean =71.37 kg, stddev.=16.59 kg), body height (mean=1.70 m,
stddev.=0.08 m) and body mass index (mean =24.43 kg/m?, stddev. =4.92 kg/m?) were registered.

For all of the scans Y a LightSpeedVCT (GE Medical Systems) was used with a filtered back projection recon-
struction, a ‘body’ filter type and with a spiral pitch factor of 0.984. Table 1 shows an overview of our scan’s CT
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Figure 1. (a) Mean FM misclassification rate F, for whole body CT sample ¥ as a function of weight exponent
a. (b) Histogram of the FM misclassification rate D, for a=1. (c) Histogram of py,(t*,) with a=1. (d) Histogram
of puy(In S,) for a=1.

parameter values. For our pixel-volume calculation the parameter ‘Spacing between slices’ (column 5 of Table 1),
was relevant rather than the parameter ‘Slice Thickness’ (column 6 of Tablel).

Former usage of study material
The CT-data and its CFES-evaluations were used in the thesis?” of Schenkl, who is the first author of the present
article.

Ethics approval

The study was reviewed and approved by the ethics committee of the University Hospital Jena. According to the
ethics committee’s statement written consents of the kinship for the abdominal CT slices shown in the article were
not needed since the bodies were confiscated by the local prosecution who directed the CT scans for investiga-
tions. Moreover, the representations of the slices are totally anonymized.

Results
Quality parameters: single analysis. Figure 1A presents misclassification rate F,(¥,W*(¥)) as a func-
tion of a. The optimum exponent a =1 with F,=0.036=3.6% is marked. Figure 1b is the a misclassification rate
D, histogram for a=1.

Figure 1c, d show the mean separability py,(1*,)- and the mean py,(InS,) histogram respectively, taken over
all CT slices Y, for an abdominal scan Y, for each one of the R bodies.

Quality parameters: multiple parameters analysis
In Fig. 2a a scatterplot of mean separability py,(t,*) (X-axis) versus misclassification rate D, (Y-axis is shown
while Fig. 2b presents a scatterplot of the mean log minimal distance py,(In S,) and misclassification rate D, (for
both a=1). Figure 2c is a scatter plot of mean separability p1y,(1*,) (X-axis) and mean log WLS distance iy, (InS,)
(Y-axis) with a=1 showing a distinctive linear relation (Linear regression analysis: R*=0.772, p <0.001, slope
a=0.007 and intercept b=20.145).

Figure 2d-f present an example slice with py,(t,*) = 170.24/D, = 4% with single-slice misclassification d,=0
but low mean separability t,* = 128.35 and middle-to-high log distance In S, =23.38 for a=1.

As slope a> 0 contradicts the naive intuition (S) (‘high separability t, causes low distance S.’), we further
studied the effect using simulated images.
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Figure 2. (a) Scatterplot: FM misclassification rate D, and mean FM separability uy,(t,*) of all individual
scans Y, in the sample ¥ for a=1. Triangle inserted to show non-function type relation. (b) Scatterplot: FM
misclassification rate D, and mean log WLS distance piy,(In S,) of all individual scans Y, in sample ¥ for a=1.
(c) Scatterplot: mean log WLS distance py,(In S,) and mean FM separability py,(t*,) of each individual scan Y,
in the sample ¥ with a=1. The drawn line represents a linear model fitted with by a least square approach. (d)
Example slice from scan LFD_5: Original CT slice. (e) Example slice from scan LFD_5: Grey value histograms:
measured: X (thin line), fitted: X(®) (fat line), partial fat: Xy(®) (dotted line), partial muscle X,,(®), fat vertical
line: threshold tgy. (f) Example slice from scan LFD_5: Quasi segmented image (light grey: muscle, dark grey:
fat, white boundary area: bones), the weight exponent was a=1.
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Figure 3. (a) Monte Carlo simulated CT image Y, , with components fat (dark grey), muscle (light grey),

air (black). The true image parameters were: E;*=—80 HU, E\;* =50 HU, S;*=S,;* =70 HU, z*=0.3. (b)
Grey-scale value histograms X (empirical), X(®) (fitted via CFES with a=1), X(0®), Xy,(®) with: Thin line:
measured, fat line: estimated, dotted: fat, dashed: muscle. (c and d) Scatterplots of mean true value py, , (t,")

vs. mean estimated value iy, , (1,*) with z=0.3. (c) The diagrams containing all of the synthetic images Y, ,
generated. (d) Diagram as in the upper right part only diagrams Y, . were considered with standard deviations
S=8¢" =Sy* 270 HU. The parameter S=S;* =S,," labels the data-points. The weight exponent a=1 was used in
S...

Quality parameters: Monte Carlo analysis of mean log WLS distance p,(In S,)

and mean FM separability py,(t,*)

We used two series Yy 1, ... ,Yap and Yy, ... ,Ypr (R=20) of simulated images (Fig. 3a,b) with E;=-80 HU,
Ey=50HU and S=S;=S,,=10 HU, 12 HU, 14 HU, 15 HU, 17 HU, 20 HU, 25 HU, 30 HU, 35 HU, 40 HU, 45 HU,
55 HU, 60 HU, 70 HU, 80 HU, 90 HU, 100 HU, 150 HU, 200 HU, 250 HU. For series A and B respectively z was
setz=0.3 and z=0.5. All images Y, , and Y, were evaluated by CFES algorithm with a=1. The true values and
the estimated values of Eg, Ey;, S, Sy 2, and the quality parameters In S, the true and the estimated value of T,
were recorded.

The t," vs. T,*—scatterplots in Fig. 3¢, d respectively represent the full sample Y, , (r=1, ... ,R) and the Y, ,
with t,*-range of [0, 400] only.

Figure 4a is the scatterplot of In S, vs. T, over the Y, .—and the Yy, sample (A: z=0.3: fat rings, B: z=0.5:
fat rectangles). The standard deviation value S labels every data point. A dashed rectangle marks the area x [0,
700] x [20.5, 24.5] of Fig. 2c.

The center of Fig. 4b repeats Fig. 4a with associated histograms X (thin line), Xz*(®) (dotted: E=F, dashed:
E=M), X*(®) shown for the marks S=12 HU, 25 HU, 40 HU, 60 HU, 100 HU.

Figure 4c investigates the ‘umbrella’ in Fig. 4a, b. It shows a 3-D scatterplot (Y, , or Yg, excluded if S<5 or
$2100 or if RE;>0.2.) of separability t,*, logarithmic distance In S, and the relative error RE, =|z* —z*|/z* of
z-estimation (Black filled bubbles =Y, , (z=0.3), void bubbles =Yy, (z=0.5)). The view is leading through the
left and right front sides as well as through the top side of the cube.

Figure 4d presents the Gaussian estimation of our WLS estimation z*’s standard deviation S(z*) with a=0,
where WLS=LS and E;=-80 HU; Ey;=50 HU, z=0.3 (graph for z=0.5 is nearly identical), S=Sp=S), varied
between S=20 HU and S=90 HU (Fig. 4d left) and with AE : =Ey; — E; between S=20 HU and S=AE/2=130 HU
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Figure 4. (a) Scatterplot for the variables FM separability t,* and logarithm of weighted least squares sum In

S, of the Monte Carlo images Y, , and Yy, withr=1, ..., 20 (where A: z=0.3 and B: z=0.5). The data-points

are labelled with the number of their grey-scale value histograms true standard deviations S* =S+ =Sy

The dashed rectangle on the left side marks the t,* —In S,—area of the diagram in Fig. 2d. (b) In the middle:
Scatterplot for the variables FM separability t,* and logarithm of weighted least squares sum In S, of the Monte
Carlo images Y, , withr=1, ..., 20. The data-dots are labelled with the value of their grey-scale value histograms
true standard deviations S* =Sg* =Sy*. Encircling the central scatterplot five empirical and estimated grey-scale
value histograms X (thin, drawn), X(®) (fat, drawn), Xp(®) (fat, dashed), X(®) (fat, dotted) are presented,
each is connected to its corresponding data-dot in the central scatterplot by a fat drawn pointer-line. (c) 3-D
scatterplot of the variables FM separability estimator 1., the logarithm of the weighted least squares distance

In S, and relative error RE, of the z-estimator for the image-series Y, , and Yy, withr=1, ... , R. Black bubbles

: A: 2=0.3 void bubbles: B: z=0.5. Images Y, , and Yy, were excluded if S<5 or S>100 as well as if RE,; >0.2.
The weighting exponent was set to a=1. (d) Computed diagrams of the z-estimator’s standard deviation S(z*)

as a function of the standard deviations S=S; =S, of the partial fat and muscle distributions in the scenario Y,
and Yg with E;=-80 HU, E\;=50 HU, z=0 and ranges 20 HU<S<90 HU (A: left) and 20 HU<S< 130 HU (B:
right). Note the different ranges on the ordinate. The graphs were generated with a true fat ratio value z* =0.3.
However the choice of the true fat ratio value z* had virtually no influence on the result when it was changed
from z* =0.3 to z" =0.5. The weight exponent was chosen a =0 which means z* is an LS-estimator rather than
an WLS estimator as it is in the case a=1.

respectively (Fig. 4d right). The curves in Fig. 4d were generated for a =0, since this guarantees the weighting to
be of no influence. The latter was preferable as for each of the values r=1-3 the weight-matrix else would have
been different for every two slices else, thus introducing noise in the evaluation.

General results

As examples of the CFES performance Fig. 5a,d,g,j show four slices Y, their grey-scale value histograms X(Y),
X(0%), Xp(®*), X\(®*) (Fig. 5b,e,h,k) and the respective quasi-segmentation results W*(Y) (Fig. 5¢,f,i,1). Hori-
zontal image-line 1, 2, 3, 4 corresponds to LFD 06, 22, 24, 16 (see Table 1) respectively. While the first three slices
(), (d), (g) lead to acceptable results, slice (j) was added as a poor result caused by weak contrast and artefacts.
LFD 16 was excluded from our statistical evaluations.
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Figure 5. Four slices Y in (a), (d), (g), (j) from four different persons at different abdominal positions.
Respective histograms with thin line = measured data X, thick line = fitted histogram X(®*) , partial histograms
Xp(0%), X(®*) in (b), (e), (h), (k) and quasi-segmentation results W*(Y) in (c), (f), (i), (1). The parameter a was
a=1.

Discussion
General discussion.  The exponent o’s calibration in the paper? yielded optimum values a= -1 for synthetic
CT images and a=-1 for the real-world phantom. Application of CFES to our body CT scan sample ¥ and
evaluating the misclassification rate F,(¥, W*(¥)) leads to Fig. 1a. This indicates a=1 to be the optimal parameter
value with F,=3.6% for our body sample though the values for a=-1, a=2 and a=3 lie only slightly above: The
F,-values for a=-3,-2,—1 are F,=54%, 30%, 6% which is distinctively higher.

The three quality measures t,, D, and S, are a posteriori quantities. This is evident for D,, and for S,. Only
for synthetic CT images the separability t,* could be determined in advance. 1, can only be estimated from a
priori parameter estimators as described in*. The parameter T, obtains its justification from analogies in signal
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Author, year, citation

Quality measure

Otsu®, 1979

Variance analysis inspired, threshold k optimization of n(k), N(K) : = Vierass/ Vtotal of levels NON-
parametric

Mitsopoulos®, 1998

Comparison to sliced cadavers, correlation analysis

Rogalla'®, 1998

Comparison to phantom, standard error

Yoshizumi'!, 1999

Comparison to cadavers, planimetry, correlation analysis

Glasbey'?, 2002

Comparison to simulated CT images, RMSE, bias, std.deviation

Dobrowolsky'?, 2004; Romvary'?, 2006

Comparison to butchered pigs, fat-muscle ratio, linear regression

Pednekar'®, 2005 Comparison to manual segmented images, true negative/positive pixels

Johansen'¢, 2007 Comparison to estimation on carcasses, linear regression

Kongsro'7, 2008 Comparison to measurement results of manual dissections, linear regression
McEvoy'®, 2008 Std. dev. of local maximum estimator in grey-scale value histogram
Oshima'?, 2008 No measure published

McEvoy®, 2009 No measure published

Checchini?!, 2011 Correlation analysis estimated fat volume vs. BMI

Kanaly??, 2011 Comparison to informed observers results

Lung tissue inhomogeneity measurement method, validated by distinguishability of end-inspira-

i 23
Subramaniam?, 2012 tion- and end-exspiration heterogeneity

Kim*, 2013 Comparison to dual-energy X-ray absorptiometry results, correlation analysis

Kullberg35, 2017 Comparison to manual CT-segmentation results, correlation analysis

Table 2. Studies in literature about CT fat segmentation: quality measures.

processing and in statistics in contrast to the WLS difference S,, whose minimality is necessary for estimating
the parameter vector ®. The misclassification rate D, is relying on a priori expert knowledge.

Quality measures should quantify firstly the suitability of the input data (the separability of fat from muscle
in a CT-image), secondly the efficacy of the segmentation (WLS fitting of the model X(®) to the histogram X
and computation of the threshold tg;) and at last the correctness of the result (the anatomical correctness of FM
segmentation). Our measures T, S, and D, cover all three aspects: T, measures the shape of the X(Y) to quantify
the CT-image Y’s suitability for CFES application, S, judges the final ‘distance’ between X and X(®) only, while
D, evaluates W*(Y) without distinction of genesis.

In* we gave a synopsis of tissue segmentation studies which we review in Table 2 for their quality measures.

Our choice of 1,, S, and D, may be partly explained since we were not able to determine a gold standard as
e.g. manual dissection. S, as the minimized quantity of quasi-segmentation seems to be a natural choice. As
we knew the single material grey-scale value pdf to be GaufSian, we did not want to use non-parametric fitting
methods as e.g.®. Usage of 1, was inspired by the t-test statistic, used for deciding whether two Gauflians have
different expectation values. Moreover there are similarities of t, to the signal theoretic quantity of signal to
noise ratio (SNR), quantifying the separability of two signals in frequency domain. Finally the misclassification
rate D, seemed to be a canonical choice for a measure of the pure CFES-output quality.

In the slice of Fig. 2d—f the d, implies good quality, whereas S, indicates low quality, therefore we will investi-
gated in more detail the interrelations between the three quality measures. Yet for a-calibration there is no better
parameter than D, or F, since the usage of S, as a quality measure for fat quantification runs into problems we
will discuss below.

As CT numbers generally depend on temperature (see®®), the question arises whether the results presented
are robust against sample temperature changes. The results in*, using conventional polychromatic 120kVp
CT (CPI) (as well as virtual monoenergetic images by dual energy measurements (VMI) with 40kVp, 50 kVp,
60 kVp, 70 kVp, 100 kVp, 120 kVp, 140 kVp), seem to give evidence to the hypothesis of robustness: The tem-
perature-changes in an interval of [10 °C, 60 °C] led to changes of [-40 HU,-80 HU] in the grey-level values
for fat-substitute and of [50 HU, 60 HU] for muscle-substitute in CPI (see Fig. 5 in*®) which lie in the range of
inter-personal grey-level value variations of our study. Furthermore® indicates that there is no influence of the
convolution kernel chosen on the temperature dependence of the grey-level values (see Fig. 5 in*) for CPI. The
paper®® implies possibilities for further research on quasi-segmentation e.g. by using VMI and/or temperature
control for improving CFES-results.

Relations between the three quality measures

In Fig. 2a the sample’s location in the triangle tells us that high values of the yy,(t,*) seem to force low values
on D, (see (8A)), whereas high values of D, constrain py,(1,*) to low values (see (8B)). Nevertheless, there are
abdominae with low values of D, and of py,(t.*) (see (8C)):

/"-Xr(f;) 1=> Dy | (8A)

Do t=> pyr(7y) (8B)
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While (8A) and (8B) match our intuition (S) about relations of the quality measures, the last vertex of the triangle
[(8C): low py,(1,*) and low D] seems to contradict them grossly at first sight. Note however, that the minimum
value of py,(1,*) for D, =0% is py,(1,*) = 200. A ‘linear approximation’ to the upper bound of the relation is for
a=1:

0<Dy <A-pyr(ty)+B 9)

where the line A py,(1,*) + B is estimated by connecting the two data-points (x,, y,) =(103.0, 21.35%) for scan
LFD_19 and (x,, y;) = (654.0, 0.0%) for scan LFD_23 by:
_yi—y _ 21.35% — 0.0%

A* =
X1 — Xo 103.0 — 654.0

= —0.03875% (10)

B* =y, — A* . x; = 0.0 + 0.03875 - 654.0 = 25.3425% (11)

Figure 2d-f displays slice 119 of scan LFD_5 as an example of a slice Y, with low d, and with low t.* as well.
This suggests the hypothesis of the threshold tgy to be robust against fluctuations of T,.

Figure 2b is a scatterplot of py,(In S,) vs. D, for a=1. As in Fig. 2a we see a relation, not a functional graph
but a ‘formed cloud’ filling one corner of the first quadrant. In analogy to Fig. 2a we see on Fig. 2b high values
of py,(In S,) seem to force low values of D, [see (12A)], contradicting intuition (S), whereas high values of D,
constrain low values of py,(In S,) [see (12B)] contradicting (S) as well. The third corner of the triangle meets
intuition (S): low py,(In S,) coincides with low D, [see (12C)].

uyr(InSy) +=> Dy | (12A)
Dy 1=> //LXr(ln Sa) 4 (12B)
3: puyr(InSy) § ADy | (12C)

The upper boundary approximation line of the cloud is:
0 <Dy =C-puy,(UInSe) +G (13)

Estimating the line C py,(In S,) + G by connecting the data-points (x, y,) =(21.62, 21.35%) (scan LFD_19)
and (x;, y;) =(23.88, 5.6%) (scan LFD_27) gives:

_y1i—y _ 56%—21.35%
T X —xo 23882162

c* = —6.97% (14)

G* =y —C* - x; = 5.6% + 6.97% - 23.88 = 172.0% (15)

Figure 2c is the scatterplot (a=1) of py,(In Sy) vs. py(t,*). The distinct linear relationship with positive slope
was significant in by linear regression analysis, which is a contradiction (16) to (S):

pyr(vd) t=> uy,(nSy) 4 (16)

The deviations (8C), (12A), (12B), (16) from (S) were investigated, using the simulated CT images (Y, ,),-;. r
and (Yg,),-._r (see Fig. 3a, b).

Figure 3c shows a scatterplot of t," vs. 7,* with ranges [0, 6000] on the X- and on the Y-axis for sample Y, ..
The matching of 1,* and 1,* is almost perfect here, becoming slightly weaker in the region near (0,0). Zooming in
on a range of [0, 400] for t," we notice strong deviations of the estimator values t.* in Fig. 3d. Note that the range
of our sample ¥’s mean separabilities {1y, (t,*) is [0, 600]: The correlation of t," and 1,* of our sample ¥ would
have to be estimated from the zoomed in representation in Fig. 3d rather than from the diagram in Fig. 3c. The
correlation of 1, and t,* refutes the objection to the positive correlation py,(t*,) — py;(InS,) in Fig. 2c: “Maybe
there is a negative correlation in the analogous py,(t*,) — py,(InS,) diagram, which cannot be detected as t*, is not
accessible for our real-world-sample ‘¥, but the py,(1*,) — py,(InS,) diagram shows a positive correlation caused by
a flaw of CFES generating a locally negative correlation between t," and t,*?” Despite the noise in Fig. 2¢ there
is a distinctly positive relation, so the objection can be rejected.

The relations between 1,* and In S, are demonstrated in Fig. 4a as scatterplot of t,* vs. In S, with a=1 for
the images Y, , (square marks). The partial graph over t,*-range [1150, 3000] corresponds with (S): Rising t.* is
correlated with falling In S, and vice versa:

Vti € [1150,3000] : (75 t<=>InSy |) (17)

The curve in the range of [1150, 3000] is a function graph without random noise.
In the complementary partial graph over t,*-range [0, 1150] the curve is more noisy. Its tendency contradicts
(S) since rising t,* coincides with rising In S,:
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Vry €[0,1150] : (74 t<=>InS, 1) (18)

The two 1,*-ranges are associated to two ranges of S=S; =Sy in the synthetic sample A: ‘t,* in [1150,
3000]” corresponds to ‘S in [10 HU, 25 HU] whereas ‘t,* in [0, 1150] is associated to S =25 HU. Though
AE=Ey—Ep=E;" =50 HU -(-80 HU) =130 HU, even S=25 HU means only a moderate grey-scale value dis-
tributions densities f; and f; overlap.

The area of the sample ¥’s scatterplot 1y, (%,) vs. py,(InS,) in Fig. 2¢ can be realized as the dashed rectangle
in the 1,* vs. In S,—scatterplot Fig. 4a: This area lies on the left side of [0, 1150] with trend (17) and comprises a
vast variation of the In S,—values in the scatterplot of the synthetic samples A and B. The trend in Fig. 2c seems
to be fairly linear despite varying fat-proportions z in the real-worlds CT scan sample . It does not depend on
the fat-proportion z, since the umbrella-form with the fuzzy left end shows up in both plots of Fig. 4a. While the
top of the umbrella at about t,* =25 sank from ca. In S, =25 to ca. In S, =23.7 for z rising from z=0.3 to 0.5, the
maximum-location on the t,*-axis is nearly identical.

To see, how the overlap between z-f; and (1 — z)-fy; of a slice is associated to its position on the umbrella,
Fig. 4b shows the 1,* vs. In S, scatterplot of (Y, ,),-.. r again. Additionally, we present five of the grey-scale
value histograms X(Y), X(®), Xp(0), X\(®) associated to the scatterplots data-points for the parameter values
S=Sp=Sy=12 HU, 25 HU, 60 HU, 100 HU, 150 HU. The umbrella’s top lies at S=25 HU, and it is obvious, that
the increasing overlap of the partial histograms Xz(®) and Xy;(®) increasingly deteriorates z-estimation quality
when moving from the right to the left side of the umbrella. The z-estimation quality can be recognized roughly
from the overlap area under Xp(®) and X((®).

The importance of the umbrella—phenomenon can be demonstrated by relating it to the relative error RE,
:=|z* —z*|/z* of our target variable z. In Fig. 4c, a 3-D scatterplot of t,* vs. In S, vs. RE, for (Y, )., r (black
bubbles) and (Y, )., (white bubbles) with the additional constraints: 5 HU<S <100 HU and RE,<0.2 is
shown. It demonstrates the abrupt strong rising of the error RE, in the target variable z* if the data points leave
the right side of the ‘umbrella’ in Fig. 4a (which can be found projected on the bottom of the coordinate cube in
Fig. 4c as well) and proceed to the left side.

As reason for the umbrella form of the t,* vs. In S, scatterplot (Fig. 4a), for the fuzziness and for the rise of
the relative error RE, on the left side of the umbrella (in Fig. 4c), a sort of pseudo-overfitting of the model {(y,0)
can be hypothesized. While the well-known effect of overfitting is associated to using a model with too many
parameters, our self-coined term ‘pseudo-overfitting’ means usage of a model with the correct number of param-
eters (in our case: 5 parameters: Eg, Ey;, S, Sy, 2) if the model is a mixture of distributions of the same type (in
our case: the normal distribution mixture f(g,0) =z f(g,0) + (1 - z) f,(g,0®) ) and with an empirical distribution
geometrically similar to a (mixture of less) distribution(s) of the same type (in our case: X(Y) seems to consist of
only one normal distribution like in Fig. 4b the grey value distribution for S=150 HU). Here we have to take into
account similar effects as those caused by classical overfitting: The fitting process uses the seemingly redundant
parameters to model some of the apparently random deviations, which leads to virtually getting ‘better’ results
in terms of S, though the separability T, decreases (see Figs. 2c and 4a). Associated with smaller values of S, and
T, one notes a dramatic loss in the estimators z*’s exactness which was measured by the relative error RE, of the
z-estimator z* (see Fig. 4d).

A principal constraint in fitting Gaul3ian mixtures

A large proportion of the problems reported in 4.1 and 4.2 seems to come from a principal difficulty in fitting
GaufSian mixtures as we did for estimating the parameter vector ®: The grey value histogram X(Y) of a CT slice Y
containing fat- and muscle components only was assumed to be a mixture of the Gauflian components X and Xy,
for fat F and muscle M respectively. Figure 4d demonstrates an exponential growth of the z-estimator’s standard
deviation S(z*) for linearly increasing standard deviation S =Sz =Sy, of the F- and the of the M-component. This
is made plausible by comparing the graph on the left side of Fig. 4 (lower right part) (z=0.5,20 HU<S<90 HU)
to the graph on the right side (z=0.5, 20 HU < S< 130 HU): though the curve seems to be geometrically identical,
the ordinates range has grown by a factor of order 20 while the domain was enlarged from [20 HU, 90 HU] to [20
HU, 130 HU] only. This effect does not depend on the actual value of z: The shown graphs with a true parameter
value of z=0.3 are virtually indistinguishable from analogous ones-which therefore are not shown here—with
true parameter value z=0.5. The computation results presented in Fig. 4d strikingly demonstrate the fact that the
exactness S(z*) of z-estimation is rapidly deteriorating with increasing overlap of the single-material —normal
distributions in the grey-scale value histogram. Given a distance of AE=E,;—E;=50 HU - (- 80 HU) =130 HU
between the maxima in the histogram, a value of S=S;=5,;>60 HU leads to an approximate z-estimator standard
deviation S(z*) > 0.1 while S >90 HU causes S(z*) > 1.0. Note that z is a ratio from the interval [0, 1] which makes
an estimator z* with S(z*) > 1 nearly useless.

The difficulty in fitting Gaussian mixtures discussed above and particularly the swiftly growing standard devia-
tion S(z*) of the z-estimator with rising standard deviation of Sp=S,; seems to be no consequence of our special
fitting algorithm WLS chosen: Due to the high number of pixels in a CT slice it is possible to apply asymptotic
propositions to the probability distribution of the estimator. Jennrich?® shows, that if the data’s (in our case the
grey-value histogram X) probability distribution lies in the exponential family (the multinomial distribution of
our case belongs to this family) the Fisher Scoring algorithm for iteratively finding the Maximum Likelihood
Estimator (MLE) value is identical to the Gauss—Newton algorithm which iteratively detects the Non-linear
Least Squares estimator’s (NLLS) value, which is detected by CFES as well. Hence the probability distribution of
z* computed here via CFES (NLLS estimation respectively) is nearly identical to the distribution of the MLE of
z which asymptotically is the most effective estimator (see*°), at least in case a=0.
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Note further that the standard deviation S(z*)’s rapid rising with growing overlap between H; and H); are

not reported in the fat segmentation literature (see®>°) except maybe hinted in®.

A practical consequence of this issue will be to choose CT parameter values minimizing the single-material

distribution standard deviations Sp and Sy,.

Data availability

The datasets analysed during the current study are not publicly available since they consist of individual CT-scans.
Each single slice is linked to a DICOM-file containing experiment parameter data and sensible case information.
The DICOM-files are essential for the computations. The bodies were confiscated by the local prosecution who
directed the CT scans for investigations.
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The program code is available from the corresponding author on reasonable request.
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