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Machine learning based regional 
epidemic transmission risks 
precaution in digital society
Zhengyu Shi 1, Haoqi Qian 2,3,4*, Yao Li 5, Fan Wu 6,7 & Libo Wu 4,8,9*

The contact and interaction of human is considered to be one of the important factors affecting 
the epidemic transmission, and it is critical to model the heterogeneity of individual activities in 
epidemiological risk assessment. In digital society, massive data makes it possible to implement 
this idea on large scale. Here, we use the mobile phone signaling to track the users’ trajectories and 
construct contact network to describe the topology of daily contact between individuals dynamically. 
We show the spatiotemporal contact features of about 7.5 million mobile phone users during the 
outbreak of COVID-19 in Shanghai, China. Furthermore, the individual feature matrix extracted 
from contact network enables us to carry out the extreme event learning and predict the regional 
transmission risk, which can be further decomposed into the risk due to the inflow of people from 
epidemic hot zones and the risk due to people close contacts within the observing area. This method 
is much more flexible and adaptive, and can be taken as one of the epidemic precautions before the 
large-scale outbreak with high efficiency and low cost.

The international society was caught off guard by the unexpected outbreak of COVID-19 since the beginning of 
20201. Quite a few regions or even the whole country had adopted the lockdown policies in order to make the 
pandemic under control, and these non-pharmacological interventions had been demonstrated to be effective2. 
Meanwhile, these strict interventions had caused severe economic and social welfare losses as well. The world 
GDP growth rate has declined by 3.4% in 20203 and around 81 percent of the global workforce was affected due 
to government responses to the pandemic4. However, when there lacks enough knowledge and information about 
the accurate transmission risks of COVID-19, the best policy response that policy makers may make is to try to 
cut off all possible transmission paths immediately.

Similar to other infectious diseases, spread of the COVID-19 is mainly resulted from direct, indirect and 
close contacts between people at the micro-level5–7, as well as from regional population flows at the macro-
level8–10. Existing literature has shown that transmission risks are predictable for infectious diseases such as 
Severe Acute Respiratory Syndrome (SARS)11, Middle East Respiratory Syndrome (MERS)12, Ebola13 and flu14 
by using various behavioral data such as search engine15,16, social media17 and wearable devices18,19. Assump-
tions behind these predictions focus more on the macro-level so that people’s contact behaviors are simplified 
as homogeneous parameters in traditional epidemiological models such as SI, SIR, SEIR and etc14,20–23. In such 
models, it is necessary to estimate the classic reproduction number accurately, that is, the number of secondary 
cases of infected individuals in the susceptible group24–26. But it is difficult to get the reproduction number which 
can fit the epidemic transmission evolution perfectly in the real world. The deviation between theory and reality 
can be explained by the differences of individual behaviors27,28. The neglect of the micro heterogeneity may lead 
to misestimating the regional epidemic risks. Moreover, the greater the difference of individual characteristics 
within the group, the greater the estimated error29.

Most of the early studies are limited to the small-scale with few personnel and low population flow such as 
families30, flights31 and hospitals32, but the premise assumption of this setting is too peculiar, so it is difficult 
to extend to the city and even the national level. The development of 5G and Internet of Things technology 
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guarantees collection of individual trajectory data33,34. Therefore, many scholars try to obtain large-scale infor-
mation about people contacts through wearable devices or mobile phones35,36, which creates more opportunities 
for further researches on epidemic transmission path and risk, seasonal fluctuation and spatial evolution and so 
on37–39. However, those previous epidemic studies focused more on the observed population migration between 
cities, base stations or some grid units, as well as the population density within a certain region10,40. This will 
inevitably lead to the fact that people in the same space are supposed to be homogeneous and static when con-
sidering regional risks, while ignoring the actual situation of dynamic contact among them.

In order to provide enough evidence at high-resolution level for policy makers to take targeted measures, 
heterogeneous individual level contact behaviors have been put more emphases on41, and some intelligent tech-
nology like big-data analytics42, artificial intelligence43, cloud computing44 and machine learning45 may provide 
better solutions. During the spreading period of COVID-19, many countries have tried to launch individual 
tracing systems and monitor potential transmission risks through smart phones46,47, and Apple and Google also 
developed COVID-19 Alert App jointly48. All of those applications need users be willing to install or use, oth-
erwise they cannot offer the pandemic information for users. Since data coverage is more crucial for epidemic 
prevention, this invasive data acquisition way will reduce the prevention efficiency. Except for the individual 
trajectory, the contact topology is also quite important. As a straightforward scientific tool, complex network can 
effectively describe the dynamic contact topology between different individuals49,50, so as to obtain more micro 
scale discovery of epidemic transmission. For example, individual level contact network tends to show small-
world and nonrandom graph properties51,52. These features reflect the fact that more complicated models53,54 
are anticipated to investigate the micro mechanisms of infectious disease transmission. Then regional transmis-
sion risks can be more precisely identified by adopting comprehensive population flow pattern data. This type 
of bottom-up transmission risk modelling techniques has shown increasing importance in the policy making 
procedure in the public health field55. Another advantage of using big data in practice is that it can reduce unnec-
essary intrinsic risks in the traditional epidemiological surveys56,57. These risks are commonly caused by missing 
some part of objective information due to memory biases or dishonesties.

To overcome the aforementioned issues, we construct a novel contact network structure based on mobile 
phone signaling. It establishes a weighted contact topology network in a non-intrusive way and can reflect the 
difference of social interaction better. Since the data in the real world often suffer from the highly imbalanced 
distribution, the traditional methods can hardly deal with that58–60. For this reason, if conventional neural net-
work is used to identify rare disease patients or high-risk virus carriers from a large number of negative people, 
the results will be seriously biased. Thus, after reconstructing the individual-centered contact feature, the neural 
network prediction of extreme events is carried out for each individual. In this study, we estimate the town-level 
transmission risks for COVID-19 in Shanghai based on a high-resolution contact network compiled from nearly 
7.5 million mobile phone users. Individual level contact behaviors are modelled by using the machine learning 
method. Results show that this machine learning based bottom-up technique has great potential for identifying 
regional transmission risks. The interesting conclusions provide policy implications that unnecessary economic 
and welfare losses can be avoided by controlling the spread of infectious diseases in advance.

Methods and data
Contact strength.  There are 94,733 Telecom base stations in Shanghai with an average coverage of 0.0669 
square kilometers. We define that if two mobile phone signals interact with one base station at the same time 
slice τ, then the two individuals’ trajectories have a coincidence. In this paper, the time slice τ is set to 1/12 hour. 
If individuals coincide with high-risk group, the risk of infection will increase, and consequently such contacts 
are called effective contacts; while the mutual contacts within the general group do not generate new risks of 
infection, such contacts are invalid. In order to simplify the contact analysis, it is necessary to concentrate on the 
effective contacts when identifying regional transmission risks of infectious diseases.

Furthermore, we constructed the contact strength to quantify the influence of effective contacts. Effective 
contact frequency is one of the determinants to increase the infectious transmission risks. The longer an indi-
vidual has been exposed to the high-risk group, the more likely to be infected. Nevertheless, only considering 
the duration of effective contact is not enough. Since the individuals in high-risk group have been to different 
epidemic hot zones, the possibilities of carrying virus are distinct and we use a dynamic virus carrying risk 
coefficient to distinguish one from another. Thus, the contact strength can be calculated by the product of virus 
carrying risk coefficient from high-risk individual h and effective contact frequency,

where, ωh→i,d represents the contact strength between individual i  and individual h on day d , which will be 
the weight of corresponding edge in the d th contact network. th,i,d is the times of effective contacts between 
individual i and h on the d th day.

The virus carrying risk coefficient γh of individual h is determined by the epidemic hot zone with the highest 
risk coefficient in the recent viral incubation period Tvirus . First of all, we define the epidemic infection density 
ρc of epidemic hot city c as the proportion of the cumulative number of confirmed cases in the permanent 
population,

where, Ncc is the cumulative number of confirmed cases in city c , and Npc is the permanent resident population 
of city c (unit: 10,000 people). We set infection density ρo of the city with the transmission risk to be estimated 

(1)ωh→i,d = th,i,d × γh,d

(2)ρc =
Ncc

Npc
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as the baseline and adjust the other cities’ infection densities, so as to obtain the risk coefficient for travelling 
or living in city c,

where, rc is the risk coefficient of travelling or living in city c , and ro is the risk coefficient of the city to be esti-
mated. Obviously, ro = 1 . Therefore, the γh,d is equal to the maximum value of rc in the historical trajectory of 
individual h counting down Tvirus from day d.

Contact networks.  In order to simulate the risks of spread infectious diseases in the crowd better, we pro-
posed a growing network based on the microscopic spatiotemporal contact details among individuals, which 
called contact network. In this contact network, every mobile phone user is a node. Only when the effective 
contact occurs, the corresponding nodes will form an edge and the weight of the edge is their contact strength. 
As shown in Fig. 1a, the red dots indicate individuals of high-risk group and green dots indicate individuals of 
general group. At time T, there are two high-risk individuals under Station 1 and they have effective contacts 
(red line) with other people under the same station; while the other contacts are invalid (green line). And under 
Station 2, all people are belonging to the general group, so there is no effective contact. Thus, each base station 
forms a sub-network. After a time slice τ, some individuals move from one station to another, and then each base 
station generate a new sub-network following by the latest contacts. With people moving across the base sta-
tions during one day, such sub-network will be generated continuously. At the end of the day, all of the effective 
contacts and the nodes to which they are connected eventually form a daily contact network. Obviously, people 
who do not have contacted with the high-risk group are not included in the contact network.

Because the contact network describes the possible path of epidemic spreading in detail, we can further 
learn the transmission risk based on artificial neural network. The purpose of transmission risk learning is to 
identify individuals with higher potential infectious risk and estimate the corresponding probabilities. Here 
we mainly consider the first layer of virus transmission risks, that is, the infection between adjacent nodes in 
contact network. Therefore, as shown in Fig. 1b, all contact networks within nearly Tvirus days are transformed 
into individual-centered single-layer networks. Tvirus is the latent period of the infection and the potential risk 
of carrying virus can be taken into account by selecting the contact networks during the Tvirus . And then, we 
extract contact feature sequences from those single-layer networks as the input of artificial neural network. Each 
contact feature sequence consists of two element sequences: TF , which represents the total contact strength, and 
K , which indicates whether the individual has contacted with the confirmed cases,

where i  is an individual, j is the municipal district of the city to be estimated and d is the time. Thus, TFi,j,d 
indicates the contact intensity between individual i and high-risk group in area j on day d , which is the sum of 
edge weights of corresponding nodes in contact network. Hi,j,d is the subset of high-risk group who had contact 
with individual i in area j on day d effectively. If there is a confirmed case in subset Hi,j,d , then Ki,j,d equals 1, 
otherwise it is 0.

Artificial neural network of extreme events.  Artificial neural network is used to learn epidemic trans-
mission risk. After completing the feature transformation of contact network nodes, we calculate the cross term 
of contact intensity TF and contact tag K . These three variables are standardized and then used as the input 
variables of the neural network. And then, we label the high-risk people by the potential risks’ sources. Those 
isolated people are divided into two categories according to whether they had a sojourn to epidemic hot zone. 
If people have not been to the epidemic hot zone, their infection risks come from the contact in the observing 
area. In contrast, people who have been to the epidemic hot zone, the regional transmission risk comes from the 
epidemic hot zone people inflow. The rest individuals of the high-risk group are labeled as the third category.

As shown in Fig. 2, the basic framework of the network is fully-connected and adopts leaky ReLU as activa-
tion function to reduce the silent neurons. However, isolation is an extreme event, that is, the proportion of 
positive-marked data in the dataset is very low. The high-risk group accounts for a very small number of the 
total population, let alone those who are isolated. Due to the imbalance of three kinds of people, it is necessary 
to adjust the neural network in the multi-classification training61–63. Therefore, in order to avoid the prediction 
error of the true positive cases caused by imbalanced data training, the neural network adopts a weighted cross 
entropy L(Y , P) as the loss function for extreme event learning,

where N is the size of training sample, k marks different classes. yi,k indicates whether the individual i belongs 
to class k , if so, it is 1; otherwise, it is 0. pi,k is the probability that the model predicts individual i belonging to 
class k and wk is the weight of class k.

(3)rc =
ρc

ρo

(4)TFi,j,d =

∑

h∈Hi,j,t

ωh→i,d

(5)Ki,j,d =

{

1 if there are confirmed cases in Hi,j,d

0 otherwise

(6)L(Y , P) = −
1

N

∑

i

(

wk

∑

k

yi,klogpi,k

)
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This loss function can give larger weight to the rarer categories, that is to say, the corresponding wk of the 
isolated groups are larger in order to increase the misclassified cost of these two rare categories, so that the neural 
network can learn useful information more effectively and achieve better prediction results.

After normalizing the initial learning results of neural network by Softmax, the probability that individual i 
belongs to each class can be obtained. The class with the largest probability is the prediction class of individual i.

Estimation of regional transmission risk.  The main residence of each individual is determined by their 
most frequently located region for mobile phone signals during the night. Thus, we can divide those people 
into different group in terms of their residences. The risks of infectious disease transmission will come from the 
activities of people living there.

Since we have labeled the high-risk people as three categories and used multi-classification learning to fit how 
likely these people are to belong to the certain category, risk due to epidemic hot zones people inflow and risk 
due to close contacts are the average probability of corresponding-labeled individuals settled here,

Figure 1.   Contact networks structure. (a) Schematic diagram of sub-networks and contact network, taking 
two base stations as an example. Note that this figure only shows the trajectory simulation of two high-risk 
individuals and seven general individuals during two time slices, but in fact, each contact network is composed 
of 24/τ sub-networks of all base stations. (b) Visualization of individual-centered contact feature sequence 
transformation. Before learning the transmission risk, the model takes each individual as an observation object 
and extracts the contact information of the adjacent nodes from the contact networks within Tvirus.
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where s is the region of risk to be assessed, Ns is the number of individuals settled in s . p(ehz)i,s  is the probability of 
disease transmission from epidemic hot zones caused by individual i and TR(inflow)s  represents the risk caused by 
the inflow people from epidemic hot zones. Similarly, p(non)i,s  is the probability of disease transmission caused by 
individual i who have not been to the epidemic hot zones and TR(contact)

s  represents the risk caused by the close 
contacts within the observing region. It is obvious that TR(inflow)s  and TR(contact)

s  are between 0 and 1, and larger 
values mean higher regional transmission risks.

Because of the properties of the Softmax function, the probabilities of no risk and other two risks are addi-
tive, and the sum of them is equal to one. Thus, the total transmission risk can be derived from TR(inflow)s  and 
TR

(contact)
s ,

TRs ranges likewise from zero to one. Because this is a bottom-up indicator, the regional transmission risk will 
rise if individuals are more likely to be classified into potential isolated group. In the contrast, if most individuals 
are predicted as the non-isolated group, the regional transmission risk will decrease.

Data.  We intercepted China Telecom’s mobile signaling data in Shanghai from January 22 to February 4, 2020 
to capture the users’ real-time trajectories. We divided these 7,451,621 mobile phone users into high-risk group 
and general group according to their epidemiological diagnosis and historical action trails. High-risk group 
includes four kinds of people: the confirmed cases, the suspected cases, the medical isolators other than the first 
two and the people who once had a sojourn to epidemic hot zone. Considering the features of epidemic trans-
mission and population flow in the early stage of COVID-19, forty-eight cities in China, including Wuhan and 
Wenzhou, were marked as the high-risk epidemic hot zones (see more details in Supplementary Information). 
And then, we identified 735,546 high-risk users in Shanghai based on mobile phone tracking during this period. 
In addition to the high-risk group, the rest of mobile phone users belonged to the general group.

As of February 4, 2020, there were 22,501 people in the isolation list provided by Shanghai Center for Disease 
Control and Prevention, covering eight districts in Shanghai. This eight districts include Baoshan, Chongming, 
Hongkou, Huangpu, Minhang, Pudong, Songjiang and Xuhui. Among them, 2459 isolators on the list were 
effectively matched, accounting for only 0.3343% of the Telecom high-risk users. In these matched isolators, 
1742 isolators had epidemic hot zone sojourn and 717 isolators did not leave Shanghai during the observing 
period, accounting for 0.2368% and 0.0975% of the Telecom high-risk users respectively. For those users, being 
isolated was indeed a rare event.
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∑
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Figure 2.   Artificial neural network structure. Visualization of neural network learning. After max–min 
scaling the input variables, the contact features can be learned by a fully-connected neural network. During 
model training, some neurons (dotted dots) are temporarily discarded from the network according to a certain 
probability, so that the network can avoid over fitting and be generalized better.
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Results
Crowd contact based on mobile phone tracking.  According to the contact network, we can obtain the 
crowd contact characteristics on time trend, regional distribution and different groups. Generally, the spatiotem-
poral contact characteristics are consistent with the situation in Shanghai at that time, which also confirm the 
rationality of the contact network. In these 14 days, each high-risk individual was exposed to effective contact 
51.81 times a day on average, while that of individuals in the general group was only 27.33 times. As shown in 
Fig. 3a, the effective contact frequencies of all isolators, non-isolated high-risk group and general group showed 
L-shaped as a whole. These curves declined at the beginning, and January 24 was a turning point. Since then, the 
curves have tended to be stable. On January 22, the effective contact frequency of each non-isolated high-risk 
individual was 213.36 times, which was higher than that of isolated group. However, the situation reversed since 
the Spring Festival. The daily effective contact frequency of non-isolated high-risk group has been lower than 
that of isolators, and closed to that of general group, maintained at about 30 times per capita. After February 3, 
people returned to work, and there was no apparent rebound in the effective contact frequency in Shanghai. This 
indicated that the policies of tighten travel restriction and keeping social distance called for by the government 
were well implemented. The average effective contact frequency of high-risk group (Fig. 3b) in Pudong was 
the highest, accounting for 176.36 times a day, which was partly due to the huge inter-cities population flow of 
Pudong Airport. Similarly, the effective contact frequency in Minhang, which has another airport and Hongqiao 
Railway Station with the largest passenger traffic volume in Shanghai, was also very high. As an important indus-
trial area in Shanghai and a vital highway transportation hub connecting Jiangsu Province, Jiading had an effec-
tive daily contact frequency of 147.10 times a day. In contrast, the effective contact frequencies of high-risk group 
in suburbs such as Chongming and Fengxian, and urban centers such as Yangpu and Hongkou were much lower.

Figure 3c illustrates the differences in contact strength among isolators, non-isolated high-risk group and 
general group in three slots. Before the Spring Festival, the contact strength of the three groups was relatively 
close. However, the government had taken the quarantine measures, adopted the travel restriction policy and 
appealed for keeping social distance successively since January 23. These actions brought that the non-isolated 
high-risk group and the general group have reduced the contact strength by more than half during the Spring 
Festival. Although there was a slight increase after returning to work on February 3, the contact strength still 
remained low. Owing to gathering for medical observation, the isolated cases’ mobile phone signaling would be 
received by the same base station frequently, which caused incessant effective contacts. In addition, most isola-
tors have a larger virus carrying risk coefficient. Therefore, even if the overall population mobility in Shanghai 
declined, the contact strength of isolators still increased during the observation period continuously.
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Figure 3.   Crowd contact features of COVID-19 in the early stage. (a) The daily effective contact frequency 
per capita. The Spring Festival holiday in 2020 was originally from January 24 to January 30, then extended 
to February 2 due to COVID-19. On January 23, Wuhan announced the lockdown of the city and other local 
governments called on people to reduce unnecessary outdoor activities and maintain social distance. (b) Map of 
high-risk group’s average effective contact frequency. (c) Contact strength before and after the Spring Festival. 
We divided the fourteen days into three slots: before the Spring Festival (January 22–January 23), the Spring 
Festival (January 24–February 2) and after the Spring Festival (February 3–February 4).
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Neural network classification.  After constructing the Shanghai contact networks, we trained the neu-
ral network under different hyper-parameter settings. We took the neural network with general cross entropy 
loss function as the baseline and compared the classification results of the neural network with weighted cross 
entropy loss function with it (Table 1). Except for the loss function, the neural network structure of baseline is 
the same as that adopted in our extreme events model. Our classification goal is to accurately find true positives, 
but people who are really likely to be infected account for a small part of the population. A large proportion of 
negative cases will make many indicators such as accuracy fail. For example, even if all positive cases are classi-
fied as negative, accuracy will equal the proportion of negative cases in the samples and the result will show very 
well. In our data set, the accuracy will never be lower than 99%, which makes no sense to measure the quality 
of the model. Conversely, recall can evaluate whether all actual positive examples have been predicted and can 
support our study objectives better.

The baseline recalls of two isolated group are only 1.89% and 0.00% respectively. However, by using the 
advanced extreme event neural network model, 70.85% of the isolators with a sojourn to epidemic hot zone can 
be identified successfully. Even if the highest recall of isolators without sojourn to epidemic hot zone is only 
31.19%, it is still significantly higher than that of baseline. The results show that our improved model is superior 
to the general neural network in extreme event prediction and can effectively identify the individuals who are 
included in the Shanghai CDC isolation list due to the different ways of contacts. According to the ablation 
experiment results, the model with Leaky ReLU slope of 0.01 and rare category weight proportion of 20% was 
selected to predict the exposure risk of all individuals.

COVID‑19 transmission risks in shanghai.  Since we have labeled the isolators into two categories, the 
regional transmission risk can be divided into the following two kinds correspondingly: one is the risk caused by 
the inflow of people from epidemic hot zones, and the other is the risk caused by close contacts within Shanghai. 
Figure 4a shows two types of COVID-19 transmission risks in Shanghai. As a whole, Shanghai transmission 
risk due to the epidemic hot zones’ people inflow was 30.76%, among which Pudong, Fengxian, Jiading, Jinshan 
and Chongming exceed the city average risk. In contrast, the transmission risk due to epidemic hot zones in 
Songjiang was the lowest, only 12.07%. That’s because Songjiang has a college town and large-scale industrial 
areas, a large number of students and migrant workers returned home as early as before the Spring Festival, and 
did not return until the observing period. Besides, Hongkou and Jing’an, which are located in the center of the 
city, have relatively low transmission risk due to the inflow from epidemic hot zones, which was about 15%. 
Meanwhile, the COVID-19 transmission risk due to close contacts in Shanghai was 7.9%, among which Qingpu, 
Putuo, Fengxian, Changning and Jinshan exceed the city average level. It is worth noting that the Shanghai Pub-
lic Health Clinical Center is located in Jinshan, where all isolators get the medical care. The centralized medical 
isolation may be one of the critical reasons for the high transmission risk caused by close contacts in Jinshan.

It can be seen from Fig. 4b that the areas with high total transmission risk of COVID-19 were mainly concen-
trated at the border of Shanghai. Pudong’s total risk was particularly high, reaching 66.55%. On the contrary, the 
total transmission risk in the center of Shanghai was relatively low. In terms of risk due to inflow from epidemic 
hot zones, the transmission risks in suburban streets were much higher than that in urban (Fig. 4c), especially 
the eastern, southern and northwestern borders of Shanghai. The streets of Pudong in particular deserve mention 
─ the transmission risks from epidemic hot zones of most streets were all greater than 60% except for Lujiazui 
and other minority areas. The streets with high risk due to close contact (Fig. 4d) were mainly concentrated in 
the west of Shanghai, and Xianghuaqiao street of Qingpu had the highest risk, with a risk of 36.51%. In addition, 
some streets located in urban, such as Caoyangxincun street and Ganquanlu street, also have high risk, reaching 
13.51% and 13.40% respectively.

Discussion and conclusion
In this paper, a regional epidemic transmission risk precaution based on machine learning is proposed. Firstly, we 
distinguish whether individuals appear at the same time through the trajectories recorded by their mobile phones 
and construct the contact networks according to the way they contact. Then, the contact network is transformed 
into an individual-centered contact feature matrix, and the extreme event neural network is used to classify the 
isolated people. Finally, according to the classification results, we select the optimal model to predict the prob-
ability of each individual becoming a high-risk infected person and estimate the regional transmission risks.

Table 1.   Recall of COVID-19 exposure risk in test set. *in order to study the influence of the loss function’s 
weight on the exposure risk prediction better, the weights of rare categories are not set as a constant value, but 
set as the proportion of training set sample size.

l

Weight*

Baseline20% 40% 60% 80%

Isolator with epidemic hot zone sojourn

0.01 70.85% 64.57% 63.82% 65.33%

1.89%0.02 57.94% 57.67% 60.85% 57.41%

0.03 54.32% 54.59% 60.27% 65.14%

Isolator without epidemic hot zone sojourn

0.01 18.35% 27.52% 24.77% 31.19%

0.00%0.02 16.36% 16.36% 18.18% 18.18%

0.03 18.70% 21.95% 20.33% 15.45%
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We conducted a large-scale experiment with about 7.5 million people in Shanghai at the beginning of the 
COVID-19 outbreak in 2020. In the case of extremely imbalanced samples, the model can predict the rare cat-
egories effectively, and the recall can reach more than 70% among the isolators with epidemic hot zone sojourn. 
However, the recall of the isolators without high-risk areas sojourn history is only 31.19%, but it is still higher 
than that predicted by general neural network. On the one hand, this kind of isolators only accounts for 0.0975% 
of the samples. The scarcity of such isolators not only makes it difficult to capture their contact features, but 
also the proportions of various groups in the data set will be seriously unbalanced, which also can easily lead 
to model misjudgment. On the other hand, the coverage of the sample is insufficient. Considering that there 
were 40.92 million mobile phone users in Shanghai in 2020, the sample of China Telecom’s mobile phone users 
is even less than one-fifth of Shanghai’s mobile phone market. Nevertheless, the COVID-19 cases used in this 
study only cover half of Shanghai and the cases in the other eight districts are not taken into account. Due to the 
limitation of experimental data, the whole population’s contact situation in Shanghai was not fully described 
when constructing contact network, which will have a negative impact on the prediction results of the model. 
However, as a whole, the precaution framework is of great significance for the regional transmission risk estima-
tion of COVID-19 and other similar epidemics.

Artificial intelligence has been widely adopted in many fields in our real life64–66, including the prevention 
and control of infectious diseases. Different from the previous studies on epidemic transmission through wear-
able devices or mobile phones, this machine learning based regional epidemic transmission risk precaution is 
completely bottom-up and can be used for early warning of regional epidemic on the premise of anonymity. 
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Figure 4.   COVID-19 transmission risks in Shanghai. (a) Two kinds of COVID-19 transmission risks in 
16 districts of Shanghai. (b) Map of Shanghai total transmission risk in district level. Baoshan, Jiading and 
Qingpu locate in the west of Shanghai, bordering Jiangsu Province; while Qingpu and Jinshan border on 
Zhejiang Province. According to Baidu Migration Index, Jiangsu and Zhejiang are the two major provinces of 
immigration to Shanghai from January 22 to February 4, 2020 (see more details in Supplementary Information). 
(c) Map of street-level transmission risk due to epidemic hot zones people inflow. (d) Map of street-level 
transmission risk due to close contacts within Shanghai.
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When facing the changes of regional isolation and flow restriction policies67,68, which are very common in real-
ity, this method has better flexibility and can make self-adaptive adjustment. In addition, using mobile phone 
signaling to estimate the risk of regional epidemic spread can provide effective auxiliary information support 
for government policy making and epidemic prevention work with high efficiency and low cost. Especially for 
low-income and middle-income countries, it can alleviate the financial difficulties caused by epidemic prevention 
and control. In order to implement effective intervention measures, it requires close interaction between policy 
makers and model prediction during the outbreak of epidemic69. But, remarkably, digital governance has raised 
the global concern on the citizens’ privacy protection when using public data70–72. Therefore, all countries need to 
strictly abide by the data privacy law when using trajectory data and the scope of data usage should be limited in 
accordance with the minimization principle, including obtaining the explicit consent of users, collecting as little 
information as possible and ensuring data security. At the same time, the data and information holders should 
guarantee the data privacy through emerging technology, such as desensitizing data, and reduce the possibility 
of data abuse from the source73.

As mentioned above, this method was proposed for regional epidemic transmission risk precaution. Its main 
purpose is to provide early warning before a large-scale epidemic outbreak and provide auxiliary information to 
decision makers. Labor loss, production suspension, trade obstruction, and rising market uncertainty may all 
become the consequences of national epidemic prevention policies. If the governors cannot balance the control 
measures and economic pressures well, an economic crisis may follow the pandemic74. By controlling the risk 
before the virus spreads widely, governors can moderate the enormous economic and social disruption caused 
by control measures for infectious diseases. Thus, the research design mainly focuses on the contact network 
and extreme events classification. On the one hand, we pay attention to the inflow risk from the external epic 
hot zone when calculating the contact strength; on the other hand, the transmission risk has a relatively long 
window period (14 days in the experiment), which has an impact on the contact strength and the individual 
centered contact feature. As a proactive prevention and control method, the best time for it to work is when 
there are only a few infected people because of the aforementioned mechanism design. Generally, the limitation 
of this risk precaution is that when a large-scale and mass outbreak occurs in the city, such as the Omicron virus 
pandemic in Shanghai in the spring of 2022, its early warning effect will be greatly reduced. The outbreak of the 
Omicron virus pandemic this time is so sudden that social resources such as the CDC, public health depart-
ments, communication operators and so on are fully occupied. Therefore, it is worthy to retrospectively analyze 
the differences of these two outbreaks in the future.

Data availability
The data that support the findings of this study are available from Shanghai Ideal Information Industry (Group) 
Co., LTD but restrictions apply to the availability of these data, which were used under license for the current 
study, and so are not publicly available. Data are however available from the authors upon reasonable request 
and with permission of Shanghai Ideal Information Industry (Group) Co., LTD.
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