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Parametric decay induced 
first‑order phase transition 
in two‑dimensional Yukawa crystals
Srimanta Maity   1* & Garima Arora   2

The melting process of two-dimensional (2D) Yukawa crystals for dusty plasma medium induced by 
external perturbations has been explored using molecular dynamics simulations. A 2D monolayer of 
particles interacting via Yukawa pair potential is formed in the presence of an external confinement 
potential. The confinement potential is a combined effect of the gravitational force and an externally 
applied electric force, which mimics the sheath electric field in dusty plasma experiments. The 
response of the 2D crystalline layer to an external perturbation is investigated. It is shown that 
transverse surface waves are generated below a particular threshold value of initial perturbation, 
but the crystalline order remains. However, above a threshold value of initial disturbance, the 
crystalline order structure of the 2D layer breaks, and it melts. The melting process is shown to be a 
first-order phase transition. We have demonstrated that the nonlinear amplitude modulation of initial 
disturbance through the parametric decay instability is responsible for the melting. Our proposed 
mechanism of first-order phase transition in the context of 2D dusty plasma crystal is distinctly 
different from the existing theoretical models. This research can provide a deeper understanding of 
the experimental observations in the context of plasma crystal.

Phase transition in a two-dimensional system has remained an unresolved mystery and an interesting research 
topic1–3. Two-dimensional systems can be realized in different contexts of physics, e.g., electrons on the surface 
of liquid helium4,5, ionic crystal6, colloidal medium7,8, and dusty plasma systems9–11. Melting in two-dimensional 
(2D) crystal follows a different mechanism from three-dimensional (3D) crystal and is a source of disputa-
tion. Mainly two theories have come up in the past that tried to interpret the experimental findings. The first is 
Kosterlitz–Touless–Halperin–Nelson–Young (KTHNY) theory1 which predicts a two-step melting process where 
the 2D crystal first transforms to an intermediate hexatic phase and then finally comes into a liquid phase. The 
phase transition is caused by the dislocation and disclination leading to the breaking of long-range order called 
the hexatic phase. The intermediate phase formation is continuous and leads to the second-order phase transi-
tion. Another well-known theory is grain-boundary induced (GBI)2 melting, which predicts a first-order phase 
transition without the appearance of a hexatic phase.

Dusty plasma medium is an ideal model system for studying the phase transition in 2D. This is because the 
time and length scales associated with the response of a dusty plasma medium are of the order of human per-
ceived scales and can be easily diagnosed in laboratory experiments. Dusty plasma medium consists of micron 
or sub-micron sized negatively charged particles in a plasma environment. These micron-sized charged parti-
cles can form a two-dimensional (2D) and three-dimensional (3D) ordered structure (also known as plasma 
crystal) under certain conditions, which are easily achievable in experiments. There are several experimental as 
well as theoretical studies on the formation of dusty plasma crystal12–15, static and dynamical phase behaviour 
of crystalline structure16–18, crystal cracking induced by energetic particles19, cluster formation20–22, and various 
dust lattice modes23–25.

Various experiments and simulations have been performed to study the characteristics, order, and origin of 
phase transition in 2D plasma crystals. Nosenko et al.26 experimentally observed the melting of laser-heated dust 
crystals which follows GBI theory. Recently, Vasilieva et al.27 used a laser to study the melting process induced in 
a 2D plasma crystal and showed clear-cut evidence of two-stage melting following KTHNY theory. Sheridan28 
performed numerical simulations of the experimental observations of melting of a 2D plasma crystal and the 
results agreed well with the experimental results and the KTHNY theory. Melzer et al.9 experimentally observed 
the melting of a two-layer plasma crystal and reported that their experimental findings could not be explained 
either by KTHNY1 theory or GBI2 theory of melting. A host of other works have also been reported and have 
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shown that plasma-induced instability could be the cause of the melting of a 2D dust crystal. Joyce et al.29 showed 
the first-order phase transition and demonstrated that ion dust two-stream instability is responsible for the melt-
ing of 2D crystal. Schwiggert et al.30 observed the self-excited vertical oscillation induced by plasma instability 
causes the melting of crystals. Samsonav et al.10 showed the melting of a 2D plasma crystal from a shock wave. 
Another well-known mechanism of instability-triggered phase transition is Mode Coupling Instability (MCI) 
originating from the ion wakes. The MCI occurs when the flowing plasma forms the ion wakes and interacts with 
the dust particles through the nonreciprocal interaction. Thus, the system becomes non-Hamiltonian, and energy 
from the flowing ions is converted into the kinetic energy of micro-particles initiating the melting of the entire 
crystal. Ivlev and Morfill25 provided a theory of MCI for the first time where they showed the resonant coupling 
of Dust-Lattice (DL) modes in the presence of ion wakes could trigger an instability. Couëdel et al.31 reported 
the first ever experimental observation of melting of a 2D plasma crystal due to mode coupling. However, Liu 
et al.32 experimentally demonstrated that the coupling of dust lattice modes could occur in a perfectly stable 
dusty plasma crystal, without melting. In a nutshell, the universality in the melting behavior of a 2D complex 
plasma crystal is still uncertain.

In the present work, we have suggested a new mechanism of first-order phase transition which is distinctly dif-
ferent from the past theoretical models. We have explored the first-order phase transition of a 2D plasma crystal 
confined in a parabolic potential well using 3D MD simulations. In particular, we have studied the response of 
a 2D crystalline monolayer to an externally imposed initial perturbation. The initial disturbance is induced by 
displacing some particles at the center in the downward direction. The perturbed particles radiate their energy 
by circular transverse waves propagating outward in the x–y plane. However, the crystalline structure melts with 
a first-order phase transition above a threshold value of initial perturbation. The structural properties have been 
characterized using the Voronoi diagram and the pair correlation function. The sharp jump or discontinuity in 
various parameters like the Lindemann ratio, order parameter, and Coulomb coupling parameter confirms that 
the order of phase transition is first-order. Thus, the KTHNY theory of melting associated with the intermediate 
hexatic phase (second-order phase transition) could not explain our simulation observations. We have observed 
that the meting is initiated at the center of the monolayer and propagates radially outward. Hence, the first-order 
melting transition observed in our study is dissimilar from the characteristics of the GBI theory. Also, in our case, 
the absence of anisotropic ion-wake potential rules out the possibility of MCI25. We have demonstrated using 
MD simulations that the parametric decay instability is responsible for the melting of a crystalline plane. Para-
metric Decay Instability (PDI) of dust lattice waves has been studied theoretically by Shukla33 showing a phase 
transition of a dusty plasma medium from solid to gas-like state. PDI are also observed in many other aspects of 
plasma physics, e.g., ionosphere34, inertial confinement fusion35, magnetic confinement fusion36, laser-plasma 
interactions37,38, laser wake field acceleration39. The PDI is the nonlinear process of transferring the energy of a 
pump wave into other waves. Any mode can participate in PDI if it crosses a certain threshold of nonlinearity. 
Parametric decay instability is closely related to the modulational interactions40. In our simulations, we have 
shown that the amplitude of initial perturbation gets modulated through PDI, and above a threshold value of 
perturbation, it initiates melting.

This paper has been organized as follows. First, we describe the simulation setup. Then, in various subsec-
tions the response of a 2D plasma crystal to an external perturbation has been discussed. Initially, we show the 
generation of transverse circular waves and a first-order phase transition from solid to liquid phase. Later, we 
describe the origin of phase transition. Finally, we provide a summary of this work.

MD simulation details
In this work, three-dimensional (3D) molecular dynamics (MD) simulations have been carried out to investi-
gate the response of a 2D crystal under external perturbations. An open-source classical MD code LAMMPS41 
has been used for this purpose. Initially, ten thousands identical point particles, representing dust grains, are 
randomly distributed in a 3D simulation box with lengths Lx = Ly = Lz = 10 cm in x̂ , ŷ , and ẑ directions, 
respectively. The system parameters considered in our simulation study are as follows42. The charge and mass 
of the particles are chosen to be Q = 10000e , and md = 5× 10−13 Kg, respectively. Here, e is the charge of an 
electron. The plasma Debye length is considered to be �D = 1.128× 10−3 m. We have also carried out simula-
tions with different values of �D and found that the physical phenomena presented here remains the same. For 
our chosen values of number of particles ( N = 10000 ) and lengths of the simulation box in x–y plane (i.e., Lx and 
Ly ), the 2D number density of the monolayer is given by n = 1.0× 106 m−2 , which corresponds to an average 
inter-particle distance a = 1/

√
nπ = 5.64× 10−4 m. Thus, the value of the screening parameter is calculated 

to be κ = a/�D = 0.5 . For these parameters, the characteristics dust plasma frequency is given by ωpd = 22.668 
Hz. The time steps of the simulation runs are considered as dt = 0.01ω−1

pd  , which is small enough to resolve the 
fastest dynamics associated with the dust grains. In our simulations, particles interact via Yukawa or screened 
Coulomb pair potential, U(r) = (Q/4πε0r) exp (−r/�D) . Here, ε0 represents the electric permittivity in free 
space. In addition to the Yukawa pair interaction, particles are also subjected to the force due to gravity, mdg ( −̂z ) 
acting vertically downward, and the force associated with an externally applied electric field QEext = A exp−αz 
( ̂z ) acting vertically upward for the negatively charged particles15. These two forces provide a vertical confinement 
potential with a parabolic form, as shown in Fig. 1. We have chosen the parameters A and α so that particles 
organize themselves in a 2D monolayer in the x–y plane levitating at a height z = Lz/2

15. The boundary condi-
tions in x̂ and ŷ directions are taken to be periodic.

In our simulations, we have used a Nose Hoover thermostat43,44 to thermally equilibrate the system with the 
desired temperature T0 associated with the Coulomb coupling parameter Ŵ = Q2/4πε0kBT0 = 1000 . Here, kB 
is the Boltzmann constant. Once the system reaches the thermal equilibrium state, we have disconnected the 
thermostat and let the system evolve in a micro-canonical (NVE) ensemble where the total number of particles 
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N, the volume of the simulation box V, and total energy E remain constant. The time scales, length scales, and 
energies are normalized by ω−1

pd  , a, and kBT0 , respectively.

Results and discussion
Initially, we obtained a hexagonal monolayer crystalline structure using MD simulation. For our chosen values 
of parameters, e.g., κ and α , this monolayer levitates at the location of minimum (i.e., z = L/2 ) of the effective 
external potential energy Veff  . The Veff  has contributions from gravitational energy and energy associated with 
the externally applied electric field in the vertical ( ̂z ) direction. The profile of Veff  as a function of z has been 
shown by the schematic in Fig. 1, and it is seen that Veff  has a parabolic shape. We have perturbed a few particles 
initially located within a small radius R from the center of the monolayer structure by displacing them with a 
distance d along −ẑ direction. The schematic has clearly illustrated this in Fig. 1. These perturbed particles will 
start a vertical oscillation around the monolayer under effective parabolic potential Veff  . Their motion will induce 
a disturbance in the monolayer crystalline structure. We have presented various features of our observations in 
the following subsections.

Surface wave generation and first‑order phase transition.  The particles displaced from the equilib-
rium monolayer crystal acquire oscillating vertical velocity due to the restoring force of the parabolic potential 
well. The amplitude of their velocity increases with an increase of initial displacement d. However, the frequency 
of their vertical oscillations only depends upon the profile of Veff  . The parameter α defines the sharpness of Veff  . 
Thus, for a particular value of Q and md , as long as α is kept constant, vertical oscillation frequency does not 
change with the value of initial displacement d. As the initially displaced particles in the central regime of the 
monolayer start to oscillate around it, they impart their energy to the surrounding particles residing in the mon-
olayer crystal via pair interactions. As a result, a transverse surface wave is initiated, spreading in the x–y plane 
of the monolayer from its central regime. This has been demonstrated in Fig. 2. The space distributions of vz in 
the x–y plane have been shown in Fig. 2 at two particular instants of time ωpdt = 200 and 1000 for four different 
simulation runs with changing values of d. It is seen from the pseudo-color plots in subplots (a1)–(d1) of Fig. 2 
that at time ωpdt = 200 for all the four cases, the ẑ component of particle’s velocity vz forms circular wavefronts 
in the x–y plane. This is because transverse surface waves with particle’s motions in the vertical directions ( ±ẑ ) 
have been initiated and spread up to a certain radius beyond the initially perturbed circular region in the plane 
of monolayer crystal. The later stage of the evolution at time ωpdt = 1000 has been shown in subplots (a2)–(d2) 
of Fig. 2. It has been observed that for d = 1.22a and d = 1.50a , circular wavefronts are continue forming and 
spreading away from the perturbed region, as shown in subplots (a2) and (b2) of Fig. 2. Whereas for d = 1.51a 
and d = 1.72a , we have observed that the regular circular fronts of vz are not there. Instead, vz is distributed 
randomly in the x–y plane, as illustrated in subplots (c2) and (d2). It is also seen from these two pseudo-color 
plots that the particles at the central regime remain more energetic than the outer portion of the monolayer 
crystal. The supplementary videos (.mpg files) created using VMD45 illustrate particle trajectory evolutions for 
d/a = 1.50 and d/a = 1.51 , respectively.

To further analyze, we have also probed the x̂ and ŷ components of velocity of the particles forming monolayer 
crystal. The velocity distribution functions f (vx) associated with x̂-component of velocity ( vx ) have been evalu-
ated for different simulation runs with changing values of d and are shown in Fig. 3. The distribution functions 
associated with the ŷ-component of velocity are the same as f (vx) because of the symmetry in the x–y plane. We 
have evaluated the f (vx) for two different instants of time in each cases, as shown in Fig. 3 by the blue-marked 
line for ωpdt = 0 (initial time of perturbation) and red-marked line for ωpdt = 3000 (final steady-state). The 
distribution functions have remained unchanged except for a slight broadening from their initial profiles for 
d = 1.22a and 1.50a, as illustrated in subplots (a) and (b), respectively. However, it is interesting to see from 
subplots (c) and (d) that f (vx) has broadened significantly in simulation runs with d = 1.51a and 1.72a. Thus, 

Figure 1.   The schematic of the simulation setup has been shown here. Forces due to gravity ( mdg ) and due 
to the externally applied electric field ( QEext ) have been applied in the vertically opposite directions (i.e., ±ẑ ), 
resulting in the formation of a monolayer crystal. The effective external potential energy Veff  contributed from 
gravity, and externally applied electric potential has a parabolic shape along ẑ with a minimum located at 
z = Lz/2 . Boundary conditions in the x–y plane are considered to be periodic. Particles within a small circular 
region of radius R in the central portion of the monolayer crystal are displaced vertically by a distant d from 
their equilibrium positions.
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the root-mean-square (RMS) values of vx have increased in time for d = 1.51a and 1.72a, and the same is true 
for vy too, indicating an increase in temperature of the monolayer.

It would be interesting to see the effect of the initial perturbation on the structural properties of the monolayer 
crystal. For this purpose, we have evaluated pair correlation function g(r) at a particular time ωpdt = 3000 for 
different simulation runs with changing values of initial perturbation i.e., d. The pair correlation function, also 
known as the radial distribution function, is an important parameter identifying the long-range spatial order in 
an arrangement of particles. It is defined as,

where 〈...〉 represents the ensemble average. Here, Nr(r, dr) defines the number of particles can be found within 
a circular strip between radius r and r + dr away from a reference particle. The parameter ρ represents the 
average number density of the monolayer, i.e., N/(LxLy) , where N is the total number of particles forming the 

(1)g(r) =
〈

Nr(r, dr)

ρ2πrdr

〉

,

Figure 2.   The profile of the vertical component of velocity vz in the x–y plane has been shown here by the 
pseudo-color plot. In the subplots (a1)–(d1), we have shown vz profiles for four different simulation runs with 
(a1) d/a = 1.22 , (b1) d/a = 1.50 , (c1) d/a = 1.51 , and (d1) d/a = 1.72 at a particular time ωpdt = 200 . The 
same at a particular simulation time ωpdt = 1000 has been shown in subplots (a2)–(d2), respectively. Here, the 
velocities are normalized by equilibrium thermal velocity ( vth =

√
kBT0/md  ) of dust particles.

Figure 3.   Velocity distribution functions f (vx) for the x-component of velocity vx have been shown at two 
different instants of time ωpdt = 0 (blue triangles), and ωpdt = 3000 (red dots). In subplots (a)–(d), the f (vx) 
have been evaluated for the simulation runs with d/a = 1.22 , 1.50, 1.51, and 1.72, respectively.
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monolayer. Sharp multiple periodic peaks in the profile of g(r) in each cases for d = 1.22a and 1.50a is observed, 
as illustrated in subplot (a) of Fig. 4. This confirms that in these cases, the initial crystalline order structures are 
still retained at ωpdt = 3000 after the initial perturbation. Whereas for the simulation runs with d = 1.51a and 
1.72a, it is seen that only the first two peaks appear in the profile of g(r) demonstrating a typical characteristic 
of a liquid, as depicted in subplot (b) of Fig. 4. We have also estimated the bond order parameter ψ6 by calculat-
ing the local bond angle for each particle with its neighboring particles and then averaged over all the particles. 
At ωpdt = 3000 , for d/a = 1.22 and 1.50, its value comes out to be 0.88, representing hexagonal crystalline 
structure. Whereas, for simulation runs with d/a = 1.51 and 1.72, the value of ψ6 comes out to be 0.1, typically 
defines a liquid state.

To further analyze the effect on the structural configuration of particles under the influence of initial perturba-
tion, we have constructed Voronoi diagrams using (x, y)-coordinates of particles obtained in different simulation 
runs with changing values of d. A comparison of the nature of Voronoi diagrams for four different values of d can 
be seen in subplots (a)–(d) of Fig. 5. The hexagonal Voronoi cells are marked by green color. The red, blue, and 
cyan color patches correspond to other polygons. It is seen that for d = 1.22a and 1.50a, hexagonal structures 
dominate throughout the Voronoi diagrams, as demonstrated in subplots (a) and (b) of Fig. 5. However, for the 
simulation runs with d = 1.51a and 1.72a, the hexagonal symmetry is destroyed. The five-fold, seven-fold, and 
other Voronoi cells appear throughout the Voronoi diagrams, as can be seen in subplots (c) and (d) of Fig. 5. 
These observations confirm the findings in the pair correlation function analysis shown in Fig. 4. The outcomes 
of structural analysis using the pair correlation function and Voronoi diagrams demonstrate that above a critical 
value of d (e.g., d > 1.50a ), both short-range and long-range orders of particle’s arrangement in the monolayer 
crystal are destroyed, indicating a crystalline to a liquid phase transition.

To further explore this phase transition process, we have calculated a structural order parameter ( Sp ), defined 
as Sp = (Nhc/Ntc)× 100 (in % ), from the Voronoi diagram analysis. Here, Nhc is the number of hexagonal 
cells, and Ntc defines the total number of polygons in the Voronoi diagram. The time evolution of Sp calculated 

Figure 4.   Pair correlation functions (g(r)) evaluated at a particular time ωpdt = 3000 have been shown in 
subplots (a) and (b) for four different simulation runs with d/a = 1.22 , 1.50, 1.51, and 1.72.

Figure 5.   Voronoi diagrams obtained from the particle configuration in the x–y plane have been shown for the 
cases with (a) d/a = 1.22 , (b) d/a = 1.50 , (c) d/a = 1.51 , and (d) d/a = 1.72 at a particular time ωpdt = 3000 . 
Here, the green color patches represent the hexagonal symmetry. Color patches except green have represented 
Voronoi cells which are not hexagonal.
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in different simulation runs is shown in Fig. 6. It is seen that for d = 1.22a and d = 1.50a , order parameter Sp 
decreases initially with time and attains a minimum value. As time evolves, it is observed that Sp starts to increase 
from its minimum value in each case, with the final values remaining above 90% . This has been illustrated in 
subplot (a) of Fig. 6. Whereas, for the simulation runs with d = 1.51a and d = 1.72a , it is observed that as time 
evolves there is a steady decrease in Sp from its initial value ( ≈ 95% ) and finally saturates at a very low value 
( ≈ 45% ), as depicted in subplot (b) of Fig. 6. These results are consistent with the outcomes of structural analysis 
using g(r) and the Voronoi diagram. This is another demonstration of crystal to liquid phase transition initiated 
due to the initial perturbation above a critical value of d.

To ascertain the order of the phase transition, a large set of simulations were carried out with varying vertical 
displacement (d) of the particles initially located at the central regime of the monolayer crystal. In these simula-
tion runs, we had chosen two cases of initial perturbations to support our observations by considering the radius 
of the perturbed region to be R = 8a and 10a. We have evaluated three different parameters: (i) structural order 
parameter Sp , (ii) Lindemann parameter γm , and (iii) Coulomb coupling parameter Ŵ to characterize the nature 
of the phase transition. All these three parameters have been calculated at the final steady-state of the simulation 
runs and are averaged over time. The structural order parameter ( Sp ) representing the fraction of the hexagonal 
structures present in the particle configuration has been shown in the subplot (a) of Fig. 7. It is seen that there 
is a sudden jump in the order parameter Sp after a certain threshold value ( dth ) of d. This happens in each cases, 
i.e., both R = 8a and 10a. This clearly demonstrates a first-order phase transition resulting in the melting of the 
monolayer crystal. However, the value of dth decreases with an increase of radius R. Another first-hand diagnostic 
tool to identify the melting of a crystal is the Lindemann parameter representing the root-mean-square amplitude 
of thermal vibration46,47. It is defined as48,

where dr represents the distance between two neighboring particles and � defines the average lattice constant 
obtained from the position of the first peak of g(r) in the corresponding crystalline phase. In the subplot (b) of 
Fig. 7, we have shown the variation of Lindemann parameter γm with the changing values of d. In this case, it is 
seen that after a threshold value of d, γm increases abruptly due to a slight increase of initial perturbation d. This 
phenomenon also happens for the coupling parameter Ŵ , as shown in the subplot (c) of Fig. 7. In these cases 
also, it is seen that dth , the threshold value of d at (or above) which the first-order melting transition takes place, 
decreases with the increase of R. Thus, in conclusion, a first-order melting transition occurs in a monolayer 
Yukawa crystal above a certain threshold value of initial perturbation. This threshold value decreases with the 
strength of the perturbation. The fundamental origin behind this phase transition has been discussed in the 
following subsection.

(2)γm =
√

< (dr− < dr >)2 >

�
,

Figure 6.   Time evolutions of structural order parameter Sp (in % ) for four different values of d have been shown 
in subplots (a) and (b).

Figure 7.   Variations of (a) structural order parameter Sp (in % ), (b) Lindemann parameter γm , and (c) coupling 
parameter Ŵ with displacement d have been shown for two different radii of the perturbed region, R = 10a , and 
8a.
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Amplitude modulation via parametric decay.  To identify the origin of melting at the particle level, 
we randomly chose a particle initially located within the perturbed circular region of radius R = 10a . We 
have tracked the z-coordinate of this particle with time for two different simulation runs with d/a = 1.50 and 
d/a = 1.51 . It is to be noticed that the effective external potential energy has a parabolic form along ẑ , as has 
been shown in Fig. 1. Thus, if we displaced a particle vertically, it should oscillate sinusoidally along ẑ with a 
particular frequency depending upon the parameter α representing the strength of the vertical confinement 
potential.

The time evolution of the z-coordinate of the chosen particle and the corresponding Fourier spectra have 
been depicted in Fig. 8 for two cases, (i) Case-I and (ii) Case-II. In Case-I, we have tracked the time history 
of z-coordinate at the initial stage of evolution, i.e., from time ωpdt = 0 (time of the initial perturbation) to 
ωpdt = 340 . Case-II represents the dynamics at the later stage of the simulation run, i.e., from time ωpdt = 340 
to ωpdt = 500 . In both cases, we have evaluated the Fourier spectra of z and zmax , i.e., maximum values of z from 
the corresponding time series data. The Case-I has been demonstrated in subplots (a)–(c) of Fig. 8. Subplots 
(d)–(f) of the same figure represent the Case-II. In both case-I and case-II, we have considered two types of 
initial perturbation, i.e., d/a = 1.50 (red line) and d/a = 1.51 (blue line).

In subplot (a) of Fig. 8, it is seen that initially, up to ωpdt ≈ 50 , the particle oscillates sinusoidally with a 
constant amplitude around a mean value of z/a ≈ 8.9 , i.e., around the background monolayer crystal. How-
ever, as time goes on, periodic sinusoidal waveform breaks into a train of pulses, forming envelope structures 
for both the values of d. This is a manifestation of amplitude modulation (AM) of the oscillatory motion of 
the perturbed particle. If we initially displace all the particles from their equilibrium positions in the vertical 
direction, the entire monolayer crystal exhibits sinusoidal periodic oscillation around its equilibrium position. 
In that case, the structural configuration in the x–y plane of the monolayer crystal does not suffer any change, 
and the sinusoidal form of the vertical oscillatory motion of the particle does not break into a train of pulses. 
Thus, the finite boundary of the perturbed region, where the initially perturbed particles and the unperturbed 
particles of background monolayer crystal interacts, is responsible for such amplitude modulation. For both the 
values of initial perturbation, i.e., d/a = 1.50 (red solid line) and d/a = 1.51 (blue dashed line), Fourier spectra 
of z show two side-band frequencies instead of showing a peak at a particular frequency (associated with the 
external confinement potential). It is also seen that the difference between these two side-band frequencies is 
dω ≈ 0.1ωpd and this is the same for both the cases of initial perturbation. The Fourier spectrum of zmax shows 
a distinct peak at a particular value of ω ≈ 0.1ωpd for both the values of initial perturbation d, as illustrated in 
subplot (c) of Fig. 8. This corresponds to the frequency of the train of pulses (beat). Thus, the beat frequency 
originated due to the amplitude modulation of the initial perturbation is the same as the difference between 
two side-band frequencies of the oscillatory motion of the particles. Therefore, the amplitude modulation of the 
initial perturbation occurs due to the parametric decay instability, where the frequencies satisfy the three-modes 
resonance condition, i.e., ω3 = ω2 ± ω1.

Figure 8.   The time evolution of z-coordinate and the corresponding Fourier spectra of a randomly chosen 
particle, which was initially located within the radius R = 10a , have been shown for two different initial 
perturbations with d/a = 1.50 , and d/a = 1.51 . We have considered two cases, Case-I and Case-II. In Case-I, 
we have considered the time from ωpdt = 0− 340 . The time series data of z(t) (a), the absolute of Fourier 
spectrum of z(t) (b), and zmax(t) (c). Subplots (d)–(f) represent the same for Case-II, where we have considered 
the time to be in between ωpdt = 340− 500.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20430  | https://doi.org/10.1038/s41598-022-24988-8

www.nature.com/scientificreports/

It becomes more interesting when we analyze the results at the later stage of evolution (Case II) shown in 
subplots (d)–(f) of Fig. 8. For the initial perturbation d/a = 1.50 , the regular train of pulses originated by the 
amplitude modulation via parametric decay process retains their forms even at the later times of evolution, as 
can be seen from subplot (d) of Fig. 8. The Fourier spectra of z and zmax shown in subplots (e)–(f) by solid red 
lines also confirm our observation. However, a drastic change in the dynamics has been observed in the later 
stage of evolution due to a slight increase in initial perturbation ( d/a = 1.51 ). It is seen from the subplot (d) 
of Fig. 8 (blue dashed line) that the regular pulse-shaped wave packets, which were formed at initial times due 
to amplitude modulation, start to deform as time evolves. The amplitude of these pulses also starts to decrease 
drastically. The Fourier spectra shown in subplots (e) and (f) also reveal this drastic change due to the slight 
increase of initial perturbation. Two side-band frequencies, which are the signature of amplitude modulation, 
are still present in the Fourier spectra of z for d/a = 1.50 (solid red line). On the contrary, for d/a = 1.51 (blue 
dashed line), Fourier spectra of z now broaden instead of showing peaks at side-band frequencies. It is seen that 
at the later stage of time evolution, instead of having a single peak at a particular frequency, which corresponds 
to the beat frequency, multiple peaks with low amplitudes appear in the Fourier spectra of zmax as we increase 
the initial perturbation from d/a = 1.50 to d/a = 1.51 . This has been depicted in the subplot (f) of Fig. 8. Thus, 
the Fourier spectra of z and zmax indicate that multiple irregular beat waves (train of pulses) generate at later 
times for d/a = 1.51.

All the simulation observations presented in this paper can be understood qualitatively from the analysis 
shown in Fig. 8. In the previous subsection, we have shown that for all the cases of initial perturbation, up to 
a certain time of evolution, the imparted energy is transmitted from the perturbed central region to the entire 
crystal through the coherent transverse wavefronts. However, at a later time, only above a certain threshold value 
of initial displacement ( dth ), the coherent wavefronts are no longer generated. Instead, the initially imparted 
energy is randomized, resulting melting of the entire crystal. This is the consequence of amplitude modulation 
of the initial perturbations through parametric decay, as demonstrated in Fig. 8. Here, we have shown that at 
the initial stage of the evolution, for both the values of initial displacement, the amplitude of the oscillatory 
motion of perturbed particles gets modulated, forming beat waves with a particular frequency. This is the origin 
of coherent transverse wavefronts shown in Fig. 2. However, at the later stage of evolution, for a particular value 
of initial perturbation ( d/a = 1.51 ), the coherency of the beat wave breaks into low amplitude multiple pulses 
with different frequencies. This causes the randomization of initially imparted energy and, essentially, the melt-
ing of the entire crystal.

The time evolution of mean kinetic energy associated with the in-plane ( ̂x − ŷ ) and out-of-plane ( ̂z ) veloc-
ity components has been shown in Fig. 9. For both the values of d, envelope structures appear in the profile of 
Kz , as shown by the red dashed lines in subplots (a) and (b) of Fig. 9. This is also the consequence of amplitude 
modulation of vertical oscillations of perturbed particles. It is interesting to observe that for d/a = 1.50 [subplot 
(a)], there is no significant exchange between the in-plane kinetic energy ( Kxy ) and out-of-plane kinetic energy 
( Kz ). Thus, the mean value of Kz does not change. Only the amplitude of envelopes decreases with time. This 
is because the vertical oscillation energy of the perturbed central region is transmitted via transverse surface 
waveforms throughout the crystalline plane without increasing vx and vy . However, for d/a = 1.51 , after a certain 
time, Kxy starts to increase drastically at the cost of Kz , as shown in the subplot (b) of Fig. 9. These observations 
are consistent with the analysis reported in Fig. 8.

To further characterize the melting dynamics initiated at the 2D crystalline plane, we have considered three 
cases of initial perturbation: (a) d/a = 1.51 , (b) d/a = 1.63 , and d/a = 1.72 . The in-plane kinetic energy ( Kxy ) 
in the x − t plane, averaged over a narrow strip along ŷ around the middle of the monolayer, has been shown for 
these three cases in Fig. 10(a)–(c), respectively. It is seen that the distribution of Kxy in x − t plane with higher 
values gets wider as we increase the strength of the initial perturbation. Thus, the velocity of the melting front, 
which propagates radially outward from the perturbed central region, increases with an increase in initial per-
turbation strength. In Figs. 8 and 9, it has been revealed that it takes a certain time to initiate melting where a 
drastic increase of Kxy is observed. The delay in initiating the melting is related to the time it takes a parametric 
decay instability to excite a significant number of unstable modes. This phenomenon has also been captured in 
Fig. 10. Furthermore, it is also seen that the threshold time to initiate the melting decreases as we increase the 

Figure 9.   Time evolution of kinetic energy Kz , associated with the ẑ-component of the velocity (red dashed 
line) and Kxy , associated with the x̂ and ŷ-components of the particle’s velocity (blue solid line) have been shown 
for (a) d/a = 1.50 and (b) d/a = 1.51 . The kinetic energies are normalized by kBT0 where kB is the Boltzmann 
constant and T0 is the equilibrium temperature of dust particles.
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strength of the initial perturbation, i.e., with the increase of nonlinearity in the initial perturbation. We have also 
done Langevin dynamics simulations to include the frictional drag force which is typically present in laboratory 
dusty plasmas. These results are shown in the Supplementary material.

Summary
In this work, we have investigated the response of a two-dimensional (2D) crystalline medium under external 
perturbations. In particular, we have carried out three-dimensional MD simulations to explore the melting 
process of a 2D ordered structure induced by an initially imposed disturbance. A system of charged particles 
interacting via Yukawa pair interaction has been considered as a test bed medium. In addition to their pair 
interaction, particles are also subjected to an effective external potential confining them along the vertical ( ̂z ) 
direction. Under the chosen values of system parameters, it has been shown that particles levitate in a single 2D 
layer in the x–y plane, arranging themselves in a crystalline configuration. We imposed a disturbance in this 
stable crystalline layer by displacing particles initially located within a small circular region around the center 
of the crystalline plane along the ẑ direction. Since the vertical confining potential profile has a parabolic form, 
the displaced particles exhibit oscillatory motion in the ẑ direction. In our simulations, we have identified that 
below a certain value of initial displacement, the externally imposed energy transforms into a train of circular 
wavefronts propagating radially outward in the x–y plane from the region of initial perturbation. These circular 
electrostatic waves are transverse in nature, where particles collectively oscillate along the vertical direction. In 
these cases, it has been shown that the 2D layer retains its crystalline phase with a slight increase of kinetic energy 
associated with the x̂ and ŷ components of particles’ velocity. However, above a critical value of initial perturba-
tion, it has been shown that the crystalline order of the 2D layer breaks, and a first-order transition from solid 
to liquid phase occurs. The critical point of phase transition is shown to be depended upon the strength of the 
initial perturbation. In our study, we have demonstrated that the nonlinearity in amplitude modulation of initial 
perturbation via parametric decay instability is responsible for the first-order phase transition. Our findings can 
be the basis of a deeper understanding of stability and phase dynamics of a wider set of two-dimensional strongly 
coupled systems, e.g., dusty plasma and colloidal medium.
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