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OPEN A novel Human Conception

Optimizer for solving optimization
problems
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Computational techniques are widely used to solve complex optimization problems in different fields
such as engineering, finance, biology, and so on. In this paper, the Human Conception Optimizer
(HCO) is proposed as a novel metaheuristic algorithm to solve any optimization problems. The idea
of this algorithm is based on some biological principles of the human conception process, such as the
selective nature of cervical gel in the female reproductive system to allow only healthy sperm cells
into the cervix, the guidance nature of mucus gel to help sperm track a genital tracking path towards
the egg in the Fallopian tube, the asymmetric nature of flagellar movement which allows sperm

cells to move in the reproductive system, the sperm hyperactivation process to make them able to
fertilize an egg. Thus, the strategies pursued by the sperm in searching for the egg in the Fallopian
tube are modeled mathematically. The best sperm which will meet the position of the egg will be the
solution of the algorithm. The performance of the proposed HCO algorithm is examined with a set of
basic benchmark test functions called IEEE CEC-2005 and IEEE CEC-2020. A comparative study is also
performed between the HCO algorithm and other available algorithms. The significance of the results
is verified with statistical test methods. To validate the proposed HCO algorithm, two real-world
engineering optimization problems are examined. For this purpose, a complex 14 over-current relay
based IEEE 8 bus distribution system is considered. With the proposed algorithm, an improvement of
50% to 60% in total relay operating times is observed comparing with some existing results for the
same system. Another engineering problem of designing an optimal proportional integral derivative
(PID) controller for a blower driven patient hose mechanical ventilator (MV) is examined. A significant
improvement in terms of response time, settling time is observed in the MV system by comparing with
existing results.

The optimization method is a numerical computational method to find the optimal solution of a real-time prob-
lem in a diversified field such as engineering, management, finance and so on'-°. Analytical optimization methods
are complex and time-consuming processes to get an optimal solution of a complex optimization problem. Again,
heuristic optimization methods are problem-dependent techniques’. They need particularities of an optimization
problem. They are too greedy to get trapped in a local solution. Meta-heuristic methods are problem independent.
They can provide an acceptable solution without guaranteeing optimality®. A simple concept can be implemented
easily to make a metaheuristic algorithm to solve a complex problem quickly. Such algorithms can be applied
in any optimization problem without altering the structure of the algorithm. In comparison to analytical based
optimization algorithms, a metaheuristic algorithm is free from derivation action to find optimal solution. Thus,
areal time problem can be solved by any metaheuristic algorithm where it needs only the information of input
and output of the system®. Therefore, researchers are giving priority to develop metaheuristic algorithms using
natural concepts such as the concept of evolution, the behaviour of natural creatures and hunting procedure
followed by animals, and so on®™'!.

In metaheuristic algorithms, they start with exploring new solutions and transmitting them to exploit the
best solution for a given problem'!. In the exploitation phase of the metaheuristic algorithm, a new solution is
produced based on the best solution available in the population. Thus, metaheuristic algorithms use an explo-
ration and exploitation process to avoid local trapping problems and converge towards the optimal solution.
Moreover, by striking a proper balance in the exploration and exploitation phases of such an algorithm, the local
optimality problem of traditional methods can be avoided'>**.

Department of Electrical and Electronics Engineering, National Institute of Technology Nagaland, Dimapur 797103,
India. *“email: dushmantakumardas29@gmail.com

Scientific Reports |

(2022) 12:21631 | https://doi.org/10.1038/s41598-022-25031-6 nature portfolio


http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-25031-6&domain=pdf

www.nature.com/scientificreports/

In this paper, the Human Conception Optimizer (HCO) is proposed as a novel metaheuristic algorithm to
solve any optimization problems. The HCO algorithm is inspired by the biological principle of natural human
conception. For successful natural conception by a female, the fittest sperm of a male must fertilise a mature egg.
The movement of sperm in the genital tracking path towards the egg is a unique characteristic. Sperm also use
a unique technique to avoid environmental obstacles in the female reproductive system'*. In Ref.", the authors
have proposed a sperm motility algorithm (SMA) using the principle of chemoattractant secreted by the ovum
to guide sperm movement in the female reproductive system. In Ref.', the authors have proposed a Sperm
Swarm Optimization (SSO) algorithm based on the temperature guidance for sperm to search for the egg in the
female reproductive system. In Ref.'’, the authors have proposed a multi-objective sperm fertilization procedure
(MOSEP) as a modified form of SSO for multiobjective optimization problems. The general principles of natural
conception have been used to develop novel algorithms'>~*”. The conception process from the point of view of
sperm movement towards the egg in the female reproductive system is modeled in this paper. The concept of the
natural selection of healthy sperm allowed by cervical gel to enter into the cervix, their unsymmetrical trajectories
during movement, sperm guidance mechanism, flaggers’ moving characteristics with very spatial hyperactiva-
tion principle of sperm during the fertilisation of a mature egg are utilised as the ideas of the proposed Human
Conception Optimizer (HCO) algorithm. Such concepts are utilized for the first time to develop a metaheuristic
algorithm. The efficiency of the proposed algorithm is validated with standard IEEE CEC-2005 and CEC-2020
benchmark functions. A comparative study is also performed between the HCO algorithm and some existing
algorithms for the benchmark functions. The statistical significance of test results is also studied with two types
of non-parametric tests, such as the Friedman test and the Wilcoxon signed rank test. The applicability of the
HCO algorithm in engineering problems has been validated for two different cases. In the first case, the optimal
coordination of over-current relays in a power distribution network is studied for an IEEE 8-bus system. In the
second case, an optimal PID controller is designed for the human respiratory ventilation system.

Related works
In the literature, different analytical solutions are found, such as Quadratic Programming (QP), Dynamic Pro-
gramming (DP), Lagrangian method for optimization problems. All such methods are based on deferential
operators. They start searching for an optimal solution nearest to the initial point. Insufficient gradient data may
lead them to a local solution. Thus, a limited application of such methods is found for real-world, complex opti-
mization problems. In this regard, metaheurestic methods are found to be better than analytical methods in the
literature'=>. There are mainly three types of metaheuristic algorithm found in literature such as: physics based,
swarm intelligence based and evolutionary metaheuristic algorithm. In evolutionary metaheuristic algorithms,
the laws of natural evolution are used'?. The search technique begins with a random generation population
where the best solutions are combined and mutated to form new solutions. Genetic algorithm (GA)" is one of
evolutionary algorithms based on the Darwinian evolution concept. Other evolutionary algorithms are such as
Evolution Strategy (ES)"°, Genetic Programming (GP)® etc. Some metaheuristic algorithms are inspired by well-
known physical laws of the nature. Some of them are Simulated Annealing (SA)?!, Gravitational Search Algorithm
(GSA)*, Big-Bang Big-Crunch (BBBC)*, Atomic orbital search (AOS)**, Charged System Search (CSS)* etc.
Some swarm-based metaheuristic algorithms are inspired by the social behaviour of animals such as Particle
Swarm Optimization (PSO)®, Ant Colony Optimization (ACT)? etc. A swarm intelligence based algorithm
employs a large number of particles to cover a search space, and the optimum answer is discovered by following
the best location along their pathways®. Particles with their best solutions and the best one obtained so far in the
swarm are used to update the particle position. Many other swarm based algorithms are found in literature such
as Whale Optimization Algorithm (WOA)?, Grey Wolf Optimization (GWO) algorithm?®, Sailfish Optimizer
(SFO)*, Bottlenose Dolphin Optimizer®. Some human behavior-based metaheuristic methods are also found in
literature such as Teaching Learning Based Optimization (TLBO)?!, Group Search Optimizer (GSO)*?, Imperialist
Competitive Algorithm (ICA)*, Class Topper Optimization (CTO)* Criminal search optimization®* and so on.
Generally, a metaheuristic algorithm starts with a random initialization of the search variables within specified
range. The convergence performance of such an algorithm depends on the correct selection of the initial value
or position of the searching agent. An improper selection of initial value, which may be in a different direction
where the actual solution may exist, can lead towards the wrong solution. Thus, the selection of the initial position
of the search variable has an impact on the convergence performance of a metaheuristic algorithm!>1>. Another
issue in metaheuristic algorithms is the trapping problem in local solutions during the exploration and exploita-
tion stages of such algorithms. Thus, the improper selection of initial value or position of search agents and local
stack problems of such metaheuristic methods need to be solved to get an efficient optimizer. In Ref.*, authors
presented a theory named the No Free Lunch (NFL) theory and proved that there is a universal best optimization
method as all such methods perform similarly for all possible optimization-based problems. Therefore, many
authors are involved in developing specific problem-based optimizers with the aim of getting global and local
search strategies. In this regard, an attempt has been made to solve such issues by developing the Human concep-
tion optimizer (HCO). The unique features of the human conception process justify the development of such
an algorithm. The HCO algorithm can solve the issues as stated above by resembling some spatial techniques of
the conception process, which are discussed in the next section. A list of some existing optimization methods
has been presented in Table 1.

Contribution and novelty of the study

The core of this paper is to establish a nature-inspired optimizer named the Human Conception Optimizer
(HCO). Some unique features of the human conception process are utilized to develop the algorithm to solve
any optimization problems. A method of generating healthy populations at the start of the HCO algorithm is
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Algorithm Inspiration source Year
Genetic algorithm (GA)'® Genetic valuation 1992
Particle swarm optimization (PSO)® Social behavior of birds 1995
Genetic algorithms'® Concept of genetic evaluation 1992
Harmony Search (HS)* Music player 2001
Genetic Programming (GP)* Genetic concept 2005
Ant colony optimization (ACO)* Ant colony 2006
Cat Swarm Optimization (CSO)* Cat behavior 2006
Monkey Search® Monkey 2007
Bee Collecting Pollen Algorithm (BCPA)* Bees 2008
Cuckoo Search (CS) Cuckoo 2009
Dolphin Partner Optimization (DPO)* Dolphin 2009
Group Search Optimizer (GSO)* Animal searching 2009
Gravitational search algorithm (GSA)* Gravitational attraction of heavy mass 2009
Fireworks Algorithm (FA)*! Fireworks explosion 2010
Charged System Search (CSS)* The Coulomb and the Newtonian law 2010
Teaching Learning Based Optimization (TLBO)®' | Student-teacher interaction 2011
Krill Herd (KH)* Krill herd 2012
Flower Pollination Algorithm* Flower Pollination 2012
Water Cycle Algorithm (WCA)* Water cycle process 2012
Mine Blast Algorithm (MBA)* Mine bomb explosion 2013
Social Based Algorithm (SBA)*¢ Human 2013
Grey wolf optimizer (GWO)* Hunting nature of grey wolf 2014
Water wave optimization*’ Water waves 2015
Moth-flame Optimization algorithm (MFO)* Navigation method of moths in nature 2015
Optics Inspired Optimization (O10)* Law of reflection 2015
Whale Optimization Algorithm (WHO)* Hunting behavior of Whale 2016
Dragon fly Algorithm (DA)® Swarming behaviours of dragon flies in nature | 2016
Kidney-inspired optimization algorithm®! Kidney process in the human body 2017
Grasshopper Optimisation Algorithm® Grasshopper Swarms 2017
Class topper optimization (CTO)* Student learning behaviour 2018
Kho-Kho optimization® Indian Kho-Kho game 2020
Atomic orbital search?* Quantum mechanics principle 2021
Planet Optimization Algorithm'® Gravitational law of Newton 2022
Bottlenose Dolphin Optimizer® Feeding nature of bottlenose dolphin 2022
Criminal search optimization®* Criminal identification technique based 2022

Table 1. Different existing nature inspired optimizer.

modelled by replicating the concept of sperm selection by cervical gel according to the fitness of each one. A
probability function is defined for this purpose. The probability function is formulated by considering a fraction
of sperm (position of solutions or searching agents) lies between the best and worst positions in the population.
During the generation of a healthy population, the concept of possible egg position in either ovary is also utilized.
Thus, the initial generation of the population will also be based on the best combination of a randomly gener-
ated search variable and its oppositional directional (sperm positions) based search variable. Thus, the initial
sperm positions (positions of solutions or searching agents) in the healthy population are already formed with
the possible best direction where global solution may exist. Moreover, sperm oriented far away from the global
solution or those that are towards the opposite direction of the global solution are ignored at the initial stage.
Thus, the optimal solution can be searched within a healthy population with the possibility of getting the best
solution quickly. Therefore, the issue of random initialization of the position of the search variables, which may
be in different directions or far away from the global solution, is avoided in the HCO algorithm. Such a velocity
profile will balance exploration and exploitation based on the fitness of the best sperm cell (position of search
variable) and the fitness of the average sperm cells in an iteration. This will happen during the updating of posi-
tions of search variables (sperm cells). A hyperactivation function is also formulated by replicating the concept
of flagellar oscillation during the hyperactivation stage of a sperm fertilizing an egg in the Fallopian tube. This
function will help the algorithm escape from the local optimal solution.

Human conception optimization algorithm
In this section, the inspiration and the mathematical modeling of the Human Conception Optimizer are
explained in detail.
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Figure 1. Human sperm movement. (a) Sperm cells movement in female reproductive system. (b) Sperm cells
beat pattern. (c) Egg position in either side of fallopian tube. (d) Sperm cells moving trajectory.

Inspiration. Human conception happens when a healthy sperm cell meets the egg in the Fallopian tube>".
The process begins with millions of sperm released into the female reproductive tract. All sperm cells compete
to fertilize a single egg as presented in the Fig. 1a. In general, a single sperm is able to fertilize the egg in the
Fallopian tube. Among the millions of sperm, a population of the most capable sperm can enter the door of the
cervix. The cervical fluid called mucus, helps the spermatozoa swim through the uterus and the fallopian tube.
Cervix filters out the liquid called semen which enclosed the sperm cells released into the vagina. Sperm uses a
variety of mechanisms as they travel to the egg®>*°. The method of sperm meeting egg for successful fertilization
is explored in detail below.

Sperm fertilization bio-mechanism. Human conception occurs when a sperm cell is able to meet a mature egg,
interact, and fuse in the female reproductive system®”. Initially, sperm takes a random position in the vagina and
stay inside the fluid called semen. According to the fitness of sperm, a swarm of the fittest sperm cells is able
to enter the cervix. During their journey to the egg, sperm perform several outstanding navigational tasks. The
sperm tail (flagellum) aids sperm swimming towards the egg by creating an irregular and oscillating beat pattern,
as shown in Fig. 1b. While balancing the moment of force caused by flagellum motion, the cell head rotates and
exerts force against the cervical fluid to move forward.

Sperm cells move with different hydrodynamic modes (such as typical, helical, hyperactivated or chiral rib-
bons) on the basis of environmental conditions such as temperature and viscosity inside the female reproductive
system®®. Sperm can collect physical and chemical information to identify the egg in the female genital system
with the help of some mechanism, such as***%:

® Rheotaxis-sperm orientation against the fluid to move upstream.

e Thermotaxis-sperm sense temperature variation in the reproductive system. It swims against a temperature
gradient in a higher temperature zone near oviduct.

e Chemotaxis-the movement of cells up to a concentration gradient of chemoattractant. Sperm move toward
increasing chemical concentration.

Chemotaxis was suggested in the literature as an active sperm guidance mechanism®.. Sperm can sense the
change in liquid concentration in the uterus. In thermotaxis, sperm move toward a higher temperature in the
female reproductive system. The contractions of mucus in the female reproductive zone may also guide the
sperm towards the egg.
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Active sperm use a stroke called hyperactivation to cross the barrier of cumulus cells surrounding the egg. A
fraction of sperm is able to become hyperactive. The flagellar beats of hyperactivated sperm have high curvature
and a wider amplitude, leading to a highly active motility. Such a pattern of hyperactivity may create forces to
facilitate sperm detachment and migration. The sperm have to pass another barrier called zonal pellucida (a
layer of egg). The sperm cells undergo a process called the acrosome reaction, an enzyme deposited at the head
of the sperm. It helps to break the zonal pellucida barrier to fertilise the egg®*.

Among millions of sperm cells, only a single sperm cell is able to fertilize the matured egg in the challenging
environment of the female reproductive system. The complete process is so challenging and unique that it moti-
vates us to utilise the selection principles of winner sperm to develop a nature-inspired metaheuristic algorithm.
In the next section, the detailed modelling of the proposed algorithm is discussed.

Modeling of Human Conception Optimizer (HCO). In this section, the biological principles of human
conception are mathematically presented to develop the HCO algorithm. Generally, a set of natural facts and
assumptions are considered to formulate the HCO algorithm. The concept of HCO is summarized as follows:

e After being released on the vagina, sperm cells enter the cervix, where their journey begins in a hostile envi-
ronment. Only healthy sperm cells can enter the uterus and fallopian tubes® (Fig. 1a). In a fertile female,
either the right or left ovary produces a mature egg for fertilization as shown in Fig. 1b. The mucus fluid in
the uterus helps sperm cells swim towards the egg®. This concept will be used to find a suitable initial fittest
population from a randomly generated population of the initial positions of sperm cells or search agents.
During the evaluation of sperm fitness, the possible position of the mature egg (global solution) will be
examined by considering the right ovary as the place in a positive movement in the search area where the
egg (global solution) may be found. The left ovary is considered as the place in a negative movement in the
search area where the egg (global solution) may be found. The mucus fluid dynamics will be used to model
the velocity of the sperm cells (sperm) to update their position during the exploration and exploitation stage
of the proposed algorithm.

® The tail of the sperm creates a jerking like movement which helps the sperm move into the uterus. Sperm
cells starts following the curvature path caused by flagellar movement to reach the egg®. This concept will be
realised to model the sperm movement through a curvature tracking path during the searching procedure
of the algorithm. At each iteration, the best position achieved by each sperm cell along the curved path will
be evaluated and called the present best position or solution gained by each cell.

e The tail of sperm can sense the concentration of liquid in the reproductive system. According to that, it
changes the position®. This sensing technique of liquid concentration in the reproductive system will be
utilised to mimic the position update of sperm with respect to the best position of sperm achieved by any
sperm cell in the population till the present iteration.

® Sperm cells overcome the barrier across the egg by a hyperactivation process. They have to pass another bar-
rier called zonal pellucida. To pass such a barrier, sperm must undergo a process called acrosome reaction.
This is an enzyme deposited at the top of sperm cells. It will break the zonal pellucida barrier, allowing sperm
to penetrate the egg®. This concept will be used to overcome the local stuck problem of the algorithm.

The detailed modeling of the HCO algorithm is given below.

Initialization stage. During intercourse, millions of sperm cells are discharged into the female menstrual sys-
tem. All cells try to enter the cervix. The liquid inside the cervix will allow only healthy cells to enter into the
cervical tracking path. Therefore, there is a natural selection of initial healthy sperm cells where only fit cells can
start the journey from the cervix towards the egg®. In HCO, each search agent resembles the position of the
sperm cells. In any metaheuristic algorithm, the performance of a swarm-based optimization method depends
on the initialization of the population. In HCO, the initial position of sperm cells will be generated randomly
within a search space with a higher population size. From the initial population, a fitter population will be pro-
duced, which will follow the other steps of the proposed algorithm.

Step 1: initial population generation Let, there are “N” number of sperm cells ejaculated into the vagina during
intercourse. It indicates the same population number in the metaheuristic algorithm. The dimension of the popu-
lation will depend on the optimization problem. The position of sperm cells is the position of sperm in the HCO
algorithm. Each particle in the search space is the candidate of solutions for a particular optimization problem.

Let initial position of sperm cells (X) is defined as follows:

X1
1 2 d
X2 x{ x£ SN x}i
X = I (1)
xll\] xl2\7 ... x]%
XN
In HCO, the initial positions of sperm cells are determined randomly as follows:
x; = 'xzmin + X (x;max - xﬁmin)’ (2)
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wherei=1,2,...,Nand j = 1,2,...,d; N is number of sperm cells or search agents inside the search space,
d is the dimension of the problem, ; is the random number between 0 to 1, x/ is the initial position of particle
(sperm cells), x| .and xl’-max are the maximum and minimum limits of ith sperm in jth decision variable.

Step 2: initiaTﬁtness evaluation-Modeling of egg position in the ovary In a fertile female, either the right or
left ovary produces a mature egg for fertilization, as shown in Fig. 1c. The right ovary is considered the place in
positive direction in the searching area where the egg (global solution) exist. The left ovary is considered as the
place in negative direction in the searching area where the egg (global solution) exist®. This concept is used in the
proposed algorithm to check the solution to an optimization problem on both sides of the search space. During
the evaluation of a solution candidate x for an assigned problem, the opposite solution of x may provide a better
solution x,p. For example, if a solution of x is — 10 and the optimal solution is 40, then the opposite solution
(x0p) is 10 and the distance of x from the optimal solution is 50. The distance between x,, and the current best
solution is 30. As a result, according to Ref.*, the opposite solution, Xop» is much closer to the global solution.

The algorithm first examines the fitness of all randomly generated initial search agents. The fitness values of
all initial sperm (sperm cells) are defined as follows:

1,2
f(xfl) f xfl,xfl,...

1,2
FX) = f(xfz) _ f xfz)’ffzw--

) ()

where F(X) is the fitness matrix with fitness value of all sperm (sperm).
Position of opposite directional solution The population of opposite directional solution will be calculated as
follows:

Xoppo =a+b—X, 4

where, a and b are lower and upper boundary of search agent respectively.

Fitness F(X,ppo) of opposite directional population (X,pp,) will be evaluated for an objective function based
of the optimization problem.

Thus, the initial population based on egg position will be as follows:

x=X ifFX) > F(Xoppa); (5)

=Xoppo if F(Xoppo) > F(X). (6)

Remark 1 In a fertile female, a mature egg is produced by either the right or left ovary for fertilisation every
month during ovulation®’. Typically, a single egg is released at a time. This concept can be modelled as for a
single-objective optimization HCO algorithm. In some cases, more than one egg may be released, sometimes
resulting in the conception of multiples (twins). This concept leads to the multiobjective HCO algorithm. To
simplify, the present paper is discussed as a single objective HCO algorithm. The twins may be produced by
fertilising a mature egg with two sperm cells. In the HCO algorithm, among two close solutions, the best one
will be selected, ignoring the twin solution.

Step 3: selection of healthy population In the natural fertilization process, only healthy sperm cells can enter
into the cervix to fertilize a mature egg. In HCO algorithm, the initial population size is taken as high as possible
from where an initial fittest population will be selected according to a probability function. The fittest population
will be allowed to follow the further steps of the proposed algorithm.

The best answer is assigned as the initial best solution (fittest sperm cell). The worst solution is also identified.
The fitness of others will be compared with the fitness of the initial best with a probability of (Pg;). The probability
of selecting the best population to move toward one of the best solutions is then calculated as follows:

Pﬁt = [f Otworst) — f (Xpest)] X W + f (Xbest)> (7)

where w is a weight factor.
Therefore, the healthy population will be chosen as:

Xhealthy = X +vvevene whenF(x) < Pg. (8)
Thus,
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Xhealth,
yl xl x2 DY xd
Xhealthy, healthy, “healthy, Zealthy1
. 1 .
Xhealthy = Xhealthy, *healthy, Fhealthy, | )
1 2 d
. xhealthyn xhealz‘h}/yl T xhealthyn
Xhealthy,,

where Xpeaitny; is position of ith healthy sperm, # is the size of fit population.
The fitness of initial fit population for an objective function depending on optimization problem will be as
follows:

1 2

X » X se e

f (Xheulthyl) f healthy, > *healthy,

1 2

f (Xhealthyz) f xhealthy2 > xhealthy2 (AR

F(Xhealthy) = . = . > (10)
Xhealth 1 2
( ,Vn) f<xhealthyn’ xhealthyn’ e )

where F(Xpeaithy) is the fitness matrix with fitness value of all healthy sperm cells (sperm).

The healthy or fit population will be used as the fittest initial population to search for the best solution for
an optimization problem. In HCO, this step to find the fittest population from the initial randomly generated
population will be done only once.

Algorithm 1: Pseudo-code of HCO for generation of initial healthy population

Input: Set population size of sperm position, other constants.
/* Generate initial random particle x /
Generate initial population for each variable randomly within a range of search space by using (2).
/* Evalute fitness x /
Evaluate fitness f (x;) of each particle (x;) for each variable with an objective function for a optimization
problem. Calculate fitness f(x;,,,,) with opposite directional sperm xi,,,-
6. if f(xi) > f(xioppu)
7. Select x;
8

Gk W=

. else
9. Select xj,,,
10. end if
11. /* Select initial best and worst particle x/

12.  Find the best fitness fpes (x) and worst fitness (fiorst (X)) from the fitness matrix (10).
13.  Derive the probability function using (7).

14. if f(xi) < Pgis

15. Update fit population using (8).

16. else discard and check for next healthy sperm.

17. end if

18.  Output: Initial healthy population

Remark 2 Sperm orientation can be a replica of particle orientation. Some sperm may be towards the global
solution and some may be alongside the boundary of the search space. Some of them may be in the opposite
direction of the global solution. In HCO, the initial fittest population is chosen with sperm (position of search
agents) oriented towards the egg (best initial solution).

Sperm movement modeling-Position update of particle. 'The male reproductive cell, sperm, has a single flagellum
or a tail. To achieve fertilization, sperm needs to move up the oviduct. The sperm’s tail produces a distinctive,
jerky motion that pushes the head of the sperm backward and sideways while simultaneously propelling the
sperm forward. The cells migrate through the fluid in the cervix by moving backwards and sideways. The sperm
cell is aided in its journey toward the egg by this combination of actions. They can’t swim backwards due to the
nature of flagellar movement. The moving trajectory of the sperm cell is shown in the Fig. 1d.

Human sperm use various sensing mechanisms to gather physical or chemical signals to spot the egg. During
the fertilisation process, sperm cells move along the narrow cervical tracking path towards the oviduct. Mucus
in the cervix helps sperm move through the uterus and oviducts®’. There are three types of sperm swimming
guidance mechanisms: thermotaxis (based on temperature gradient), rheotaxis (swimming against a fluid flow),
and chemotaxis (based on chemoattractant concentration gradient)>. Sperm cells will move against the mucus
flow, which is a rheotaxis mechanism. They assume the egg position based on the concentration of liquid change
near the egg. In HCO, the rheotaxis mechanism of sperm guidance towards the egg is used to find the velocity
of sperm in fluid against the flow. The flagellar asymmetric movement is taken as a sinusoidal curvature path
in the HCO algorithm.

Scientific Reports |

(2022) 12:21631 | https://doi.org/10.1038/s41598-022-25031-6 nature portfolio



www.nature.com/scientificreports/

Poiseuille velocity profile based on a section of tube Poiseuille velocity profile based on sperm position,

y
[
~ - L o
T Cpest) £
‘ g g
c =
] =
o | o
r =
0 S
s e AL
i g ELLLL
b. Velocity profile of fluid in a section of a tube b. Velocity profile of sperm in fluid dynamic

Figure 2. Sperm velocity profile: (a) a section of tube of radius (a), Velocity of fluid at a distance r from the
center of the tube. (b) Sperm velocity profile based on.

Velocity profile. The human spermatozoa can sense a flow of liquid and change the direction of their path
against the flow. It performs positive rheotaxis and orients itself against an oncoming flow. Mucus flow (like as a
sperm cell flow in fluid) can be described by the Poiseuille profile, where the speed increases quadratically with
the distance to the compartment boundary. The Poiseuille profile is used to find the speed of the sperm cells. It
tells how fast the sperm cells are moving at each point within the uterus®>.

In HCO, the Poiseuille velocity profile is used to model the velocity of sperm to update their position. The
Poiseuille velocity profile for sperm movement in the female reproduction tracking path is shown in Fig. 2b. To
model the Poiseuille velocity tracking profile, the fitness matrix (10) will be used.

Poiseuille velocity profile. The velocity profile shows the amplitude of velocity according to the position of a
particle in a fluid. According to the Poiseuille velocity profile, the velocity at a point, called specific radius (r)
in the fluid can be calculated by measuring the distance of the point from the centre of the tube, as graphically
shown in Fig. 2a. At the specific radius (r), the velocity is formulated as®>¢:

P(u2 — rz)
V=—-—— (11)
4nL

where P is the pressure difference, L is length of a pipe with radius 4, 7 is dynamic viscosity.

In HCO, the fitness sperm is used to mimic the velocity profile. The velocity of a sperm in the current iteration
is calculated by taking the sperm’s current position y; in the healthy population and multiplying it by its fitness
£ (xi). The centre of the flow resembles the average position of sperm with a fitness of (f(Xavg)). The fitness level
of the present global best position is f(xpest)-

Steps to mimic Poiseuille velocity tracking profile for sperm’s velocity modeling:

® Assign the initial best fitness value of a sperm cell for a given optimization problem with a fitness function
in a iteration as f(Xpest)-
® Calculate the average fitness f(xavg)-
e (Calculate the velocity of ith sperm cell with the fitness value f (x;)as follows:
2_ 2
o V=) 12)
4nL

where R = f (Xpest) — f (Xi)s T =f(Xavg) —f(xi)» L = f (Xvest) _f(Xuvg)> v; is velocity of ith sperm cell, f(Xavg)
is the average health of the population, f(xp.s) is the health of best solution (optimal position), 7 is a constant
generated with random value in the range of 0 to 1, and y is a random number between 0 and 1.

The vector diagram of velocity profile of sperm cells is also shown graphically in Fig. 2b.

Velocity update.  After entering into the cervix, the sperm cells grabbed an initial velocity in the cervical fluid.
In HCO, sperm initial velocity is modelled according to the Poiseuille velocity tracking profile as presented in
Fig. 2b. The position of a sperm cell in the current iteration will be compared with its previous position, and the
best one will be assigned as the present best solution (Sy,,,) for the sperm cell. In the healthy population, one
sperm cells achieved the best position among all in an iteration and will be treated as the global best solution
(Sgye;) in that iteration. The sperm cellc will move along a sinusoidal path, resembling the nature of the sperm
movement in a curvature path with the updated velocity.
In the search space the velocity of sperm will be updated as follows:
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\7i(j+1)=wlX(\7i(j)+vi(j))+C1XAlxsin(Zn,J >+c2xAzxsin(2n.J ) (13)

Jmax Jmax

where A is (Sppess — Si)s A28 (Sg,,., — Si); Ciis a constant; C; is a constant.

Position update.  Along the curvature path, the position of sperm will be updated in HCO as follows:
Xi(i+1) = Xi() + ViGi+ 1), (14)

where ¥;(j) is the position of ith sperm at jth iteration, V;(j) is the velocity of ith sperm at jth iteration.
Algorithm 2: Pseudo-code of HCO for update sperm position

Input: Healthy population of initial sperm positions, define other constants
/* Generate initial healthy population of sperm positions x/
Generate initial healthy population of sperm position for each variable according to Algorithm 1.
/* Evalute fitness function x/
Evaluate fitness f(x;) of each sperm (;) for each variable with an objective function for a optimization
problem.
Identify average fitness of sperm ( f (xavg)) in the population, fitness of best sperm ( f (xpest))-
7. Identify the best sperm (global solution) (Sg,,, ) achieved at present iteration. Also, identify the current
best position of each sperm (Sp,,,) at current iteration.

Al o

o

8. /* Evalute velocity of sperm x/
9. Evaluate velocity of each sperm in the healthy population using (12).
10. /* Update velocity of sperm =/
11. Update velocity of sperm using (13).
12. /* Update position of sperm x/
13.  Update the position of each sperm using (14).
14. Repeat step 5 to 13 till the termination criterion reached or maximum number of iteration.

15. Output: Fittest sperm or global solution.
The flowchart of the proposed algorithm is presented in Fig. 3.

Sperm hyperactivation-local optimal solution avoidance. Sperm hyper-activation. In human conception,
sperm cells conform a obstacle of cumulus cells around the egg. Before reaching the egg, the sperm cells are often
trapped in epithelial cells in the fallopian tube. They are rendered inert unless they undergo hyperactivation®”. To
cross this barrier of cumulus, the sperm cells must use a very specific stroke called hyperactivation. It is charac-
terised by an asymmetrical flagellar beat pattern which rises to a whip-like movement of the flagellum that can
produce circular figure-eight swimming trajectories. The change in motion and force of the tail movement in the
trajectory enable the sperm to escape from the epithelium®.

Modeling of hyper-activation. In HCO, the concept of sperm hyperactivation process will be adapted when
the best solution is found stuck in a position for a long time before reaching termination criteria. The position of
the hyperactivated particle will be compared with the best solution achieved before the hyperactivation process.
Among the hyperactivated solutions and the non-hyperactivated solutions, the best one will be assigned as the
current global solution for the population. To model the hyperactivation process, eight (8) shaped beat patterns
are used. The new position of the best hyperactivation particle is modeled as follows:

Shyperactvated () = X8 () x (14 x{sin (2 X 7T X my) X cos (2 X 7T X my)}; (15)
Kelobalbest (j) = 4 - yperactivated (G)> i f (Snyperactivatea) > f (x8°°) (16)
globalbest xgbest (]), lf f(xgbest) >f(xhypemctivated)

where Xgiopatbest (7) is the global best solution at jth iteration, Xpyperactivated (j) is hyperactivated best solution at jth
iteration. It will be used only when the global best solution get stuck at same position for more than two iteration.

Features of HCO algorithm. HCO provides some advantages which makes it unique from some others
algorithm. Some spatial features are as follows:

Concept of healthy initial population The HCO algorithm replicates the concept of sperm selection by the
female reproductive system to allow them in the cervix and the position of the egg in either of the ovaries.
The initial population in the HCO algorithm is not assigned directly to a randomly generated initial sperm
within a search space. In this algorithm, a healthy population is generated at the initial stage by neglecting the
sperm in the population oriented so far from the optimal position. Using the concept of egg position in the
right or left ovary in the Fallopian tube, the fittest of all randomly generated sperm is evaluated along with the
fitness of their opposite directional sperm in the search space. Thus, the healthy population will be based on
the best possible solution in the positive or negative direction in the search space. The healthy population will
ensure the best initial fit population within which the optimal solution will be found by the algorithm. Healthy
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Figure 3. Flowchart of proposed HCO algorithm.

populations will include initial positions of sperm based on their initial fitness and the best side of the posi-
tion of the mature egg (global solution) by checking a sperm position and its opposite distortional position.
Velocity update based on Poiseuille Velocity profile During the updation of the velocity of sperm cells, the
position-based velocity profile is used, called the Poiseuille Velocity profile. The advantage of using such a
velocity profile in the HCO algorithm is that the velocity of each sperm or search variable at an iteration will
be calculated with the fitness value of the best position of a sperm or search variable in that iteration along
with the average fitness in the population. Therefore, a good balance can be maintained between the explora-
tion and exploitation stages of the algorithm.

Hyperactivation for local optima avoidance Like sperm’s hyperactivation process to fertilize egg, a hyperactiva-
tion function is used in the HCO algorithm to avoid local solution trapping problems.
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Parameter Value

Population size 500

Iteration number 500

P 0.65
A Random number (0 to 1)
w 0.1

Ajand A, Random number (2 to 4)

Table 2. Parameters of HCO algorithm.

SFO* PSO° Ccro* GWO* WHO* HCO

Function Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std

Fl 6.59E-28 6.34E-05 0.000136 0.000202 3.50E-19 6.59E-19 6.59E-28 6.34E-05 8.2E-14 5.9E-14 0 0

F2 7.18E-17 0.029014 0.042144 0.045421 5.44E-10 5.96E-10 7.18E-17 0.02901 1.5E-09 9.9E-10 4.23E-48 3.65E-63

F3 4.95196E-06 0.000110343 2.26299E-05 0.000356831 7.1739E-05 0.000295386 2.43054E-06 5.22709E-05 6.8E-11 7.4E-11 0.000194706 0.002313515

F4 5.61E-07 1.315088 1.086481 0.317039 4.52507 1.09056 5.61E-07 1.31508 0 0 0.000321656 0.002229746

Fs 261258 6030159 s671832 coasss L3019 211618 268126 o909 o o ormsistst oor7i27s71

F6 0.09742269 0.128767789 0.001110401 0.024122691 0.005434 0.038755873 0.001254672 0.012670857 0 0 0.001050433 0.021926755

F; 0002213 000286 022851 0011957 oousi34 0002232 0021 010028 oovies ooz 00004601 0002356391

F8 —-6123.1 —4087.44 —4841.29 1152.841 -2791.7 330.711 —-6123.1 -4087.44 —11080.1 574.7 —418.983 31.20867554

Fy 0.00110267 0.002217182 8.73976E-07 9.6584E-06 0.013548005 0.042302315 0.00186388 0036574417 692 38.8 0.000146449 0.002534135

Fl() 1.06E-13 0.077835 0.276015 0.50901 1.5035 0.651061 1LO6E-13 0.077835 9.7E-08 4.2E-08 1.69024706 0.036404351

Fl 1 0.004485 0.006659 0.009215 0.007724 0.211515 0.018247 0.00448 0.006659 0 0 0.001641388 0.014162738

FIZ 0.053438 0.020734 0.006917 0.026301 6.08416 4.80515 0.05344 0.020734 7.9E-15 8E-15 ~-0.916816662 1.05578E~05

F13 0.100043904 0.000981365 0.100011116 0.000238848 0.10226571 0.006217516 0.65446 0.004474 5.1E-14 4.8E-14 0.10001064 8.77149E-05

F14 0.665779 8.22388E-15 2.663115884 31.54900921 0.665779 8.22388E-15 4.0425 4.25289 0.998004 33E-16 0.665779 8.22388E-15

Fl 5 0.000337 0.000625 0.000577 0.000222 0.000434 0.000238 0.00034 0.000625 4.5E-14 0.00033 0.051513612 8.4432E-06

Fie - 1.03163 - 1.03163 - 1.03163 6.25E-16 - 103136 0 - 1.03163 - 1.03163 - 1.03163 3.1E-13 - 1.030402677 0.014350901

F17 0.545282286 0.127323904 0.398208716 0.006995143 0.462937336 0.011283894 0.3978 0.3978 3.397887 9.9E-09 0.398564315 0.005786036

Fig 3000028 3 s 133815 s 0 So00028 s 3 215 So1s01 otsiseze

F19 —3.86263 —3.38278 —3.86278 2.58E-15 —-3.8794 2.56E-16 —-3.8626 —-3.38278 —3.86288 -3.38217 —-3.86178 2.58E-15

Fa 38t 325056 3266 000516 332 0 ~32865 3508 ~sasess 305056 771807 ostsi2E-14

FZ] -10.1514 —9.14015 —6.8651 3.019644 —3.86903 1.36967 -10.1514 —-9.1402 - 10.1532 0.0000025 ~5.3977697 6.7082E-06

Fxn - 104015 sl asesd S0s7054 - 104029 126815 ~104013 e 104029 39507 104029 39507

F23 —10.5343 -8.55899 —9.95291 1.782786 —-10.5364 1.26E-15 —-10.5343 —8.5589 —10.5364 1.9E-07 —6.18343928 8.22295E-06
Table 3. Convergence performance comparison for CEC 2005 benchmark function.
Numerical test of HCO algorithm-benchmark functions
A metaheuristic algorithm must have some capabilities to solve complex optimization problems. An optimizer
must exhibit a good balance in exploration and exploitation stages, local optima avoidance, and smooth con-
vergence capability. To check the achievement of the HCO algorithm, two suites of test functions are taken in
the study, such as 23 numbers of classical test functions from the CEC 2005 special session and ten number of
30 and 500 dimensional benchmark or test functions from the CEC-2020%.
Case study 1: CEC 2005 benchmark function (BMF). In this section, the response of the HCO algo-
rithm is verified with CEC 2005 BMFs?*. Such functions are minimization functions. They can be grouped as:
unimodal, multimodal, and fixed-dimensional multimodal. The details of such BMFs can be found in the CEC
2005 technical report**?’. The termination of the algorithm is set at a fixed iteration. The other parameters for
the HCO algorithm are presented in Table 2. The LabVIEW©2015 platform is used for the simulation purposes
of the algorithm. This algorithm is executed several times for each reference function. After several tests, the
average and standard deviation (SD) of each BMF are examined. The convergence performance for each BMF
with the HCO method is carried out and compared with PSO®, CTO* GWO®, WHO?, and SFO (Sailfish Opti-
mizer)®.

For each BME, the population size is considered as 500, and the maximum iteration is 500. Other constants
of the HCO algorithm are tabulated in Table 2. The HCO algorithm is executed 30 times, with 500 iterations for
each function. For analysis purposes, the average and SD of objective values are examined. The output of the
BMFs is presented in the Table 3. There is a single global optimum point for unimodal functions (F; TO F;)¥.
By looking at the Table 3, it can be seen that HCO performed better for Fj, F,, Fg and F; than CTO, PSO, and
SFO. For function F4, HCO is better than CTO, PSO. For function F5, HCO is found better than SFO, PSO. For
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Figure 4. Comparison of convergence performance of HCO for CEC2005.

PSO° CTO* HCO
Function | Ave Std Ave Std Ave Std

F 26881951200 | 5648656623 18410919163 | 39825804953 | 2328904813 9287733381

F, 7418.48304 211.6382903 | 3376.88648 2942944784 | 5812.17144 916.1663569

F; 553631.542 136920.4716 | 1338036.873 | 1808228.112 | 63862.4367 235631.2497

Fy 7.79934E+14 | 1.20314E+16 | 7.51269E+14 | 9.67911E+15 | 1.42579E+15 | 2.42858E+16

Fs 35321691.2 16488340.61 | 2798099.436 | 22847917.82 1778318.217 | 12016004.07

Fs 1372479800 344836668.7 | 7981480.045 | 68808804.21 | 55315895.78 | 367878725.3

F; 149909717.5 | 353492605.4 | 1097011670 1927553881 8759421.951 | 60018549.34

Fg 2519.72106 358.0909202 | 2428.44478 321.9716397 | 2485.38706 622.6405186

Fy 2593.23288 2622.252949 | 2632.99216 28.46593127 | 2577.94732 44.19822566

Fyo 2913.74316 0.562921465 | 2906.35766 1.978006587 | 2911.45742 1.11123915

Table 4. Convergence performance of HCO for 30 dimensional CEC 2020 benchmark functions.

function Fg, HCO is found better than CTO, SFO. For the function F3, GWO is found better than HCO. For
the function Fg, HCO is found better than GWO as found in Fig. 4. For the functions F3 and Fs, HCO is found
better than WHO as found in Fig. 4.

The multi-modal functions such as Fg to F;3* exhibit multiple local optimal. The exploration feature of an
optimization method may be verified with multimodal functions. By analyzing the Table 3, HCO performed
better than PSO, CTO, and SFO for Fj; to F3. Other multimodal functions also offered better performance
compared to PSO, CTO, and SFO. For function Fg, the minimum value of Fg as specified by CEC2005%* is found
by the HCO algorithm where others are not able to find the same. For function Fg, HCO is better than CTO,
SFO. For some fixed dimensional functions such as Fig to F»,*’, HCO is superior to SFO, CTO, and PSO. The
convergence curve of the HCO algorithm for some BMFs is analyzed. Some BMFs such as F3, Fe, Fo, F13, F14and
F17 are considered to show the convergence characteristic of the HCO algorithm in Fig. 4. For the function Fg
and Fy3, GWO is found better than HCO as found in Fig. 4. For the functions Fg and F;3, HCO is found better
than WHO as found in Fig. 4.

Case study Il: CEC 2020 benchmark function.  The HCO algorithm is verified with CEC-2020 BMFs to
explore the achievement of the algorithm in terms of exploration, exploitation, convergence, and local optima
avoidance. It includes unimodal, multi-modal, hybrid, and composite functions to validate the proposed algo-
rithm. Each function has been tested with two conditions: with a 30 variable based optimization problem and
another one with a 500 variable problem, and simulated 20 times in LabVIEW©2015 platform. The results in
terms of average value and standard deviation are computed after 20 tests run in each of the MBE. The achieve-
ments of the HCO algorithm for each MBF are compared with some existing methods as reported in the litera-
ture, such as PSOS, CTO*. For simulation purposes, each function is tested in a population of 50 sperm and run
for 500 iterations for 30 dimensional problems and 500 dimensional problems. The convergence performance of
the HCO for some selected 30 dimensional CEC-2020 benchmark functions is shown in the Fig. 5. In most of the
cases of 30 dimensional CEC-2020 benchmark functions, HCO performed better than the available algorithms
as tabulated in Table 4. The convergence performance of the HCO for some selected 500 dimensional CEC-2020
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PSO° CTO* HCO
Function | Ave Std Ave Std Ave Std
F 7.53155E+11 1.51623E+11 1.0728E+12 1.40557E+12 | 13025933321 | 1.34781E+11
F 169281.614 0 8786.7941 16928.40751 17593.2522 7216.447467
F3 34301329.8 4457602.287 1548553.152 | 7973805.107 | 481592.3622 | 4593483.07
Fy 8.16935E+17 | 3.28054E+18 2.97555E+17 | 3.83138E+18 | 1.07025E+17 | 1.71899E+18
Fs 53823538200 | 326384053.5 16801500609 | 27308894986 | 247311424 2696128450
Fs 2.57104E+11 | 35142505673 3.44456E+11 | 4.82546E+11 | 2088397677 43904983536
F; 217638E+6 32108985595.939 | 0.089441 0.04339 2407662922 50738603427
Fg 7601.60744 17765.58749 12011.64214 17834.34609 | 4355.0323 6620.251597
Fo 2628.8713 44.97289066 5668.80494 266.6878197 | 249.5 69.73859373
Fio 2914.6585 0.528857761 3.89347E+11 | 5.4788E+11 2913.768224 | 0.270776361

Table 5. Convergence performance of HCO for 500 dimensional CEC 2020 benchmark function.

benchmark functions is shown in the Fig. 6. In most of the cases of 500 dimensional CEC-2020 benchmark func-
tions, HCO performed better than any available algorithms as tabulated in Table 5.

The use of non-parametric tests is also tested HCO algorithm for the CEC2020 benchmark functions. Such
tests have a wide variety of applications in literature?. In this paper, the Friedman and Wilcoxon signed test
are carried out CEC 2020 benchmark functions as presented in Tables 6 and 7 respectively. The details of such
methods are provided in Ref.?’. In the Wilcoxon signed test, r1is the summation of ranks when the first method
is better compared to second method, and r~ is the opposite condition at a significant measure of @ = 0.05.

HCO for engineering problems

In this section, the performance of the proposed HCO algorithm is validated for two constrained engineering
optimization problems. In the first case, a over-current relay coordination based optimization problem is cho-
sen. In this problem, the HCO is used to get an optimal setting of the over-current relays used in the protection
scheme of a power distribution network. In the second case, an optimal PID controller is designed for the human
respiratory ventilation system. In this problem, the proposed HCO algorithm is used to tune the PID controller
for a blower type ventilator model.

Case study 1: HCO for optimal over-current relay coordination problem in power distribution
systems. In this optimization problem, optimal coordination is established among over-current relays used
in a power distribution network to supply uninterrupted power. To validate the proposed HCO algorithm for
such a real-world engineering problem, an IEEE 8-bus distribution network with 14 over-current relays is con-
sidered. It consists of 20 numbers of selectivity limitations at three phase fault. The range of relay time dial setting
(TDS) is between 0.1 and 1.1 s. The co-ordination time interval is 0.3 second. Plug setting is between 0.5 and 2.5.
The other specifications such as current transformer ratio, short circuit current at fault locations are taken from
Ref.%8. To get the optimal operating time of the protective relay system, the PS (plug setting) and TDS (Time Dial
Setting) are optimized. The test system is executed with HCO in LabVIEW©2015 platform. The convergence
performance for the relay coordination problem is shown in Fig. 7. In the Fig. 7, it can be observed that the
algorithm started with a better initial value and converged fast towards a better solution compared to others. The
optimal settings of relays found by the HCO algorithm for the IEEE-8 bus distribution system are presented in
Table 8. A comparative analysis of the proposed method for the same system as discussed in® with some existing
results is carried out. For this purpose, some well-known methods, such as BBO-LP®, BIP”°, HWOA”!, WOA”%,
MWCA?”® and SA-LP” are considered for the same system and presented in Table 9. From the Table 9, the total
relay operating time gained by the proposed algorithm is better than the existing results.

Case study 2: HCO for PID controller design for human respiratory mechanical ventilator
(MV). In this engineering problem, the HCO algorithm is used as a tuning method for the proportional
derivative integral controller (PID) used in the mechanical ventilator (MV) system used in the intensive care
unit (ICU). The parameters of the conventional PID controller must be efficiently set such that the ventilator sys-
tem can provide sufficient air to maintain a stable air-pressure in the lung system. The details of the mathematical
modeling, and associated constraints MV are studied from Ref.”. For simulation purpose, the transfer function
(G1(s)) of the patient-hose system with lungs compliance of 20 ml/mbar, and lungs airway resistance of 5 mbar
s/lis expressed as follows”:
G 0.5063s + 5.063
= s (17)

The transfer function of blower system (G, ) is taken as”:
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35530

Gi(s) = — 27
19 = 57373775 + 35530

(18)
As a desired breathing pattern, an unit pulse of period 2 is selected. The initial ranges of parameters of the
PID controller (Kp, K; and K ) are considered from? as follows:

1 1<K, <2,
2. 100 < K; < 200,
3. 0<K;<0.l

For the system in (17), a PID feedback controller is optimized with the HCO algorithm. The convergence perfor-
mance of the HCO algorithm to design an optimal PID controller compared with some existing algorithms*”7®
is presented in Fig. 8a. The performance of the HOC optimized PID controller for the ventilator systems is
compared with some existing results as presented in Table 10 and graphically shown in Fig. 8b. It is observed
that the response of the ventilator in terms of rise time and settling time with the HCO-PID controller is better
than the performance of existing results?””®.

Conclusion

In this paper, a novel nature-inspired metaheuristic optimization algorithm named Human Conception Opti-
mizer (HCO) is developed to solve real-world optimization problems. The proposed algorithm is simple to
understand and effective. It is based on a natural process that exists because of the evolution of human beings. The
ability of the proposed algorithm has been tested with classical CEC-2005 and CEC-2020 benchmark functions
(BMFs). A comparative analysis of the HCO algorithm with some existing results has also been performed for
both sets of benchmark functions. The simulation results showed the superiority of the proposed algorithm. As
observed in Table 3, for most of the CEC-2005 BMFs, the proposed algorithm performed better than existing
methods. Moreover, the statistical significance of the HCO algorithm is observed in Table 6 for 30D CEC2020
BMFs. For most complex higher-dimensional test functions, the proposed algorithm performed efficiently. It
can be stated that the HCO algorithm can be applied to find solutions for different complex optimization prob-
lems as tested with CEC-2005 BMFs, 30D CEC2020 BMFs, and 500D CEC2020 BMFs. For the validation of the
proposed algorithm for real world problems, an optimal overcurrent relay coordination problem in a complex
distribution network and an optimal PID controller design for an artificial human ventilator system have been
examined and compared with existing results. For a complex 14 over-current relay based IEEE 8 bus power
distribution system, the proposed method optimized the total relay operating time with optimal coordination
among all primary and secondary relays. The total optimal relay operating time achieved by the HCO algorithm
for the chosen system is 1.96 seconds, as presented in the Table 9 where it is 8.56 seconds using BBO-LP®, 8.69
seconds using BIP”’, 5.86 seconds using HWOA"" and 5.95 seconds using MWCA?>. A significant improvement
in total relay operational time is observed by the proposed algorithm. The initial random population of PS (plug
setting) and TDS (Time Dial Setting) for 14 relays in the IEEE 8 bus system is efficiently selected during the
generation stage of a healthy population as proposed in the algorithm (Fig. 3). With the proposed algorithm, a
gain of 50% to 60% in total relay operating times is observed comparing with some existing results for the same
system as presented in Table 9. Thus, the practical novelty of the proposed algorithm is found in this real system.
For the other engineering problem of designing an optimal PID controller for a mechanical ventilator model. The
convergence performance to find the optimal solution for the ventilator model is better in terms of response time
and settling time within acceptable steady state error than existing methods, as found in Fig. 8a. It takes fewer
iterations compared with the CTO algorithm to find an optimal solution. Although the PSO algorithm requires
fewer iterations than the HCO, the minimum fitness value is achieved by the proposed algorithm compared
with both the CTO and PSO. The transient response of the system is also significantly improved by the HCO
algorithm, as observed in Fig. 8b. This clearly indicates that the proposed algorithm can perform better than
some existing algorithms for handling real-world problems.

Moreover, the practical applications of the proposed algorithm have some limitations with the size of the real-
world complex optimization problems, which is clearly observed from the simulation results. For the classical
benchmark functions of CEC 2005, the HCO algorithm smoothly converges for most BMFs, as shown in Fig. 4.
With an increase in dimension and complexity in BMFs such as 30 and 500 dimensional CEC2020, the HCO
faces local stuck problems several times during the simulation and it takes more than 50 iterations to overcome
the local trapping problem as observed in Figs. 5¢,d, and 6d. In real world applications, the same problem is
observed during the simulation. As observed in Fig. 7, with the HCO algorithm, the total relay operational time is
found much better than existing result due to the selection of initial searching variables (TDS and PS) efficiently
with compromising an initial local trapping problem up-to 10 iterations. Thus, for such a complex optimization
problems, there is a limitation to apply the HCO algorithm. As the concept of the natural conception process
is directly utilised to model the algorithm, the performance of the HCO algorithm can further be improved by
adapting to other schemes like multi-level, mutation, crossover, chaotic search concepts, and so on.
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PSO° CTO* HCO
Function Ave Rank | Ave Rank | Ave Rank
F 26881951200 |1 18410919163 |2 2328904813 3
F 7418.48304 2 3376.88648 1 5812.17144 3
F3 553631.542 1 1338036.873 |2 63862.4367 3
Fy 7.80E+14 1 7.51E+14 2 1.43E+15 3
Fs 35321691.2 1 2798099.436 |2 1778318.217 |3
Fs 1372479800 1 7981480.045 |2 55315895.78 |3
F; 149909717.5 1 1097011670 2 8759421.951 |3
Fg 2519.72106 2 2428.44478 1 2485.38706 3
Fo 2593.23288 1 2632.99216 3 2577.94732 2
Fio 2913.74316 2 2906.35766 1 2911.45742 3
Total rank 13 18 29
Average rank 1.3 1.8 2.9
p-value 0.0012

Table 6. Friedman test statistical data for 30D CEC2020 BMFs.
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30D 500D

Function r* |r= |p-value |rt |r~ | p-value
HCO versus PSO° 10 |45 |0.03754 |0 55 |.00256
HCO versus CTO* 25 |30 |0.40129 .0233

=]
Iy
~

Table 7. Wilcoxon-signed test for CEC2020 BMFs at significant stage oo = 0.05.

Prelay | TDS PS Srelay | TDS PS

Ry 0.0278465 | 1.90667 Ry 0.232135 | 1.13722
R 0.0497897 | 1.44066 R, 0.39036 1.44429
R3 0.31589 0.550752 | R3 0.234753 | 1.98357
Ry 0.123364 0.555611 | Ry 0.193875 | 1.58553
Rs 0.05704 0.5308 Rs 0.127873 | 0.898946
R¢ 0.0625788 | 1.1815 R¢ 0.181345 | 0.597147
Ry 0.0373099 | 1.60793 Ry 0.43253 0.536434
Rg 0.0384561 | 1.07845 Ry 0.216296 | 1.99503
Rg 0.0737711 | 1.07065 Ry 0.355793 | 0.52301
Rio 0.0874095 | 0.569945 | Ry 0.340732 | 1.90873
INT! 0.044051 0.540862 | Ri1 0.395206 | 1.18428
Ri2 0.0519719 | 0.582733 | R;2 0.311382 | 1.58579
Ri3 0.0420051 | 0.548888 | Ry3 0.351574 | 1.90349
Ry 0.034316 0.9902 Ry 0.318955 | 1.36453

Table 8. Optimal relay setting for IEEE 8 bus distribution system with 14 number of over-current relay.

Method BBO-LP® | BIP” | HWOA” | WOA”> | MWCA” | SA-LP”* | Proposed HCO
Operating Time (second) 8.7556 8.6944 | 5.8568 5.9535 6.4 8.4271 1.96

Table 9. Comparison of operating time for IEEE 8 bus distribution system.

15
—CTO [4]

) HWOA [71]
2 WOA [72]
E 10‘* —Proposed HCO
5 |\
on
£ SSe——
= \ 1
g |
2.
) 5
=
°
H

0

0 50 100 150 200

Iteration

Figure 7. Convergence response curve of HCO for relay coordination problem.
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Controller parameter Controller performance
Method K, K; Ka Mp(x107%) | t,(s) | ()
Fmincon-PS based PID7® 1.225 | 131.95 0.025 1.12 0.005 |0.18
C-CTO-PID¥ 1.65 131.267 | 0.006 1.02 0.005 | 0.06
HCO-PID 1.76 271.54 0.0034 | 1.11 0.001 | 0.002

Table 10. Performance comparison of HCO-PID for respiratory ventilator system.
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Figure 8. Performance of HCO for PID controller design for ventilator system: (a) Convergence graph. (b)
Response of HCO-PID controller for ventilator model.
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