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Integrative web cloud computing 
and analytics using MiPair 
for design‑based comparative 
analysis with paired microbiome 
data
Hyojung Jang 1,3, Hyunwook Koh 1,3*, Won Gu 1 & Byungkon Kang 2

Pairing (or blocking) is a design technique that is widely used in comparative microbiome studies to 
efficiently control for the effects of potential confounders (e.g., genetic, environmental, or behavioral 
factors). Some typical paired (block) designs for human microbiome studies are repeated measures 
designs that profile each subject’s microbiome twice (or more than twice) (1) for pre and post 
treatments to see the effects of a treatment on microbiome, or (2) for different organs of the body 
(e.g., gut, mouth, skin) to see the disparity in microbiome between (or across) body sites. Researchers 
have developed a sheer number of web-based tools for user-friendly microbiome data processing and 
analytics, though there is no web-based tool currently available for such paired microbiome studies. 
In this paper, we thus introduce an integrative web-based tool, named MiPair, for design-based 
comparative analysis with paired microbiome data. MiPair is a user-friendly web cloud service that is 
built with step-by-step data processing and analytic procedures for comparative analysis between (or 
across) groups or between baseline and other groups. MiPair employs parametric and non-parametric 
tests for complete or incomplete block designs to perform comparative analyses with respect to 
microbial ecology (alpha- and beta-diversity) and taxonomy (e.g., phylum, class, order, family, genus, 
species). We demonstrate its usage through an example clinical trial on the effects of antibiotics on gut 
microbiome. MiPair is an open-source software that can be run on our web server (http://​mipair.​miclo​
ud.​kr) or on user’s computer (https://​github.​com/​yj7599/​mipai​rgit).

The human microbiome is the entire community of all microbes that inhabit different organs (e.g., gut, mouth, 
nose, skin, etc.) of the human body. The recent advance in next generation sequencing has enabled a faster, 
cheaper, and more precise quantification of the human microbiome. Then, the human microbiome field has 
rapidly emerged in both academia and industry. Researchers have found numerous significant discoveries on the 
effect of a treatment on the human microbiome1–5, the effect of an environmental/behavioral factor on the human 
microbiome6,7, and/or the effect of the human microbiome on human health or disease3,8–14. However, this would 
also indicate in contradiction that there can exist many potential confounders that lead to spurious discoveries.

One of the most efficient and practical ways to control for potential confounders is to use pairs (or blocks) 
at a design stage. Researchers can, for example, profile the human microbiome repeatedly per subject (1) before 
and after a treatment to see the effects of the treatment on microbiome3,15–19 or (2) for different organs of the 
body to see the disparity in microbiome between (or across) body sites20–22. Then, a study subject forms a pair/
block for such repeatedly profiled microbiomes, in which potential confounders (e.g., genetic, environmental, or 
behavioral factors) are equally retained. Then, the use of appropriate statistical methods for such paired (block) 
designs can lead to valid and objective conclusions, not distorting the effects of a treatment on microbiome or 
the disparity in microbiome between (or across) body sites due to confounders.

Researchers have recently developed a sheer number of web-based data processing and analytic tools such as 
QIIME223, PUMAA24, MicrobiomeAnalyst25, METAGENassist26, EzBioCloud27 and MiCloud28 for user-friendly 
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microbiome data processing and analytics. These web-based tools have greatly accelerated the human microbiome 
studies with the facilities for cloud computing service and streamlined web environments that are easy-to-use 
for many people in a variety of disciplines (e.g., medicine, public health, biology, etc.). However, unfortunately, 
there is no web-based analytic tool currently available for paired microbiome studies. MiCloud28 is the web-
based analytic tool that we developed for cross-sectional or longitudinal studies, yet even MiCloud28 can handle 
confounding effects only through covariate adjustments. Of course, covariate-adjusted analyses are important, 
though in practice, numerous potential confounders (e.g., genetic, environmental, or behavioral factors) can 
exist and they are usually lurking (i.e., nuisance variables that are unknown or not available in the data). Hence, 
it is often very hard to adjust them sufficiently in later statistical modeling.

Therefore, in this paper, we introduce an integrative web-based tool, named MiPair, for design-based com-
parative analysis with paired microbiome data. MiPair is a user-friendly web cloud service that enables compre-
hensive data processing and analysis sequentially for comparative analysis between (or across) groups or between 
baseline and other groups. MiPair employs parametric and non-parametric tests for complete (in which every 
block contains all possible levels of treatments or body sites) or incomplete (in which not every block contains 
all possible levels of treatments or body sites) block designs to perform comparative analyses with respect to 
microbial ecology (alpha- and beta-diversity) and taxonomy (e.g., phylum, class, order, family, genus, species) 
(Fig. 1). Thus, users can easily deal with comprehensive design-based data analyses with paired microbiome data. 
MiPair is an open-source software that can be run on our web server (http://​mipair.​miclo​ud.​kr) or alternatively 
on user’s computer (https://​github.​com/​yj7599/​mipai​rgit).

We organized the rest of the paper as follows. In “Results”, we delineate all individual data processing and 
analytic components (Fig. 1) with an example clinical trial on the effects of antibiotics on gut microbiome3. To 
brief, Zhang et al. collected fecal samples from non-obese diabetic mice and profiled their microbiomes using 
16S rRNA amplicon sequencing3 and constructed microbiome data using QIIME29, whereas more details on 
this example study can be found in the original article3 The data were huge and motivated various study orienta-
tions, though for demonstration purposes, we reanalyzed a small portion of the data to see if the gut microbiome 
recovers from the time of a pulsed (macrolide) antibiotic administration (say, baseline) to 2 weeks and 4 weeks 
afterwards, respectively3 (see “Example”). In “Discussion”, we summarize the results, and importantly, discuss 
numerous potential applications of MiPair to other microbiome studies based on family/twin or matched designs. 
Finally, in “Materials and methods”, we described our web server, GitHub repository and the software packages 
that we used.

Results
Data processing: data input and quality control.  We applied most parts of the Data Processing: Data 
Input and Quality Control component in MiCloud28 to MiPair. Yet, we additionally uploaded three new exam-
ple datasets for a clinical trial on the effects of antibiotics on gut microbiome3 for users to easily catch up on. 
These three new example datasets are the ones for (1) a two-group comparison (a baseline group at the time of 
antibiotic administration and 2 weeks afterwards), (2) a three-group comparison (a baseline group at the time of 
antibiotic administration and 2 weeks and 4 weeks afterwards) based on a complete block design, where every 
subject contains all possible three levels of baseline, 2 weeks and 4 weeks afterwards, and (3) a three-group com-
parison (a baseline group at the time of antibiotic administration and 2 weeks and 4 weeks afterwards) based on 
an incomplete block design, where not every subject contains all possible three levels of baseline, 2 weeks and 
4 weeks afterwards3. In the following sections, we describe the machinery of MiPair using the third example 
dataset for a three-group comparison based on an incomplete block design.

As in MiCloud28, users first need to upload four requisite data components: (1) feature table [i.e., count data 
for microbial features such as operational taxonomic units (OTUs) or amplicon sequence variants (ASVs)], (2) 
taxonomic table (i.e., taxonomic annotations on seven taxonomic ranks, kingdom/domain, phylum, class, order, 
family, genus, species), (3) metadata/sample information (e.g., treatment status, body sites, pair/block IDs) and 
(4) phylogenetic tree (i.e., rooted phylogenetic tree) using a unified phyloseq30 format or four individual files 
(Fig. 1).

Then, the data go through quality controls with respect to (1) a kingdom of interest [‘Bacteria’ (default) for 
16S data, ‘Fungi’ for ITS data, or any other kingdom of interest for shotgun metagenomic data], (2) a library 
size for the samples to be removed [i.e., the samples that have a library size/total read count lower than 2000 
(default) are removed], (3) a mean proportion for the features (OTUs or ASVs) to be removed [i.e., the microbial 
features that have a mean proportion lower than 0.002% (default) are removed] and (4) erroneous taxonomic 
names to be removed (Fig. 1).

MiPair displays summary data [sample size, numbers of features (OTUs, ASVs), phyla, classes, orders, fami-
lies, genera, and species] using boxes, and data distributions using interactive histograms and box plots before 
and after quality controls.

Example.  We uploaded the data for a three-group comparison based on an incomplete block design and 
applied the default quality control settings. Then, we rescued 151 features, 6 phyla, 12 classes, 15 orders, 17 fami-
lies, 22 genera and 8 species for 128 samples (Fig. 2).

Ecological analysis: diversity calculation.  As in MiCloud28, MiPair considers a breadth of alpha- and 
beta-diversity indices that properly modulate the richness and evenness in diversity while reflecting phyloge-
netic tree information or not31–34. The alpha-diversity indices that MiPair calculates are Observed, Shannon35, 
Simpson36, Inverse Simpson36, Fisher37, Chao138, abundance-based coverage estimator (ACE)39, incidence-based 
coverage estimator (ICE)40 and phylogenetic diversity (PD)41 indices. The beta-diversity indices that MiPair 
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calculates are Jaccard dissimilarity42, Bray–Curtis dissimilarity43, Unweighted UniFrac distance44, Generalized 
UniFrac distance45 and Weighted UniFrac distance46 (Fig. 1) indices. Users can download those alpha- and beta-
diversity indices for reference.

Ecological analysis: alpha diversity.  MiPair performs comparative analysis in alpha-diversity between 
(or across) groups (i.e., pre-treatment and post-treatment group(s), different body sites). Users first need to 
choose a primary variable of interest (i.e., a factor variable that contains multiple groups/levels of treatments or 
body sites). Then, MiPair lists groups/levels in a chosen primary variable and ask to choose at least two groups/
levels to be compared. Then, users need to choose a variable for pair/block IDs (e.g., subjects IDs for pre and 
post treatments or body sites). Then, MiPair compares two groups or more than two groups (across groups or a 
baseline group to each of the other groups) in alpha-diversity (Fig. 1) as follows.

Figure 1.   Overall workflow for MiPair. MiPair starts with a data processing component: data processing and 
then moves to two data analytic components: ecological analysis and taxonomic analysis.
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Two‑group comparison.  The parametric Paired t-test or the non-parametric Wilcoxon signed-rank test 
(default)47 can be employed to see if two groups have the same distribution for each alpha-diversity index ( H0 ) 
or if they have different distributions ( H1 ). For omnibus testing to see if the two groups have the same distribu-
tion across all alpha-diversity indices ( H0 ) or if they have different distributions for at least one alpha-diversity 
index ( H1 ), the multivariate Hotelling’s t-squared test48 can also be employed. MiPair visualizes the results using 
box plots and/or forest plots.

More than two‑group comparison (across groups).  For the parametric inference, the repeated measures analysis 
of variance (ANOVA) F-test for global testing (to see if all groups have the same distribution for each alpha-
diversity index ( H0 ) or if at least one group has a different distribution ( H1 )) with the Tukey’s honestly signifi-
cant difference (HSD) test49 for post-hoc comparisons (to test all possible pairs of groups, individually) can be 

Figure 2.   The results after the quality controls of MiPair. MiPair displays summary data (sample size, numbers 
of features (OTUs, ASVs), phyla, classes, orders, families, genera, and species) using boxes and visualizes the 
distributions of library sizes across samples and mean proportions across microbial features using histograms 
and box plots.
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employed. For the non-parametric inference in complete block designs, the Friedman’s test50 for global test-
ing with the Conover’s test51 for post-hoc comparisons can be employed. For the non-parametric inference in 
incomplete block designs, the Durbin’s test for global testing with the Conover’s test51 for post-hoc comparisons 
can be employed. MiPair visualizes the results using box plots.

More than two‑group comparison (baseline to other groups).  The likelihood ratio test (LRT) for global testing 
with the t-test for pairwise comparisons from a baseline group to each of the other groups based on the paramet-
ric linear mixed model (LMM)52 can be employed. MiPair visualizes the results using box plots.

Example.  We performed comparative analysis in alpha-diversity from the baseline group at the time of anti-
biotic administration to 2 weeks and 4 weeks afterwards3 using LMM for global testing (Fig. 3) and pairwise 
comparisons (Table 1). We found significant disparity in alpha-diversity for at least one group across the three 
groups with respect to Shannon, Simpson, Inverse Simpson, Chao 1, ACE, ICE and PD at the significance level 
of 5% (Fig. 3). We further observed that the alpha-diversity was significantly enriched 2 weeks afterwards with 
respect to Shannon and PD and 4 weeks afterwards with respect to Shannon, Simpson, Inverse Simpson, Chao 
1, ACE, ICE and PD at the significance level of 5% (Table 1).

Ecological analysis: beta diversity.  MiPair performs comparative analysis in beta-diversity between (or 
across) groups (i.e., pre-treatment and post-treatment group(s), different body sites). As in Alpha Diversity, 
users first need to choose a primary variable of interest (i.e., a factor variable that contains multiple groups/levels 
of treatments or body sites). Then, MiPair lists groups/levels in a chosen primary variable and ask to choose at 
least two groups/levels to be compared. Then, users need to choose a variable for pair/block IDs (e.g., subjects 
IDs for pre and post treatments or body sites). Then, MiPair compares two groups or more than two groups 
(across groups or a baseline group to each of the other groups) in beta-diversity (Fig. 1) as follows.

Two‑group comparison.  The nonparametric permutational multivariate analysis of variance (PER-
MANOVA)53,54 for paired microbiome designs can be employed to see if two groups have the same microbiome 
composition for each beta-diversity index ( H0 ) or if they have different microbiome compositions ( H1 ). MiPair 
visualizes the results using principal coordinate analysis (PCoA) plots55.

More than two‑group comparison (across groups).  MiPair employs PERMANOVA53,54 for global testing to see 
if all groups have the same microbiome composition for each beta-diversity index ( H0 ) or if at least one group 
has a different microbiome composition ( H1 ), and also for pairwise comparisons for all possible pairs of groups 
individually applying the Benjamini–Hochberg (BH) procedures56 to control for false discovery rate (FDR). 
MiPair visualizes the results using PCoA plots55.

More than two‑group comparison (baseline to other groups).  MiPair employs PERMANOVA53,54 for global test-
ing, and also for pairwise comparisons for all possible pairs of a baseline and each of the other groups individu-
ally applying the BH procedures56 to control for FDR. MiPair visualizes the results using PCoA plots55.

Example.  We performed comparative analysis in beta-diversity from the baseline group at the time of antibi-
otic administration to 2 weeks and 4 weeks afterwards3. We found significant disparity in beta-diversity for at 
least one group across the three groups with respect to all the surveyed beta-diversity indices at the significance 
level of 5% (Fig. 4). We further observed significant disparity in beta-diversity for all possible pairs of the base-
line group and each of the other two groups (2 weeks and 4 weeks afterwards) with respect to all the surveyed 
beta-diversity indices at the significance level of 5% (Table 2).

Taxonomic analysis: data transformation.  For taxonomic analyses at each of the seven taxonomic 
ranks (phylum, class, order, family, genus and species), MiPair first transforms the original count data into four 
different data forms, (1) centered log ratio (CLR)57 to normalize the data and relax the compositional constraint, 
(2) proportion to control for varying library sizes across samples, (3) arcsine-root to control for varying library 
sizes across samples and stabilize the variability across samples (4) count (rarefied) 58 to control for varying 
library sizes across samples and use counts as the data form. These data forms have all been widely used, and 
each of them has both advantages and disadvantages. Hence, it is hard to conclude which data form is superior 
to the other data forms in all contexts. We set up all such data forms as user options with no default setting. Users 
can download the original and transformed datasets for reference.

Taxonomic analysis: differential abundance analysis.  MiPair performs comparative analysis in each 
microbial taxon at each of the seven taxonomic ranks (phylum, class, order, family, genus and species). Users first 
need to choose a data format among CLR 57, proportion, arcsine-root and count (rarefied)58 (Fig. 1). Then, as in 
Alpha Diversity and Beta Diversity, users need to choose a primary variable of interest (i.e., a factor variable that 
contains multiple groups/levels of treatments or body sites). Then, MiPair lists groups/levels in a chosen primary 
variable and ask to choose at least two groups/levels to be compared. Then, users need to choose a variable for 
pair/block IDs (e.g., subjects IDs for pre and post treatments or body sites). Then, users need to choose to ana-
lyze from phylum to genus (default) for 16S rRNA data29,59 or from phylum to species for shotgun metagenomic 
data60. Then, MiPair compares two groups or more than two groups (across groups or a baseline group to each 
of the other groups) in each taxon (Fig. 1) as follows.
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Two‑group comparison. 

(1)	 For CLR: The parametric Paired t-test or the non-parametric Wilcoxon signed-rank test (default)47 can 
be employed to see if two groups have the same distribution for each taxon ( H0 ) or if they have different 
distributions ( H1 ). MiPair applies the BH procedures56 to each taxonomic rank to control for FDR. MiPair 
visualizes the results using box plots and dendrograms.

(2)	 For Proportion, Arcsine-root or Count (rarefied): The parametric Paired t-test, the non-parametric Wil-
coxon signed-rank test47, or the non-parametric linear decomposition model (LDM) (default)61 can be 

Figure 3.   The results for comparitive analysis in alpha-diversity (global test). The p-values were calculated using 
LRT based on LMM for global testing to see if all groups have the same distribution in each alpha-diversity 
index ( H0 ) or if at least one group has a different distribution in each alpha-diversity index ( H0 ). *p represents 
statistical significance at the level of 5%.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20465  | https://doi.org/10.1038/s41598-022-25093-6

www.nature.com/scientificreports/

employed. MiPair applies the BH procedures56 to each taxonomic rank to control for FDR. MiPair visualizes 
the results using box plots and dendrograms.

More than two‑group comparison (across groups). 

(1)	 For CLR: For the parametric inference, the repeated measures ANOVA F-test for global testing (to see if all 
groups have the same distribution for each taxon ( H0 ) or if at least one group has a different distribution 
( H1 )) with the Tukey’s HSD test49 for post-hoc comparisons (to test all possible pairs of groups individually) 
can be employed. For the non-parametric inference in complete block designs, the Friedman’s test50 for 
global testing with the Conover’s test51 for post-hoc comparisons (default) can be employed. For the non-
parametric inference in incomplete block designs, the Durbin’s test for global testing with the Conover’s 
test51 for post-hoc comparisons (default) can be employed. MiPair applies the BH procedures56 to each 
taxonomic rank to control for FDR. MiPair visualizes the results using box plots and interactive volcano 
plots.

(2)	 For Proportion, Arcsine-root or Count (rarefied): For the parametric inference, the repeated measures 
ANOVA F-test for global testing (to see if all groups have the same distribution for each taxon ( H0 ) or if 
at least one group has a different distribution ( H1 )) with the Tukey’s HSD test49 for post-hoc comparisons 
(to test all possible pairs of groups individually) can be employed. For the non-parametric inference in 
complete block designs, the Friedman’s test50 for global testing with the Conover’s test51 for post-hoc com-
parisons can be employed. For the non-parametric inference in incomplete block designs, the Durbin’s 
test for global testing with the Conover’s test51 for post-hoc comparisons can be employed. For the non-
parametric inference in either incomplete or complete block designs, LDM (default)61 can be employed 
for both global testing and pairwise comparisons. MiPair applies the BH procedures56 to each taxonomic 
rank to control for FDR. MiPair visualizes the results using box plots and interactive volcano plots.

More than two‑group comparison (baseline to other groups).  For either CLR, Proportion, Arcsine-root or Count 
(rarefied), the likelihood ratio test (LRT) for global testing with the t-test for pairwise comparisons from a base-
line group to each of the other groups based on LMM52 can be employed. MiPair applies the BH procedures56 
to each taxonomic rank to control for FDR. MiPair visualizes the results using box plots and interactive volcano 
plots.

Example.  We chose CLR (default) as the data format to use and performed comparative analysis in each genus 
from the baseline group at the time of antibiotic administration to 2 weeks and 4 weeks afterwards3 using LMM 
for both global testing (Fig. 5) and pairwise comparisons (Table 3, Fig. 6). We found significant disparity in CLR 
transformed relative abundance for at least one group across the three groups for 15 genera at the significance 
level of 5% (Figs. 5, 6). Table 3 reports the results for those 15 genera in the context of pairwise comparisons 
between the baseline group and 2 weeks afterwards, and between the baseline group and 4 weeks afterwards, 
respectively.

Table 1.   The results for comparitive analysis in alpha-diversity (pairwise comparisons). *Ref represents the 
reference/baseline group, Com represents the comparison group, Est and SE represent the estimated regression 
coefficient and its standard error, t represents the t statistic value, and Adj. P-value represents the FDR adjusted 
P-value.

Alpha-diversity index Ref Com Est SE t Adj. P-value

Observed
Baseline Week 2 1.568 1.164 0.972 0.334

Baseline Week 4 3.229 1.636 1.973 0.103

Shannon
Baseline Week 2 0.167 0.076 2.195 0.031

Baseline Week 4 0.545 0.077 7.086 < 0.001

Simpson
Baseline Week 2 0.051 0.027 1.888 0.063

Baseline Week 4 0.190 0.027 6.964 < 0.001

InvSimpson
Baseline Week 2 0.462 0.264 1.745 0.085

Baseline Week 4 1.650 0.268 6.148 < 0.001

Fisher
Baseline Week 2 0.249 0.327 0.764 0.447

Baseline Week 4 0.592 0.331 1.787 0.155

Chao1
Baseline Week 2 4.882 2.874 1.699 0.092

Baseline Week 4 8.778 2.909 3.017 0.006

ACE
Baseline Week 2 3.197 2.396 1.334 0.186

Baseline Week 4 8.935 2.426 3.683 0.001

ICE
Baseline Week 2 2.091 1.738 1.203 0.232

Baseline Week 4 5.004 1.762 2.840 0.011

PD
Baseline Week 2 0.484 0.163 2.967 0.004

Baseline Week 4 1.098 0.166 6.629 < 0.001
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Discussion
In this paper, we introduced an open-source web-based analytic tool, MiPair, for design-based comparative 
analysis with paired microbiome data. We described that MiPair can handle comprehensive microbiome data 
processing and analytic procedures using parametric or non-parametric tests for complete (in which every 
block contains all possible levels of treatments or body sites) or incomplete (in which not every block contains 
all possible levels of treatments or body sites) block designs to perform comparative analyses with respect to 
microbial ecology (alpha- and beta-diversity) and taxonomy (e.g., phylum, class, order, family, genus, species). 
We also described all the detailed widgets, methodologies and visualizations for the two-group comparison, 
more than two-group comparison (across groups) and more than two-group comparison (baseline to other 
groups), respectively.

Figure 4.   The results for comparitive analysis in beta-diversity (global test). The p-values were calculated using 
PERMANOVA for global testing if all groups have the same microbiome composition in each beta-diversity 
index ( H0 ) or if at least one group has a different microbiome composition in each beta-diversity index ( H1 ). *p 
represents statistical significance at the level of 5%.
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We demonstrated the application of MiPair using an example clinical trial to see if the gut microbiome 
recovers from the time of a pulsed (macrolide) antibiotic administration to 2 weeks and 4 weeks afterwards, 
respectively3. However, the application of MiPair can be much broader. MiPair can be, in general, applied to 
any paired (block) designs, in which each pair/block contains different groups or levels of treatments. In the 
main text, we described subjects as example pairs or blocks for repeated measurements for different groups or 
levels of treatments or different body sites, yet twins or families can also be example pairs or blocks to control 
for genetic and/or environmental factors as in Refs.9,12,62,63. Besides, any groups of subjects that are matched in 
selected nuisance variables (e.g., age, sex) in an observational or quasi-experimental study can be pairs or blocks 
to control for such matched nuisance variables (e.g., age, sex) as in Refs.64,65. MiPair can substantially contribute 
to the rapidly growing human microbiome field as a useful and user-friendly data analytic tool for numerous 
potential applications.

Materials and methods
Web server, GitHub, URLs and pre‑requisites.  As in Ref.28, we constructed all the user interfaces and 
server functions of our app using R Shiny (https://​shiny.​rstud​io.​com), and distributed our app to web environ-
ments using ShinyProxy (https://​www.​shiny​proxy.​io) and Apache2 (https://​httpd.​apache.​org). Our web server 
currently runs on Ubuntu 20.04 (https://​ubuntu.​com/) on the computing device with Intel Core i7-12700T (12-
core) processor and 36 GB DDR4 memory allowing up to ten concurrent connections. We also set up a GitHub 
repository to allow users to run MiPair using their local computers in case that our web server is busy. We are the 
host that is responsible for maintaining our web server and GitHub repository stable. Users can report any issues 
that they have to us through the GitHub page (https://​github.​com/​yj7599/​mipai​rgit/​issues).

URLs.  MiPair is an open-source software, and can be reached through our web server (http://​mipair.​miclo​ud.​
kr) or our GitHub repository (https://​github.​com/​yj7599/​mipai​rgit) locally on user’s computer.

Pre‑requisites.  MiPair depends on many other existing R packages, and thus it seems to require many pre-
installations. However, users do not need to install them all individually because they are already installed on 
our web server. For the local device, they can also be installed and imported automatically using a simple com-
mand, library(shiny); shiny::runGitHub("mipairgit", "yj7599", ref = "main"), using the ‘shiny’ package on R Stu-
dio (https://​www.​rstud​io.​com). We have run unit tests using our web server with the specifications of Intel 
Core i7-12700T (12-core) processor and 36  GB DDR4 memory on Ubuntu 20.04 with R version 4.2.0, and 
also using two different local computers with the specifications of AMD Ryzen 7 5800U (8-core) processor and 
8 GB DDR4 memory on Windows 11 Home (Version: 21H2, Build: 22000.1098) with R version 4.1.0 and the 
specifications of Apple M1 Ultra (20-core) processor and 64 GB memory on macOS Monterey 12.4 with R ver-
sion 4.2.0, respectively. We have checked up each possible combination of the computing devices, datasets, and 
functionalities. For the datasets, we used the three example datasets3 and a huge synthetic dataset. The synthetic 
dataset was the one generated based on the Dirichlet-multinomial model66 using the estimated proportions and 
dispersion parameter of the gut microbiome data for the monozygotic twins in Ref.9. We generated the feature 
table for 6671 features and 3000 subjects, and created the metadata to have blocks with size three arbitrarily 
for the three-group comparison. Of course, the use of this synthetic dataset does not provide any biological or 
medical meanings at all. We used it just to check the running times for using such a huge dataset to provide 
some guideline on the upper limit of the data size that can be handled by MiPair. We organized the results from 
our unit tests in (Online resource, Supplementary Table 1). To summarize, we found no error for any procedure 
(Online resource, Supplementary Table 1). We also observed only small running times for any procedure for 
any of the three example datasets, yet we observed much greater running times for the huge synthetic dataset 
(Online resource, Supplementary Table 1). However, we would say that MiPair can still handle a huge dataset 
like the synthetic dataset with 6671 features and 3000 subjects in a manageable time. For the local device, we 
would also set up the minimum requirements as the one with 8-core processor and 8 GB memory on Windows 

Table 2.   The results for comparitive analysis in beta-diversity (pairwise comparisons). *Ref represents the 
reference/baseline group, Com represents the comparison group, F represents the F statistic value, and Adj. 
P-value represents the FDR adjusted P-value.

Beta-diversity index Ref Com F Adj. P-value

Jaccard
Baseline Week 2 11.828 < 0.001

Baseline Week 4 19.136 < 0.001

Bray.Curtis
Baseline Week 2 9.468 < 0.001

Baseline Week 4 21.565 < 0.001

U.UniFrac
Baseline Week 2 8.226 < 0.001

Baseline Week 4 14.584 < 0.001

G.UniFrac
Baseline Week 2 15.690 < 0.001

Baseline Week 4 44.064 < 0.001

W.UniFrac
Baseline Week 2 12.951 < 0.001

Baseline Week 4 53.649 < 0.001

https://shiny.rstudio.com
https://www.shinyproxy.io
https://httpd.apache.org
https://ubuntu.com/
https://github.com/yj7599/mipairgit/issues
http://mipair.micloud.kr
http://mipair.micloud.kr
https://github.com/yj7599/mipairgit
https://www.rstudio.com
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or Macintosh with R (≥ 4.1.0). We monitor the capacity and functionality of our web server periodically. Users 
can also report any issues for using MiPair on our GitHub Issues page (https://​github.​com/​yj7599/​mipai​rgit/​
issues). We also plan to provide troubleshooting tips on our GitHub page (https://​github.​com/​yj7599/​mipai​rgit).

Software packages.  We wrote MiPair using R language, and MiPair is based on many R packages as fol-
lows.

Figure 5.   The 15 significant discoveries for comparitive analysis on genera (global test). The Q-values are 
the FDR adjusted P-values for global testing using LRT based on LMM to see if all groups have the same 
distribution in each genus ( H0 ) or if at least one group has a different distribution in each genus index ( H0).

https://github.com/yj7599/mipairgit/issues
https://github.com/yj7599/mipairgit/issues
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Diversity calculation and data transformation.  The alpha- and beta-diversity indices35–46 are calculated using 
the ‘phyloseq’, ‘picante’, ‘dist’, ‘ecodist’ and ‘GUniFrac’ packages. The CLR57 transformation and rarefaction58 are 
performed using the ‘compositions’ and ‘phyloseq’ packages.

Data analytic methods.  The Paired t-test, Wilcoxon signed rank test47, and multivariate Hotelling’s t-squared 
test48 are performed using the ‘stats’ and ‘ICSNP’ packages. The ANOVA F-test, Friedman’s test50, Durbin test, 
Tukey’s HSD49 and Conover’s test51 are performed using the ‘stats’ and ‘PMCMRplus’ packages. The LMM52 is 
fitted using the ‘lme4’ package. The LDM61 is fitted using the ‘LDM’ package. PERMANOVA53,54 is performed 
using the ‘vegan’ package. The BH procedures56 are applied using the ‘stats’ package.

Visualizations.  The box plots, histograms and forest plots are drawn using the ‘graphics’ and ‘forestplot’ pack-
ages. The PCoA plots55 are drawn using the ‘vegan’ package. The volcano plots are drawn using ‘plotly’ and 
‘volcano3D’ packages.

Data availability
The raw sequence data for our example demonstration are publicly available in the database QIITA with the 
identifier 10508 (https://​qiita.​ucsd.​edu/​study/​descr​iption/​10508), and all the processed data components can 
be found on the app (see example datasets on Data Processing: Data Input). MiPair is an open-source software 
under the General Public License (GPL-1, GPL-2), which can be run on our web server (http://​mipair.​miclo​ud.​
kr) or on user’s computer (https://​github.​com/​yj7599/​mipai​rgit).

Received: 15 September 2022; Accepted: 24 November 2022

Table 3.   The results for comparitive analysis on genera (pairwise comparisons). *Ref represents the reference/
baseline group, Com represents the comparison group, Est and SE represent the estimated regression 
coefficient and its standard error, t represents the t statistic value, and Adj. P-value represents the FDR adjusted 
P-value.

Genus Ref Com Est SE t Adj. P-value

g_Bacteroides
Baseline Week 2 0.772 0.198 3.898 0.001

Baseline Week 4 − 0.201 0.200 − 1.004 0.389

g_Coprococcus
Baseline Week 2 1.876 0.468 4.006 0.001

Baseline Week 4 0.597 0.474 1.258 0.290

g_Blautia
Baseline Week 2 − 0.938 0.483 − 1.942 0.111

Baseline Week 4 − 1.519 0.490 − 3.099 0.012

g_Coprobacillus
Baseline Week 2 − 0.127 0.100 − 1.270 0.285

Baseline Week 4 0.161 0.101 1.586 0.285

g_Lactobacillus
Baseline Week 2 2.339 0.334 6.995 < 0.001

Baseline Week 4 1.892 0.339 5.579 < 0.001

g_Enterococcus
Baseline Week 2 − 0.765 0.375 − 2.038 0.098

Baseline Week 4 − 2.705 0.380 − 7.109 < 0.001

g_Staphylococcus
Baseline Week 2 − 2.504 0.314 − 7.973 < 0.001

Baseline Week 4 − 2.157 0.318 − 6.779 < 0.001

g_Bilophila
Baseline Week 2 − 0.092 0.340 − 0.272 0.864

Baseline Week 4 1.552 0.344 4.514 < 0.001

g_Oscillospira
Baseline Week 2 0.104 0.320 0.325 0.863

Baseline Week 4 0.793 0.325 2.442 0.067

g_Ruminococcus
Baseline Week 2 0.195 0.351 0.555 0.751

Baseline Week 4 1.768 0.356 4.968 < 0.001

g_Clustridium
Baseline Week 2 2.142 0.596 3.591 0.002

Baseline Week 4 3.057 0.605 5.050 < 0.001

g_Pantoea
Baseline Week 2 − 0.568 0.221 − 2.573 0.062

Baseline Week 4 − 0.453 0.224 − 2.025 0.076

g_Trabulsiella
Baseline Week 2 − 0.916 0.307 − 2.986 0.012

Baseline Week 4 − 1.663 0.312 − 5.332 < 0.001

g_Klebsiella
Baseline Week 2 − 1.379 0.348 − 3.968 0.001

Baseline Week 4 − 2.654 0.353 − 7.529 < 0.001

g_Prevotella
Baseline Week 2 0.048 0.362 0.131 0.896

Baseline Week 4 1.349 0.366 3.683 0.002

https://qiita.ucsd.edu/study/description/10508
http://mipair.micloud.kr
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