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Multi‑fractal detrended 
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Complex systems in biology, climatology, medicine, and economy hold emergent properties such 
as non-linearity, adaptation, and self-organization. These emergent attributes can derive from 
large-scale relationships, connections, and interactive behavior despite not being apparent from 
their isolated components. It is possible to better comprehend complex systems by analyzing 
cross-correlations between time series. However, the accumulation of non-linear processes induces 
multiscale structures, therefore, a spectrum of power-law exponents (the fractal dimension) and 
distinct cyclical patterns. We propose the Multifractal detrended cross-correlation heatmaps 
(MF-DCCHM) based on the DCCA cross-correlation coefficients with sliding boxes, a systematic 
approach capable of mapping the relationships between fluctuations of signals on different scales and 
regimes. The MF-DCCHM uses the integrated series of magnitudes, sliding boxes with sizes of up to 5% 
of the entire series, and an average of DCCA coefficients on top of the heatmaps for the local analysis. 
The heatmaps have shown the same cyclical frequencies from the spectral analysis across different 
multifractal regimes. Our dataset is composed of sales and inventory from the Brazilian automotive 
sector and macroeconomic descriptors, namely the Gross Domestic Product (GDP) per capita, Nominal 
Exchange Rate (NER), and the Nominal Interest Rate (NIR) from the Central Bank of Brazil. Our 
results indicate cross-correlated patterns that can be directly compared with the power-law spectra 
for multiple regimes. We have also identified cyclical patterns of high intensities that coincide with 
the Brazilian presidential elections. The MF-DCCHM uncovers non-explicit cyclic patterns, quantifies 
the relations of two non-stationary signals (noise effect removed), and has outstanding potential for 
mapping cross-regime patterns in multiple domains.

Economic scenarios are complex1–3, and their mechanisms are challenging4–7. According to Hidalgo8, the study of 
economic complexity has accelerated in recent decades not only focused on traditional approaches to aggregate 
outputs such as gross domestic product (GDP), capital, labor, and knowledge. Complexity metrics can provide 
robust descriptors of diversification and indications of potential development for diverse economies and markets9. 
The study of economic complexity has also grown with the revival of industrial policy10,11, endogenous growth 
theory12–17, and quantitative studies of complex economic structures in numerous countries18–24. According 
to Arthur25, the neoclassical26 theory assumes rational agents with well-defined problems arriving at optimal 
behavior in equilibrium with the overall outcome, which can be unrealistic for markets27 since it does not take 
into account possible anomalies, market phenomena, bubbles, crashes, and random periods of volatility. However, 
complexity economics assumes that agents differ from each other, explore, react and change actions in response to 
mutual outcomes. Consequently, patterns and emergent phenomena can be displayed out of equilibrium. These 
systems can generally exhibit complexity28–35, adaptive and non-linear dynamic behavior36,37. Therefore, their 
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overall properties cannot be easily inferred from isolated components38,39. Complex systems can also present 
emergent properties40–42 from large-scale exchanges, dependencies, and connections that only emerge when the 
system is all-together. The concept of spontaneous order and self-organization economy dates back to the founder 
of the Austrian School, Carl Menger, in his work regarding spontaneous emergence of money transactions in 
primitive economies43. Hayek44 extended the concept to self-organization phenomenon with emergence and 
complexity45,46, followed by the support of Koppl47,48, Rosser49 and Lewis50.

Attributes such as market competitiveness51, continuous variations of exchange currency rates52, Gross 
domestic product53 (GDP), interest rates (IR), disposable incomes54 (DI), and global consumer demands can 
significantly impact one’s organization. These dynamic aspects always lead to internal and external implications 
since actors should consider cost-effective strategies to mitigate financial risks55, maximize profits, and encourage 
growth56. However, elements of individual actions can generally propagate through economic networks with criti-
cal topologies for the stability of economies57, self-organization58, and risk propagation. These economic networks 
can cause a cascade of events59 with long-tailed distributions characterized by power laws. These power laws are 
expected in economies, and markets due to volatilities and fluctuations in prices60–62. Therefore, comprehending 
the relationship between internal and external signals and fluctuations can be critical for appropriate planning 
since disruptive economic scenarios can lead to unstable institutions.

The time series analysis of pairs of signals and fluctuations can assess possible data-driven persistences (the 
tendency of a system to remain in the same trending state), anti-persistences (the tendency of a system to remain 
in opposing trending states), general trends and its cyclical patterns. Institutions can use these tools to improve 
efficiency and productivity throughout their supply chain by planning and executing short, medium, and long-
term strategies to avoid disruptions. For instance, measuring the cyclical fluctuations of sales and inventory could 
help prevent the underproduction of a particular product during a period. However, the common bottleneck 
is how to effectively track seasonal (up to 1 year) trends and cyclical patterns from time-evolving fluctuations. 
Previous studies have shown the potential of cross-correlation analysis for decision-making across multiple 
fields. The detrended cross-correlation analysis (DCCA) has been used to investigate possible power laws over 
prices and volume changes in the stock market63,64. The methods section clarifies that the DCCA generalizes the 
standard covariance to consider the long-range memories of two non-stationary signals. Besides, the DCCA has 
also been used in climatology to track the influence of seasonal patterns65,66.

The signals can have scale invariance when an internal structure repeats on subintervals of the same signal. 
Therefore conventional methods such as the moving averages cannot capture invariant signatures. For instance, 
given a time-evolving signal X(ct) = cαX(t) , we can estimate the power law exponent α using fractal analyses 
to define the kind of scale-invariant structure it possesses. These scale-invariant structures are also widely found 
in biomedical signal processing. They can support the prognostic and diagnostic of patients since any alteration 
of exponents could reflect the adaptability and success of a treatment to improve pathological conditions and 
health67,68. A single power law exponent assumes that the scale invariance is independent of time and space. 
However, spatial and temporal variations indicate a multifractal structure, which means a spectrum with multiple 
power law exponents. These scaling factors (exponents) can provide information about hidden cyclical regimes 
ranging from months to years. Multifractals are widely used in Finance to investigate financial time series across 
different markets and assets69,70. The multifractal detrended fluctuation analysis (MF-DFA)71 has been used to 
investigate the hedging effectiveness of Chinese treasury bonds and interest rate risk72. Furthermore, the multi-
fractal detrended cross-correlation analysis (MF-DCCA) can analyze self-similarities levels between Shanghai 
and Hong Kong Stock markets73. There have been multiple advances in the domain with new tools such as the 
DCCA-l(n)74, random matrix-based DCCA for time-delay cross-correlation75, and combinations with Support 
Vector Machines (SVM) to forecast financial returns76,77. Additionally, Graphs using DCCA (cross-correlation 
between nodes) have been used to model financial networks, analyze stock exchanges, market hubs, cluster 
community centrality, and connection between networks78. Therefore, an extension of the MF-DCCA capable 
of mapping cross-correlations for multiple regimes in a single heatmap can be highly advantageous for decision-
making across multiple domains.

We propose the multifractal detrended cross-correlation heatmaps (MF-DCCHM) based on the DCCA 
cross-correlation coefficients with sliding boxes accounting for 5% of the entire series. It is crucial to use the 
integrated series of magnitudes and averages of DCCA coefficients on top of the heatmaps for the local analysis. 
This systematic approach can map the overall relationships between fluctuations of signals on different time 
scales and multifractal regimes (different fractal dimensions). This method uncovers non-explicit cyclic patterns, 
quantifies the relations of two non-stationary signals, and can stand out as a potential approach for applications 
in multiple domains. For the present work, we have used time series of inventory and sales extracted from the 
National Federation of the Distribution of Motor Vehicles (FENABRAVE) database registered from 1995 to 2020 
extracted from the Central Bank of Brazil79. Forecasting sales and stocks in the automobile sector are of utmost 
importance to decision-makers engaged in resource allocation on the supply side. The Brazilian Automotive sec-
tor held a share of 22% of industrial production and 4% of the total GDP in 2018. The sector is also responsible 
for 1.6 million employees and pays around 40 billion dollars yearly in taxes. The Brazilian Automotive Industry 
was also classified in the same group as the USA and South Korea regarding market structure80. The latter elu-
cidates the size of the economic impact and the importance of accurate models and systematic approaches to 
forecasting sales in an economic context. Time series analysis and data mining algorithms81–83 along with neural 
networks, fuzzy analysis, and multiple linear regressions84 have been used to forecast sales. However, only linear 
regression models85 were used to find elasticities for sales in the Brazilian Automotive sector. Therefore, we have 
explored the analysis of the cross-correlation between sales and inventory from the Brazilian Automotive sector 
and growth descriptors such as the gross domestic product (GDP) per capita, the nominal exchange rate (NER), 
and the nominal interest rate (NIR) equivalent to the Special Settlement and Custody System (Selic). The fol-
lowing approaches were used for the analysis: (i) the detrended fluctuation analysis (DFA) for auto-correlation 
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and detrended cross-correlation analysis (DCCA) to estimate possible trends and concurrent events that might 
affect decision-making processes, (ii) the cross-correlation coefficients (CCC) to verify the level of correlation 
for different periods, (iii) Discrete Fourier analysis to identify, distinguish, and characterize the various cycles, 
and (iv) MF-DCCHM to evaluate cyclic patterns from a pair of time-evolving signals. Our global analysis has 
shown anti-correlated patterns from fluctuations in sales and inventory, which can help identify scenarios for 
the automotive sector. We have also assessed cyclical patterns on time series using the MF-DCCHM method. 
This technique indicates positively correlated patterns from our dataset that can be directly compared with the 
amplitude and power-law spectra. We also show critical cyclical patterns and regimes of high intensities that 
coincide with the Brazilian presidential elections. This work presents the advantages of employing the MF-
DCCHM method for capturing cyclical trends to guide decision-making processes. The existing methods DFA 
and DCCA​63,86 only present a global estimate based on scaling exponents to the level of autocorrelation and 
cross-correlation between the series. It is only possible to access information on a series of fluctuations for its 
entire length since there is no sliding box, and the cross-correlation coefficients are only functions of window 
size65. The novelty of our work relies on local analysis. The local analysis (MF-DCCHM) can uncover cyclical 
patterns, anomalies, persistences, and anti-persistences of signals for small intervals of the series in different 
multifractal regimes (exponent factor). This systematic approach is more effective using a series of magnitudes87. 
The analysis is carried out by choosing a subseries (short interval) of the signal (sliding box with size up to 5%), 
which is swept (similar to a Moving Average) for the full extension of the series and fluctuations. Therefore, the 
mapping considers all scales/periods of the fluctuations. Hence, unlike existing techniques, which depend only 
on scale variation, our systematic approach computes the cross-correlation coefficient considering scale varia-
tion and temporal/spatial variation. The use of DCCA cross-correlations with sliding boxes to build heatmaps 
was first introduced by Marinho et al.88. Recent works89,90 use a similar approach for mapping the DCCA cross-
correlation coefficients considering integrated series and sliding boxes with a size of 50% of the entire series. 
However, our work takes advantage of an integrated series of magnitudes with non-linear properties that amplify 
the signals. This step is crucial for uncovering anomalies and cyclical patterns across multifractal regimes in 
the maps. Furthermore, the maps will not uncover patterns from multiple multifractal regimes if the size of 
the sliding box is significantly large, for instance, 50% of the entire series, as highlighted by the references89,90. 
Our contribution also relies on the fact that depending on the sampling, the sliding box must have a size of up 
to 5% of the entire series. The spectral analysis confirms this fact since we found the same cyclical frequencies 
across different multifractal regimes in our heatmaps. We cannot find the same results by considering only the 
integrated series with a sliding box accounting for 50% of the entire series. Furthermore, it is also possible to use 
the approach with a configurational space that is not dependent on time, which is highly beneficial and efficient 
for pattern recognition in numerous domains. The methods section details on stochastic methods and spectral 
analysis underlying our fluctuation analysis.

Results
Global analysis to estimate multifractal exponents.  In the pre-processing phase, each time series 
correspond to signals composed of short to long-range stationary intervals. Therefore, the first step was statisti-
cally mapping non-stationary time series into stationary ones. The procedure is to establish the successive dif-
ferences of the original series until its convergence to stationarity, as shown in Fig. S1 (Supporting Information). 
Additionally, we have computed the cumulative sum of the series of increments by considering consecutive 
differences of discrete points to reach the fully integrated series. Figure S2a,b (Supporting Information) shows 
a time series of sales in units (Brazilian Automotive sector) and their successive differences, respectively. Fig-
ure S2c (Supporting Information) shows a step series derived from the magnitude. The integrated-time series yMk  
defined by M = |xi|

91,92 was computed from Eq. (5), as shown in Fig. S2d (Supporting Information). We compute 
the decomposition of yk into a series of magnitudes as a useful strategy to characterize fluctuations and patterns 
obtained from the original series after computing FX from Eq. (4). Using the series of magnitudes and sliding 
boxes, we have performed a local analysis by computing the coefficients DFA1 and DCCA1 . As shown in Fig. S3a 
(Supporting Information), we have chosen one box s (a subset of the series) of a given size N ′ to compute σDCCA1 . 
The box s is divided into Mv windows, each with size v, as shown in Fig. S3b (Supporting Information). We have 
also obtained the autocorrelation and cross-correlations of yk , and y′k in the interval N ′ , and FX to solve Eq. (12). 
After computing these coefficients, the sliding boxes move forward while keeping the same number of windows 
( Mv ) to extract the new coefficients σDCCA1

87,88. We repeat this procedure multiple times for sampling the time 
series of size N with the same box s. Finally, the box of size N ′ returns to the starting point for different windows 
of size v. The goal is to map the fluctuations with different windows of size v to obtain the coefficients σDCCA1 as 
a function of the scaling factor v and time using the correlation heating maps. This mapping is crucial because it 
sweeps across multiple regimes and unveils invariant structures across different multifractal exponents. We will 
now refer to the new multifractal detrended cross-correlation heatmaps as the MF-DCCHM method.

Figure 1a and Table 1 shows a linear trend, and both exponents from the autocorrelation and cross-correlation 
are lower than 0.5. These characteristics indicate that fluctuations around the average tend to reverse in the future. 
Therefore, in the time interval from 1995 to 2010, the exponents reveal that Brazilian car sales and inventory 
fluctuations will reverse their growth direction. We have observed a similar scenario from the cross-correlation 
exponent, where the fluctuations of sales and inventory follow different directions. From 1995 to 2016, we can 
observe the highest positive fluctuations from the first 15 years, followed by a downward trend as the sales 
dropped drastically. Figure 1b and the exponents in Table 2 show a q-Multifractal (q = 2) with two regimes and 
a crossover pattern on the threshold log (v) = 1.15 , where v ≈ 14 months. Region I shows that the exponent 
for the autocorrelation of sales and inventory are anti-persistent and persistent, respectively. However, Region 
II shows that all exponents have lower values than 0.5, indicating that future fluctuations will reverse direction. 
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Figure 1.   Fluctuation analysis using the following references: (a) average and (b) trend. The sales, inventory, 
and sales & inventory are represented by circles (red), squares (black), and triangles (blue), respectively. Regions 
I and II indicate different q-Multi-fractal regimes, where q = 2.

Table 1.   DFA0 and DCCA0 exponents for the sales and inventory time series.

Sales ( α) Inventory ( α) Sales and inventory(�)

0.243 ± 0.004 0.197 ± 0.004 0.243 ± 0.003



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21655  | https://doi.org/10.1038/s41598-022-26207-w

www.nature.com/scientificreports/

Additionally, Fig. 5b shows that for periods greater than v = 14 months, the pattern of fluctuation around the 
linear trend is very similar to the fluctuations around the mean from Fig. 1a.

Local analysis to estimate the coefficients DFA
1
 and DCCA​

1
.  Figure 2a shows the MF-DCCHM 

sampled over multiple windows of size v and times. This heatmap has distinct colors assigned according to the 
magnitude of the detrended cross-correlation coefficients, namely σ . On top of each map, we have also plotted an 
average of σ (y-axis) for each time. Figure 2a show several multi-fractal regimes captured by distinct coefficients 
within the interval 0 < σ < 1 as a function of the window v. The fluctuations of the two series have shown a pos-
itive cross-correlation with periodic high-intensity patterns. We can distinguish intermittent anomaly levels with 
greater intensities associated with major concurrent events, particularly for σ > 0.6 . We have also found a cycle 
with an average of approximately three to four years for σ > 0.85 . During this period, the Brazilian automotive 

Table 2.   q-Multifractal DFA1 and DCCA1 with q = 2 exponents for the sales and inventory time series.

Region Sales ( α) Inventory ( α) Sales and inventory(�)

I 0.303 ± 0.003 0.652 ± 0.008 0.556 ± 0.005

II 0.168 ± 0.001 0.086 ± 0.003 0.115 ± 0.002

Figure 2.   MF-DCCHM diagram of cross-correlations. (a) Average for each period. (b) MF-DCCHM heatmap 
of cross-correlations considering multiple sliding boxes v distributed over the years. (c) The amplitude spectra 
and (d) power versus annual frequency for the inventory and sales.
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sector retained high incentives, subsidies, investments, and a compelling sales season throughout the automotive 
industry. Additionally, the intensity of positive cross-correlations increases across multiple governments during 
the same cycle, with a maximum threshold between 2003 and 2004. Figure 2b confirms our previous assump-
tions of a three to 4-year cyclic pattern (Presidential Elections). This periodicity shows that the fluctuations for 
the two series have high degrees of similarity.

Our results suggest that the automotive sector was optimized with neither underproduction nor overproduc-
tion. Figure 2b confirms our previous three- to four-year cycle assumptions. To conclude, visualizing a heating 
map sweeping σ for multiple window sizes for different years can unveil hidden patterns, such as the rate and 
variability between two-time series. We can also detect soft-to-strong trends and possible impacts on one’s com-
panies’ production lines, as optimized sales and inventories can lead to higher revenues. Therefore, this approach 
can be of interest to strategic planning and decision-making.

Analysis of the amplitude and power spectra.  The time series were sampled with the annual interval 
to obtain the amplitude and spectra of frequency from 1995 to 2010 from the following equation:

Figure 2c,d shows the amplitude and power spectra for the sales and inventory time series. In Fig. 2c we 
observe two outstanding seasonal peaks with annual periodicity (f = 1 cycle/year) and semi-annual periodic-
ity (f = 2 cycles/year). The latter represents an annual cycle of higher demands for vehicles and periods with 
lower-order intensity, respectively. The frequency peak in the proximity of f = 0.25 cycles/year corresponds to 
approximately 4 years. Additionally, Fig. 2d presents the power spectra where we can identify the same peaks 
from Fig. 2c. The coefficients b for sales ( 1.7± 0.2 ) and inventory ( 1.6± 0.1 ) are in the range −1 < b < 3 , which 
indicates a strong cross-correlation. For instance, the peak over the frequency f = 0.25 cycles/year coincides with 
the MF-DCCHM shown in Fig. 2a for regimes where σ > 0.85 . Suppose b = 0 , the series of increments would 
be equivalent to random series. However, our results suggest important events with distinct periodic demands. 
This technique can also detect seasonal anomalies and larger cycles to support strategic planning and higher 
decision-making confidence at multiple levels.

MF‑DCCHM analysis.  We have also investigated if growth descriptors would show cyclical patterns when 
cross-correlated with the fluctuations in sales of the Brazilian automotive sector. Figure 3 shows the value and 
its respective Moving Average (M.A.) for national (a) sales and (b) inventory of automotive vehicles in units, 
(c) Gross Domestic Product per capita (GDP per capita), (d) Nominal Interest Rate (NIR), and (e) Nominal 
Exchange Rate (NER) obtained from the Brazilian Central Bank79. We have used the Brazilian GDP per capita, 
a metric of economic activity and output by its total population, and consider the monetary worth of goods and 
services per month, an essential variable indicative of a country’s living standard. The analysis of M.A. shows 
expected growth for the sales and inventory when the GDP per capita increases and the NIR reduces.

After the introduction of the Real in 1994, Brazil had a substantial influx of international capital leading to a 
gain in the value of the Real against the U.S. dollar leading to reasonable economic stability. From 1996 to 1998, 
Fig. 3 shows that the moving average of NIR decreased while NER smoothly increased due to the reduction of 
the tight control of the exchange rates by the Central Bank of Brazil79. Furthermore, from 1998 to 2002, Brazil 
faced high inflation and the prospect of political risk due to upcoming elections led to an outflow of capital, high 
volatility of NIR, and a peak of NER around 2002. These aspects are essential instruments for decision-making 
management. However, the moving average is insufficient to capture trends regarding the cyclic patterns and 
fluctuations between macroeconomic time series. Therefore, we have developed the MF-DCCHM method and 
employed it as an alternative to understanding the variability, trends, persistences and anti-persistences, and 
dependencies among these macroeconomic indicators and their possible effects on the Brazilian automotive 
sector.

Figure 4 shows the fluctuation analysis for each pair of time series as a function of the period ν . We can 
observe a multifractal regime with a crossover of three regions with different exponents (scaling factors) char-
acteristics of soft-to-strong variability rates over time. The breaking of the first regime from Region I to Region 
II, occurs in approximately 15 months and from Region II to Region III in nearly 67 months. These regimes can 
be crucial to forecast the persistence of autocorrelation and cross-correlation trends for the pair of time series. 
The exponents derived from the global analysis for each pair of time series are shown in Tables 3, 4, 5, 6, 7 and 
8. We have found positive persistence for the autocorrelation (DFA) of NER in Region I, GDP for Region II, and 
NER and GDP for Region III. This result is crucial for planning and an efficient decision-making process, given 
that persistence of NER and GPD for seasonal regimes can directly impact sales. The DCCA exponent increases 
from Region I (anti-persistent) to Region III (persistent), except for the DCCA exponent from NER and NIR 
(Table 8), which decreases from Region I (persistent) to Region III (anti-persistent). The latter means a direct 
relationship exists between the period value ν and the detrended cross-correlation exponent.

Figure 5 shows a local analysis of the raw time series’s fluctuations with the MF-DCCHM for six different time 
series mentioned at the beginning of this section. We have observed that all the maps have shown coefficients 
with intensities oscillating between − 1 and + 1, besides offering an averaged temporal periodicity that varies 
according to the adopted scale. Figure 5a shows two possible regimes where credit conditions can be relevant to 
sales with positive persistence between Sales and NIR from 2008 and periods where it can be irrelevant because 
the average intensity of σ is closer to 0. We have confirmed the reliability of our approach since the GDP per 
capita, and Sales in the Brazilian automotive sector, as well as the GPD and NIR, have strong persistence, as 

(1)�f =
1

N�t
=

1

180× 1
12

≈ 0.067 cycles/year.
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shown in Fig. 5b,c. The average intensity of σ on top of Fig. 5d,e shows cyclical patterns of 3 years with stable 
oscillations and persistence peaks around 2007, 2010, and 2013. Figure 5f shows an overall anti-persistence 
pattern compatible with the argument that unfavorable fluctuations in the NER tend to decrease the prices and 
possibly increase sales of automotive vehicles in Brazil.

Discussion
We have developed a systematic methodology, namely the Multifractal detrended cross-correlation heatmaps 
(MF-DCCHM), to expose non-explicit patterns from time-series fluctuations with multiple regimes. Our study 
case explores cross-correlations between the sales and inventory derived from the Brazilian Automotive sector 
and growth descriptors such as the gross domestic product (GDP) per capita, the nominal exchange rate (NER), 
and the nominal interest rate (NIR) equivalent to the Special Settlement and Custody System (Selic). In the first 
part of this work, we obtained cross-correlation exponents using a global analysis to estimate the most probable 
scenarios in the Brazilian automotive sector after 2010. For the local analysis, it was possible to establish periodic 
intervals where the statistical variables sale and inventory have a substantial positive (window sizes 0 < v < 1 ) 
cross-correlation. This approach has shown a cyclical pattern of high intensity with approximately three to four 
years, which coincides with periods near the presidential elections. We have also found cyclical frequencies over 
several periods through the application of Fourier analysis, where three primary seasonal cycles were identi-
fied: (i) semester, (ii) annual, and (iii) 4 years. We have shown that the fluctuations from later periods of 1995 to 
2010 provide short to long-term predictability in demand over production lines, which stimulated an adequate 
performance during the highest and lowest sales season.

The MF-DCCHM detect non-linearities between macroeconomic time series and their effects on sales. The 
MF-DCCHM was able to bring insights into the persistence between the fluctuations. The trend in the correla-
tion between GDP and NIR has a turning point around the year 2000 from a negative to positive persistence 
in the entire interval of window sizes. The positive persistence coincides with the high stability of the Brazilian 
economy. We observed a degrading effect around 2008 connected to the global financial crisis. For GDP and 
NER, we observe negative and positive persistence cycles, which can be interpreted as the link between the 
commodities prices since de growth of GDP is substantially dependent on the exports that impact the NER. 
The heatmaps show similar behavior for the NER and NIR correlation. Each time series has significant effects 
when analyzed with sales, and it can be aimed at examining and validating the results for forecasting sales. The 
method has also uncovered multifractal regimes with three different exponents (scaling factors) for analyzing 
pair of macroeconomic time series. In this case, the regimes defined from Region II occur in approximately 

Figure 3.   Time series (blue) and moving average (red) of (a) Sales (Units) and (b) Inventory (units) from the 
Brazilian Automotive Sector, and Brazilian (c) GPD per capita, (d) Nominal Interest Rate, and (e) Nominal 
Exchange Rate.
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Figure 4.   Fluctuation analysis with three multifractal regimes for (a) NIR and GDP, (b) Sales and GDP, (c) 
Sales and NIR, (d) NER and GDP, (e) Sales and NER, and (f) NER and NIR.

Table 3.   Cross-correlation exponents considering the GDP per capita and nominal exchange rate (NER).

Method/time-series Region I Region II Region III

DFA1/NER 0.674 ± 0.003 0.444 ± 0.004 0.71 ± 0.02

DFA1/GDP 0.23 ± 0.01 0.049 ± 0.003 0.58 ± 0.02

DFA0/NER 0.59 ± 0.01 0.473 ± 0.005 0.28 ± 0.03

DFA0/GDP 0.292 ± 0.007 0.80 ± 0.01 0.999 ± 0.003

DCCA​1 0.43 ± 0.01 0.299 ± 0.004 0.74 ± 0.03

DCCA​0 0.481 ± 0.005 0.680 ± 0.008 0.68 ± 0.01

Table 4.   Cross-correlation exponents considering the sales in units and GDP per capita.

Method/time-series Region I Region II Region III

DFA1/GDP 0.23 ± 0.01 0.049 ± 0.003 0.58 ± 0.02

DFA1/sales 0.300 ± 0.007 0.154 ± 0.005 0.49 ± 0.02

DFA0/GDP 0.292 ± 0.007 0.80 ± 0.01 0.999 ± 0.003

DFA0/sales 0.183 ± 0.009 0.308 ± 0.006 0.484 ± 0.004

DCCA​1 0.292 ± 0.008 0.111 ± 0.004 0.49 ± 0.02

DCCA​0 0.223 ± 0.009 0.556 ± 0.009 0.798 ± 0.002



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21655  | https://doi.org/10.1038/s41598-022-26207-w

www.nature.com/scientificreports/

15 months, and Region III in nearly 67 months. The exponents derived from the global analysis show positive 
persistence for NER’s DFA in Region I, GDP for Region II, and NER and GDP for Region III. These persistences 
show that seasonal regimes can directly impact Brazilian automotive sales. Additionally, the DCCA scaling fac-
tor grows from Region I (anti-persistent) to Region III (persistent), except for the DCCA exponent from NER 
and NIR, which decreases from Region I (persistent) to Region III (anti-persistent). We have also computed the 
average intensity of σ as a function of time. The average σ has shown cyclical patterns of 3 years and peaks of 
positive persistence around 2007, 2010, and 2013. Furthermore, we have found an overall anti-persistence pattern 
compatible with the argument that unfavorable fluctuations in the NER tend to decrease the prices and possibly 
increase sales of automotive vehicles in Brazil. Therefore, we have confirmed the reliability of the MF-DCCHM 
to study cyclic patterns of time series fluctuations across multiple regimes.

Table 5.   Cross-correlation exponents considering the sales in units and nominal exchange rate (NER).

Method/time-series Region I Region II Region III

DFA1/NER 0.674 ± 0.003 0.444 ± 0.004 0.71 ± 0.02

DFA1/sales 0.300 ± 0.007 0.154 ± 0.005 0.49 ± 0.02

DFA0/NER 0.59 ± 0.01 0.473 ± 0.005 0.28 ± 0.03

DFA0/sales 0.183 ± 0.009 0.308 ± 0.006 0.484 ± 0.004

DCCA​1 0.49 ± 0.01 0.358 ± 0.002 0.73 ± 0.03

DCCA​0 0.44 ± 0.01 0.425 ± 0.004 0.36 ± 0.01

Table 6.   Cross-correlation exponents considering the sales in units and nominal interest rate (NIR).

Method/time-series Region I Region II Region III

DFA1/NIR 0.418 ± 0.003 0.27 ± 0.01 0.021 ± 0.004

DFA1/sales 0.300 ± 0.007 0.154 ± 0.005 0.49 ± 0.02

DFA0/NIR 0.368 ± 0.005 0.139 ± 0.006 0.21 ± 0.02

DFA0/sales 0.183 ± 0.009 0.308 ± 0.006 0.484 ± 0.004

DCCA​1 0.303 ± 0.006 0.318 ± 0.003 0.33 ± 0.01

DCCA​0 0.302 ± 0.001 0.304 ± 0.001 0.53 ± 0.01

Table 7.   Cross-correlation exponents considering the GDP per capita and nominal interest rates (NIR).

Method/time-series Region I Region II Region III

DFA1/GDP 0.23 ± 0.01 0.049 ± 0.003 0.58 ± 0.02

DFA1/NIR 0.418 ± 0.003 0.27 ± 0.01 0.021 ± 0.004

DFA0/GDP 0.292 ± 0.007 0.80 ± 0.01 0.999 ± 0.003

DFA0/NIR 0.368 ± 0.005 0.139 ± 0.006 0.21 ± 0.02

DCCA​1 0.296 ± 0.004 0.298 ± 0.004 0.50 ± 0.01

DCCA​0 0.432 ± 0.008 0.5735 ± 0.0004 0.81 ± 0.01

Table 8.   Cross-correlation exponents considering the nominal exchange rate (NER) and nominal interest rate 
(NIR).

Method/time-series Region I Region II Region III

DFA1/NER 0.674 ± 0.003 0.444 ± 0.004 0.71 ± 0.02

DFA1/NIR 0.418 ± 0.003 0.27 ± 0.01 0.021 ± 0.004

DFA0/NER 0.59 ± 0.01 0.473 ± 0.005 0.28 ± 0.03

DFA0/NIR 0.368 ± 0.005 0.139 ± 0.006 0.21 ± 0.02

DCCA​1 0.61 ± 0.01 0.47 ± 0.02 0.46 ± 0.01

DCCA​0 0.754 ± 0.007 0.377 ± 0.004 0.218 ± 0.009
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Methods
Detrended fluctuation analysis.  We have employed the detrended fluctuation analysis (DFA)86,93 to 
obtain long-range correlations between time series. The signals are mapped to integrated time series yk =

∑k
i=1 xi 

and increments xi = yk+1 − yk with i, k ǫ {1, 2, ...,N} , where N represents the total number of records. The pro-
cedure is to split the series into Mv sliding boxes of size v represented by the pair (m,v) where 1 ≤ m ≤ Mv . The 
time-series fluctuations are computed from the averages and linear trends over boxes m of size v, as shown in 
Fig. S1a,b (Supporting Information). Additionally, the covariance f(m, v) is computed by subtracting yk from the 
average for each box m according to the following equations:

Finally, we computed the average over the fluctuations F2X considering all m-ith sliding boxes of size v, where:

(2)f 2DFA0
(m, v) =

1

v

Imax(m,v)
∑

k=Imin(m,v)

[

yk − yk(m, v)
]2
,

(3)f 2DFA1
(m, v) =

1

v

Imax(m,v)
∑

k=Imin(m,v)

[

yk − pk(m, v)
]2
.

(4)F2X =
1

Mv

Mv
∑

m=1

f 2X (m, v),

Figure 5.   Multifractal detrended cross-correlation heatmaps of (a) NIR and Sales, (b) GDP and Sales, (c) NIR 
and GDP, (d) NER and GDP, (e) NER and NIR and (f) NER and Sales.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21655  | https://doi.org/10.1038/s41598-022-26207-w

www.nature.com/scientificreports/

where X represent the methods X = DFA0 and X = DFA1 . These equations are computed recurrently with slid-
ing boxes of different sizes v. We assume the power-law FX ≈ vα , where v represent the box size and the scaling 
factor α is obtained by linearization log(FX)X log(v) . As a result, we can classify anti-persistent and persistent 
behavior based on the scaling factor α . The tendency can reverse shortly if 0 < α < 0.5 . However, due to random 
effects such as white noise, the integrated series has no autocorrelation if the scaling factor α = 0.5 . The tendency 
remains persistent for 0.5 < α < 1.0 , which means the integrated signal continues its prior trend. It is often dif-
ficult to determine whether the interference comes from external or internal sources. Therefore, data processing 
and re-factoring are critical to eliminating possible biases, random trends, and masked signals.

Detrended cross correlation analysis.  The detrended cross-correlation analysis (DCCA)94 is a gener-
alization of the DFA technique since it takes the long-range cross-correlation memories of two non-stationary 
signals with the same size N. Consider two signals yk and y′k with N records, and its respective increments xi and 
x′i , such that:

where k = {1, 2, ...,N} . First, the integrated series splits into Mv sliding boxes of size v, where each box is described 
as (m, v), where 1 ≤ m ≤ Mv . The fluctuations f(m, v) are computed with the following equations:

The fluctuations FX are derived from the Eq. (4), where the sub-index X refers to the methods 
X = DCCA0, DCCA1 or |DCCA1| . The procedure is to compute these averages by varying the size of the boxes 
for the integrated series. In Eq. (2), the parameter yk(m, v) represents the average of yk , where the box (m, v) is 
constrained to the interval from Imin(m, v) to Imax(m, v) . Equation (3), pk(m, v) = a(m, v)zk + b(m, v) is a first-
order polynomial function where the parameters are determined by the method of least squares. This equation 
represents a linear trend for a specific box represented by the pair of parameters (m, v). The Eqs. (6)–(8), yk 
and y′k represent averages over yk and y′k by considering a box inside the interval from Imin(m, v) to Imax(m, v) . 
Furthermore, pk(m, v) = a(m, v)zk + b(m, v) and p′k(m, v) = a′(m, v)z′k + b′(m, v) is a first degree polynomial, 
and the notation |DCCA1| in Eq. (8) represents the absolute value for the local fluctuations of each time series. 
The fluctuations are represented by the power-law FX(v) = v� where the scaling factor � measures the cross-
correlations between two signals.

Spectral analysis.  The Discrete Fourier Transform (DFT), considering N terms, is given by:

where 0 ≤ n ≤ N and 0 ≤ m ≤ N with increments n and m which are associated with the changes in the interval 
�m = 1

N�n . The DFT is a powerful technique to assess frequency anomalies. We have used the amplitude and 
power spectrum with the following equation:

The power spectrum of a random time series does not show any spectral structure because it is constant. 
When analyzing the spectra of any time series, our primary focus is to detect and interpret the peaks or anomalies 
that may exist and their respective frequencies. Additionally, we can use specific cases of the power spectrum to 
model attributes and obtain a proportionality factor of the power spectrum with the following equation:

where y = log[P(f )] , x = log(f ) , and the coefficients are associated with the spectral exponent.

Multifractal detrended cross‑correlation heatmaps.  The cross-correlation coefficient (CCC) is a 
critical factor that quantifies the cross-correlation between two non-stationary signals87. The CCC is defined for 
each window of size v with the following ratio:

(5)yk =

k
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k
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, y(x) = −bx,
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where σDCCA1(v) is a dimensionless quantity that varies in the interval −1 ≤ σDCCA1 ≤ 1 . Similar to the standard 
correlation coefficient, the threshold σDCCA1 = 1 represent the maximum cross-correlation, σDCCA1 = 0 indicates 
no-correlation, while σDCCA1 = −1 characterizes the maximum anti-cross-correlation. The MF-DCCHM relies 
on computing the DCCA​ coefficient for multiple windows of size v using a sub-series of sliding boxes with size 
of up to 5% of the entire series, similar to moving average, to observe cross-correlation patterns between the 
time series for different temporal scales in one single map. This map can also be constructed for a configurational 
space (spatial/temporal scale). For instance, we can calculate whether a high cross-correlation is valid for all 
scales or if any intensity change exists for any given scale. The overall sampling of DCCA for multiple time steps 
and windows of size v can help unveil potential cyclical patterns and their consistency. We have also estimated 
and plotted the average sampling of DCCA over all possible windows of size v on top of each cross-correlation 
heatmap to visualize the trends better.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request..
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