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The poor prognosis of gliomas necessitates the search for biomarkers for predicting clinical outcomes.
Recent studies have shown that PANoptosis play an important role in tumor progression. However,
the role of PANoptosis in in gliomas has not been fully clarified.Low-grade gliomas (LGGs) from

TCGA and CGGA database were classified into two PANoptosis patterns based on the expression of
PANoptosis related genes (PRGs) using consensus clustering method, followed which the differentially
expressed genes (DEGs) between two PANoptosis patterns were defined as PANoptosis related

gene signature. Subsequently, LGGs were separated into two PANoptosis related gene clusters with
distinct prognosis based on PANoptosis related gene signature. Univariate and multivariate cox
regression analysis confirmed the prognostic values of PANoptosis related gene cluster, based on
which a nomogram model was constructed to predict the prognosis in LGGs. ESTIMATE algorithm,
MCP counter and CIBERSORT algorithm were utilized to explore the distinct characteristics of tumor
microenvironment (TME) between two PANoptosis related gene clusters. Furthermore, an artificial
neural network (ANN) model based on machine learning methods was developed to discriminate
distinct PANoptosis related gene clusters. Two external datasets were used to verify the performance
of the ANN model. The Human Protein Atlas website and western blotting were utilized to confirm the
expression of the featured genes involved the ANN model. We developed a machine learning based
ANN model for discriminating PANoptosis related subgroups with drawing implications in predicting
prognosis in gliomas.

Low-grade gliomas (LGGs) comprising grade II and III gliomas represent a group of primary tumors affecting
cells of the central nervous system. Grade IT and III gliomas are common in young adults compared with high-
grade gliomas (grade IV, glioblastoma multiforme, GBM)". In 2021, the WHO (World Health Organization)
updated the classification method for gliomas by combining histological diagnosis with molecular variations
such as IDH and H3 G34 mutation status and co-deletion of the short arm of chromosome 1 and the long arm
of chromosome 19 (1p/19q codeletion)?. Previous studies demonstrated that glioma patients with mutant IDH
exhibited a more favorable response to current therapies including radiation and chemotherapy, implying that
a correlation exist between molecular alterations and prognosis®. Given its high heterogeneity, glioma patients
show diverse clinical outcomes even when they have the same diagnosis®. Although the survival of LGG patients
tend to be longer, its median overall survival ranges from 5.6 to 13.3 years, indicating that the prognosis of LGG
patients is highly variable>®. Therefore, it important to identify biomarkers for predicting the prognosis of cancer.
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As a significant hallmark of cancer, resistance to cell death plays an important role in tumorigenesis and tumor
progression’. Apoptosis serves as a classical programed cell death (PCD) mechanism in the past decades. Current
treatment strategies aiming to induce apoptosis in cancer cells exert less satisfactory therapeutic response®. Iden-
tification of an alternative, novel PCD pathway may be urgently needed. Pyroptosis, which is activated by gasder-
min (GSDM) protein family®, and necroptosis, which is mediated by RIPK3-dependent MLKL oligomerization'’,
have been drawing more and more attention in recent years. However, an accumulating number of studies have
demonstrated that pyroptosis, apoptosis and necroptosis are extensively cross-linked. PANoptosis, which shares
common key features with pyroptosis, apoptosis and/or necroptosis, is determined as an inflammatory PCD
pathway and cannot be simply accounted for by any of these three identified PCD pathways alone!!. It is well
documented that PANoptosis which is induced by specific factors such as inflammatory triggers and cytokines
can be regulated by the PANoptosome complex'>*?. Scholars have revealed the inhibitory effect of PANoptosis on
tumor growth in diverse cancer lineages, shedding more light on the investigation of biomarkers and therapeutic
targets for patients'®. However, the specific roles of PANoptosis in glioma prognosis remain to be defined. To
date, there is few literatures aiming to characterize PANoptosis related patterns or identify PANoptosis related
gene signature in gliomas.

Neural networks are well-known and have been widely used in previous bioinformatical models due to their
outstanding performance'>'¢. In this study, we identified two distinct PANoptosis related molecular patterns
based on the expression profiles of PANoptosis related genes (PRGs), followed which PANoptosis related gene
signature and two PANoptosis related gene clusters were determined, which was closely associated with the
prognosis of LGG patients. Subsequently, machine learning algorithms including least absolute shrinkage and
selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-
RFE) were utilized to identify featured genes for characterizing two PANoptosis related gene clusters. Considering
the difficulties when few genes were selected for the separation between two PANoptosis related gene clusters,
we employed artificial neural network (ANN) to perform non-linear modeling to achieve a higher accuracy.

Results

Determination of PANoptosis related molecular patterns. Firstly, 51 PRGs with prognostic values
were screened out via univariate cox regression analysis (Fig. 1A), based on which two distinct PANoptosis
related molecular patterns were determined in LGG samples by consensus clustering method. As shown in the
consensus matrix heatmap, we found extremely higher consensus scores between samples in the same cluster
and lower scores between samples in different clusters when k=2 (Fig. 1B). Moreover, no evident increase was
detected with respect to the values of the area under the CDF curve when k=2 (relative change =0.4, Fig. 1C,D).
The detailed results of the consensus clustering analysis were shown in Supplementary Fig. 1A (k ranging from
310 9). The results of PCA demonstrated that LGG samples could be appropriately distinguished based on the
expression profiles of prognostic PRGs (Fig. 1E). The prognosis of C1 was worse compared to C2, in which the
overall survival and progression free survival of C1 were significantly shorter (Fig. IEG). The DEGs between
two clusters were visualized in Fig. 1H,I. In addition, we found differential expression patterns of PRGs between
two clusters which were contextually defined as two PANoptosis related molecular patterns (Fig. 1]). The com-
parisons of the expression levels of prognostic PRGs between two PANoptosis related molecular patterns were
demonstrated in Supplementary Fig. 1B.

Identification of PANoptosis related gene clusters. The prognostic DEGs between two PANoptosis
related molecular patterns were screened out and subsequently defined as PANoptosis related gene signature,
based on which two distinct PANoptosis related gene clusters were identified through similar clustering method
(Fig. 2A-C). The detailed results of the consensus clustering analysis were shown in Supplementary Fig. 2A
(k ranging from 3 to 9). PCA confirmed the subgroup assignment based on the expression profiles of PANo-
ptosis related gene signature (Fig. 2D). The corresponding clinicopathological information for LGG samples
from TCGA and CGGA databases was listed in Supplementary Table 1 and Supplementary Table 2, respectively.
Kaplan—Meier analysis indicated that the prognosis of gene cluster A was substantially worse than those of gene
cluster B (Fig. 2E,F). The differential expression patterns of PANoptosis related gene signature between two gene
clusters was presented in Fig. 2G, in which the expression level of gene type A positively correlated with gene
cluster A while the expression level of gene type B positively correlated with gene cluster B. Furthermore, we
found that multiple clinicopathological characteristics significantly differed between two PANoptosis related
gene clusters. The histopathological grade, the proportion of IDHI with wild type and the proportion of recurred
or progressed tumors of gene cluster A were higher than those of gene cluster B. Moreover, gene cluster A was
less likely to respond to current treatment compared to gene cluster B (Fig. 2H). All these findings indicated poor
prognosis for patients of gene cluster A.

Functional enrichment analysis between PANoptosis related gene clusters. The correlation
across PANoptosis related molecular patterns, gene clusters, histological grade and survival status was shown in
Fig. 3A, in which PANoptosis related molecular patterns C1 almost overlapped with gene clusters A. Consistent
with the above results, most of PRGs were highly expressed in PANoptosis related gene cluster A (Fig. 3B). The
comparisons of the expression levels of prognostic PRGs between two PANoptosis related gene clusters were
demonstrated in Supplementary Fig. 2B. Immune related molecular functions including tumor necrosis factor
activated receptor activity, T cell receptor binding and MHC protein binding were significantly enriched in gene
cluster A (Fig. 3C). Tumorigenesis and tumor progression related KEGG pathways including ECM receptor
interaction, focal adhesion and apoptosis were significantly enriched in gene cluster A (Fig. 3D).

Scientific Reports |

(2022) 12:22119 | https://doi.org/10.1038/s41598-022-26389-3 nature portfolio



www.nature.com/scientificreports/

A ' B D

consensus matrix k=2

pvalue Hazard ratio

AIFM1 <0001 2.238(1.511-3.317) Delta area
AXL 1267(1.039-1.546)

BAK1 < 216(2.266-4 564)

BAX <0 2.227(1804-2.750

CASP1 <0 1496(1.305-1.715)

CASP3 < 1.966(1597-2.420)

CASP4 <0 1.966(1.690-2.287)

CASP5 <0 1.835(1.520-2.216)

CASPG < 2.026(1.689-2.430)

CASP7 < 2.088(1.710-2.550)

CAsP8 < 2.461(2.015-3.006)

CASPY < 0.646(0.532-0.785) i

CFLAR < 2.070(1551-2.762)

CHMP2A < 2.990(2214-4.038)

CHMP4B < 2.155(1591-2.918)

CHMP4C < 573(1.279-1.936)

cycs 1434(1.109-1.854)

FADD < 1:909(1.539-2.369)

FAS <0001  1.440(1225-1692) N

GPX4 1.586(1.149-2.190) NS

GSDMA < 1643(1.363-1.982) ~eeo
GSDMD < 1.762(1526-2.036) B

ZMA <0 1351(1.213-1.505) A
GZMB <0 482(1236-1.779) 23 4 s w78 s
L18 <0 424(1251-1.620) .

L1A X 183(1.023-1.368)

L6 X 176(1.048-1319)

RF1 < 446(1.266-1.651)

3 dnan

EFV < X -

ILKL 470(1.165-1.855) C consensus cor E

NLR( < 467 -1.797) ]

NLRP1 < 928(1.480-2.511)

NLRP7 < 722(1.682-4.404) | —

NOD1 < 1897(1.528-2.356) .

PARP1 < 1:690(1.273-2.244)

PLCG1 < 2.138(1693-2.701) =

RKAC <0001  3590(2.520-5.114) ! |

PYCARD <0001  1418(1232-1632)

IPK1 20001 2.000(1601-2.500) | . Closter
RIPK3 <0001 1.739(1420-2.130 o o
LR3 <0001  1:653(1.390-1.965) g @
R4 .047 881(0.777-0.998)

NF 891(0.803-0.989)

NFRSF10A < 638(1.269-2.114) | ol .

NFRSF108 298(1094-1.540)

NFSF10 < 321(1.125-1.550)

P53 283(1/066-1.545)

P63 < 684(1.443-1.965)

RADD < 032(1.634-2.526) ]

BP1 < 604(1.357-1.896) ol -

Overall survival

Progression free survival

p<0.001

000

T T 2 5 7 T 5 5 W T o oo
Time{(years)

Number at risk

el er 319 8 5 5 3 1 0 0 0 0 0 0 0

Cluster

c2f 361263 163 90 46 3 26 20 12 1M 8 5 1 1 1 0

Type
I 1 e
TR o
e 0
ks
050 Il -
R
(Il | 2o B
p<0.001 I g B
| | Sl | i e
oo [ | P2l
B O B N " T
Timelyears) i el
Number at isk 5]
| g,
1] 18013079 52 38 31 26 22 18 151210 3 0 0 0 0 0 0 0 0O § B
o
co] as7309279213 144 116105 2 75 66 59 49 28 6 5 2 1 1 0 0 0 | i et
N B R R R Tyt Ty o6
Time(years) L | ]
! o
£
G 1,00 ! mz@g;
= i ! | Lo
- il

L R S S S S R TR P R T
‘Time(years)

J o
:
:

H‘H i\
\‘H
T
me WAl et e

|’|\ “‘\ \““‘\I\ i 1 (i \“ H‘ ‘\‘\‘H‘ I iy il f/"n I e B e
At o

I I (i
i L0 L | \Iu AT [0 caser o
H i, Y Lif il i ' B

‘I‘W v . T T
I (a
i
(AR R il 5 = It
’”‘”“ ‘H “cw“‘ G et S A pseit o B
iww ‘ il .M‘ {0 A I Al A,
M I

sig

Il | HE W T
\\ | I AR ] 22
o Do H\II i =
il | | Ul HI i T |
T I um [ A L LR
Y ‘\ u\u u‘ 1l I |
(1 ¥ e ) il I |
1 L e i i ' CHvipas
I

O™
. u

\ \ H ﬁ
M (»u e h Il | ol

I \IHH‘\ | TR “ ‘ \ | ‘H il \‘I‘\’\I" il I} cHumpPac
m'i\w‘"f‘."ll‘”‘u A sl ‘\m“ | f\".““J""Il"“”."‘TC::;.M

|
B A i I
HH iRl \HIH\ H b It e

~log10(ad P.Val)

\‘m: il i ’ H‘ i “\“‘\ HH

bl kit ! 1 ) e
“’ ‘\II:" :‘”L lil ‘l\l“‘: \‘H H‘ HHI\‘ \H I ’\ \ H IH o ‘\‘ If i ‘ ‘JH W ‘r‘\ ‘\‘ ‘\” mFiFw

il W HH \‘\\ | "\ it h \‘\“‘\‘ ! ”\‘m" H‘\HH/HH\“\ “ \“H\‘ '\Iu‘ 1 e
R

* 8 : N i
logFC g LTl ¥ )

K SRR e At A il
!

RN
i) ‘\ | ( | i [} Rl aa
I 10 e
il TiRe

AR g A \h‘”‘\ I

Figure 1. Determination of PANoptosis related molecular patterns. (A) Forest plot showing PRGs with
prognostic values. (B-D) Determination of two PANoptosis related clusters via consensus clustering analysis
based on the expression profiles of prognostic PRGs. (E) PCA of the classification of LGG samples based on
prognostic PRGs. (EG) Kaplan-Meier analysis showing the comparisons of overall survival (F) and progression
free survival (G) between two clusters. (H) The expression patterns of DEGs between two clusters. (I) Volcano
plot showing the DEGs between two clusters. (J) The differential expression patterns of PRGs between two
clusters. PRGs PANoptosis related genes, PCA principal component analysis, LGG low-grade gliomas, DEGs
differentially expressed genes.
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Figure 2. Identification of PANoptosis related gene clusters. (A-C) Determination of two PANoptosis related
gene clusters based on the expression profiles of PANoptosis related gene signature. (D) PCA of the classification
of LGG samples based on the expression profiles of PANoptosis related gene signature. (E,F) Kaplan-Meier
analysis showing the comparisons of overall survival. (E) and progression free survival (F) between two gene
clusters. (G) The differential expression patterns of PANoptosis related gene signature between two gene clusters.
(H) Comparisons of multiple clinicopathological characteristics between two gene clusters. PCA principal
component analysis, LGG low-grade gliomas, CR/PR complete response/partial response, PD/SD progressed
disease/stable disease.
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Figure 3. Functional enrichment analysis between PANoptosis related gene clusters. (A) Alluvial diagram
showing the correlation across PANoptosis related molecular patterns, gene clusters, histological grade and
survival status. (B) The differential expression patterns of PRGs between two gene clusters. (C) The differential
enrichment of molecular functions between two gene clusters. (D) The differential enrichment of pathways
between two gene clusters. PRGs PANoptosis related genes, GO gene ontology, KEGG Kyoto encyclopedia of
genes and genomes.

Evaluation of the performance of PANoptosis related gene clusters in discriminating progno-
sis.  Patients with distinct clinicopathological features were further grouped into two PANoptosis related gene
clusters, in which the overall survival of gene cluster A was still significantly shorter than those of gene cluster
B indicating the powerful performance of gene cluster in discriminating prognosis in LGGs (Fig. 4A). Univari-
ate cox analysis demonstrated that the PANoptosis related gene cluster was closely associated with the overall
survival of LGG patients (Fig. 4B, p <0.001) and multivariate cox analysis confirmed that the gene cluster served
as an independent prognostic factor (Fig. 4C, p<0.001). For clinical practice, a nomogram model combining
PANoptosis related gene cluster and multiple clinicopathological factors was constructed to predict 1, 3 and
5-year overall survival of LGG patients (Fig. 4D). As depicted in Fig. 4E, the predicted 1, 3 and 5-year overall sur-
vival by the nomogram model simulated the observed overall survival. In addition, the AUC value of the nomo-
gram model for predicting 1-year survival was 0.855 which was higher than those of other clinicopathological
factors (Fig. 4F). The C-index for PANoptosis related gene cluster and nomogram model were 0.822 and 0.799,
respectively (Fig. 4G). The result of DCA for the nomogram model further verified its powerful performance in
discriminating prognosis (Fig. 4H).

Exploration of the distinct TME between PANoptosis related gene clusters. Based on ESTI-
MATE algorithm, we found that the immune, stromal and ESTIMATE scores of PANoptosis related gene clus-
ter A were significantly higher than those of gene cluster B (Fig. 5A, p<0.001), indicating more non-tumor
compositions existing in TME. Consistent with the above results, the tumor purity of gene cluster A was lower
compared to gene cluster B (p <0.001). As calculated by MCP counter, we found that more immune and stro-
mal cells infiltrated in the TME of gene cluster A, especially T cells, monocytic lineage, myeloid dendritic cells
and fibroblasts (Fig. 5B, Supplementary Fig. 3A, p<0.001). CIBERSORT algorithm was utilized to calculate the
abundance of macrophages in TME. Interestingly, we found that more macrophages infiltrated in the TME of
gene cluster A, including macrophages M0, macrophages M1 and macrophages M2 (Fig. 5C, p <0.001). Consid-
ering that macrophages play an important role in antibody-dependent cellular phagocytosis (ADCP) of cancer
cells'’, we analyzed the expression of genes involved in the negative regulation of ADCP. As shown in Fig. 5D
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Figure 4. Evaluation of the performance of PANoptosis related gene clusters in discriminating prognosis. (A)
Comparisons of the overall survival between two gene clusters with distinct clinicopathological features. (B,C)
Univariate (B) and multivariate (C) cox regression analysis indicated the roles of gene cluster in discriminating
prognosis. (D) Construction of nomogram model by combining gene cluster and multiple clinicopathological
factors. (E) Calibration curves for the nomogram model. (F) ROC curves showing the performance of the
nomogram model for predicting 1-year overall survival. (G) C-index of the nomogram model and gene cluster
for predicting prognosis. (H) DCA presenting the performance of the nomogram model and gene cluster in

discriminating prognosis. ROC receiver operating characteristic, C-index consistency index, DCA decision curve
analysis.
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Figure 5. Exploration of the distinct TME between PANoptosis related gene clusters. (A) Comparisons

of immune scores, stromal scores, ESTIMATE scores and tumor purity. (B) The differential patterns of the
abundance of infiltrating cells in TME calculated by MCP counter. (C) Comparisons of the abundance of
macrophages infiltrated in TME calculated by CIBERSORT algorithm. (D) The differential expression patterns
of the genes involved in negative regulation of ADCP. (E) Comparisons of the expression levels of the genes
involved in negative regulation of Cancer-Immunity Cycle. (F) Comparisons of the expression levels of immune
suppressive cytokines. (G) Comparisons of the expression levels of common immune checkpoints. TME tumor
microenvironment, ADCP antibody-dependent cellular phagocytosis, *p <0.05, **p <0.01, **p <0.001.
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and Supplementary Fig. 3B, most of the identified genes were highly expressed in PANoptosis related gene clus-
ter A (p<0.001), suggesting that ADCP was inhibited in gene cluster A. With respect to the genes involved in
negative regulation of Cancer-Immunity Cycle'®!, we found that most of these genes were highly expressed in
gene cluster A, indicating gene cluster A has low activities of antitumor immune processes (Fig. 5E). Moreover,
most of the immune suppressive cytokines (IL-10, IL-4, TGF-B) induced by macrophages and regulatory T cells
were also significantly overexpressed in gene cluster A (Fig. 5F)**?!. All the common immune checkpoints were
upregulated in gene cluster A (Fig. 5G, p <0.001). These findings suggested that PANoptosis related gene cluster
A presented a suppressive anti-tumor immunity phenotype which might contribute to poor prognosis.

Construction of ANN for discriminating PANoptosis related gene clusters. The differential
expression patterns of DEGs between two PANoptosis related gene clusters were depicted in Fig. 6A. Firstly,
LASSO logistic regression machine learning method was utilized to identify the feature genes for discriminating
two PANoptosis related gene clusters, in which 54 featured genes was determined when the lambda value was
minimal (Fig. 6B). Subsequently, SVM-RFE machine learning algorithm was performed to further determine
the featured genes, in which 37 featured genes was identified when RMSE was minimal (Fig. 6C). We obtained
nine overlapped genes via the above two methods, including S100A4, GPR65, MSN, TYMP, PLBD1, VIM,
TNFRSF12A, GBP1, FCGR2A (Fig. 6D). ROC curves showing the efficacy of each featured gene for discrimi-
nating two PANoptosis related gene clusters were demonstrated in Supplementary Fig. 4, in which all the AUC
values were higher than 0.920. Moreover, random forest was used to further screen out featured genes based
on the expression profiles of the above nine featured genes, in which 42 trees were determined when the cross-
validation error presented minimal (Fig. 6E). Based on the determination of the optimal number of forest trees,
the feature importance for each gene was calculated, in which we found that the feature importance for each gene
was higher than 10 (Fig. 6F). Unsupervised clustering for LGG samples was conducted based on the expression
of nine featured genes. We found that samples in the same PANoptosis related gene cluster tended to be grouped
into one cluster, indicating that LGG samples could be well distinguished through the expression of the featured
genes (Fig. 6G). The ANN model for discriminating two PANoptosis related gene clusters was constructed based
on the expression of nine featured genes (Fig. 6H). The formulas in the ANN model for producing the values of
O1 and O2 were as follows:

9
FIHi=Bi+ ) COEFik«Ik,

in which Hi (H1, H2) represented the value of the i-th neurons in the hidden layer, Bi (B1, B2) represented the
basic value when calculating the i-th value in the hidden layer, Ik (I1, ... ,I9) represented the input value of the
k-th featured gene, COEFik represented the coefficient when calculating the value of the i-th neuron in the hid-
den layer by using the k-th featured gene.

2
F20i =Bi+ ) COEFik  Hk,

in which Oi (O1, O2) represented the i-th value in the output layer, Bi (B1, B2) represented the basic value when
calculating the i-th value in the output layer, Hk (H1, H2) represented the value of the k-th neuron in hidden
layer, COEFik represented the coefficient when calculating the i-th value in the output layer by using the value
of k-th neuron in the hidden layer. The corresponding coefficients in the formulas were shown in Table 1. As
depicted in Fig. 61, the AUC value for the ROC curve which represented the efficacy of the ANN for discrimi-
nating two PANoptosis related gene clusters was 0.980, indicating the outstanding performance of the model.

Validation of the ANN model in independent external datasets. Based on the expression profiles
of PANoptosis related gene signature, glioma samples in the two validation cohorts were classified into two gene
clusters and the detailed results of the consensus clustering analysis were depicted in Supplementary Fig. 5A,B.
As shown in Fig. 7A, all the nine featured genes were highly expressed in PANoptosis related gene cluster A,
which was consistent with the results acquired in the training cohort. The ROC curve of the ANN model for
discriminating PANoptosis related gene clusters was demonstrated in Fig. 7B. In addition, the overall survival of
gene cluster A was significantly shorter than those of gene cluster B (Fig. 7C). Similar results were obtained in
the validation dataset from GEO database (GSE43378) (Fig. 7D-F). All these findings confirmed that our ANN
model could discriminate distinct PANoptosis related gene clusters in gliomas. In the result of ten-fold cross-
validation method, Since there is no crossover between the training set and the test set in each cross-validation
process, over-learning of the model can be prevented. The model accuracy of each cycle in the cross-validation
process is shown in Supplementary Table 3. The ROC curve of the ten-fold cross-validation method in Fig. 7G.
Furthermore, the performance of the ANN model was evaluated by using multiple metrics, including specificity,
sensitivity, accuracy and AUC values. As shown in Table 2, the specificity, sensitivity, accuracy and AUC values
were 0.956, 0.950, 0.954 and 0.98 in the training cohort (train), 0.754, 0.937, 0.781 and 0.89 in the validation
cohort from CGGA database (mRNAseq_325), 1.000, 0.666, 0.80 and 0.92 in the validation cohort from GEO
database (GSE43378), 0.935, 0.888, 0.922 and 0.97 in the trainCV, respectively.

Validation of the featured genes involved in the ANN model at protein level. Six genes includ-
ing GBPI, S100A4, TYMB TNFRSFI12A, VIM and MSN were randomly selected from the nine featured genes
involved in the ANN model. We found differential expression patterns of the above genes between normal and
glioma tissues in immunohistochemistry staining on the Human Protein Atlas website (Fig. 8A-F). Western
blotting confirmed the high expression levels of the six genes in glioma tissues at protein level (Fig. 8G).
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Figure 6. Construction of ANN for discriminating PANoptosis related gene clusters. (A) The expression
patterns of DEGs between two gene clusters. (B) Determination of the optimal number of featured genes by
LASSO logistic regression. (C) Determination of the optimal number of featured genes by using SVM —RFE
algorithm. (D) Venn plot showing the overlapped featured genes obtained by the above methods. (E) The
optimal number of the random forest trees was determined when the cross-validation error presented minimal.
The red dots represented the samples in gene cluster A, the green dots represented the samples in gene cluster
B, and the black dots represented all the samples. (F) The feature importance for the nine featured genes. (G)
Unsupervised clustering for glioma samples based on the expression of nine featured genes. (H) The ANN for
discriminating two PANoptosis related gene clusters based on the expression of nine featured genes. (I) ROC
curve showing the efficacy of the ANN for discriminating two PANoptosis related gene clusters. ANN artificial
neural network, DEG differentially expressed gene, LASSO least absolute shrinkage and selection operator,
SVM-RFE support vector machine-recursive feature elimination, ROC receiver operating characteristic.

Scientific Reports |  (2022)12:22119 | https://doi.org/10.1038/s41598-022-26389-3 nature portfolio



www.nature.com/scientificreports/

H1 H2
Basic value 10.6634674 0.908588424
I1 —1.8262535 0.012442761
12 —1.2341838 | —0.051344195
I3 -0.9984977 | —0.0217154
14 —1.0985669 | —0.02459666
15 —2.6356201 0.012115227
I6 —-0.6953330 | —0.002427534
17 —2.5898937 | —0.002118653
I8 —0.6585406 0.009224131
19 -0.8451296 0.032968312

o1 02
Basic value —-0.7252137 0.9194955
H1 0.4688068 | —0.4764947
H2 1.7467213 | —0.6105463

Table 1. Coefficients in the formulas of ANN.

Discussion

As an inflammatory PCD pathway, PANoptosis which is characterized by extensively activation of pyroptosis
(GSMDs), apoptosis (CASP8/3/7) and necroptosis (pMLKL) related molecules, has been widely implicated in
various settings including microbial infection, inflammatory diseases and cancers?’. For example, excessive
production of cytokines induced by inflammatory cell death (PANoptosis), can lead to a life-threatening condi-
tion, which is defined as cytokine storm and is involved in a large number of diseases, including the ongoing
COVID-19 pandemic®. On the other hand, PANoptosis may play a positive role with respect to cancer due to
its capacity to kill cancer cells'*. However, the correlation between the alteration of expression patterns of PRGs
and the prognostication in gliomas is rarely reported before. In our study, two PANoptosis related molecular
patterns with distinct prognosis were identified based on comprehensive analysis of the expression profiles of
PRGs in LGGs. Based on the DEGs between two PANoptosis related molecular patterns, which were subsequently
defined as PANoprosis related gene signature, LGG samples were classified into two PANoptosis related gene
clusters. We found that PANoptosis related gene cluster A showed worse prognosis due to positive correlation
with tumor grade and resistance to current therapeutics. In addition, PANoptosis related gene cluster A exhib-
ited suppressive anti-tumor immunity compared to gene cluster B. Machine learning algorithms were utilized
to select featured genes to characterize PANoptosis related gene clusters, followed which ANN was employed to
perform non-linear modeling for discriminating distinct PANoptosis related gene clusters.

In recent years, despite the fact that several gene signatures have been established for predicting the prognosis
of glioma patients?*-%, none of them was associated with PANoptosis. Moreover, samples were simply separated
into low or high-risk groups with distinct prognosis based on the specific gene signature, lacking sufficient bio-
logical interpretations. We determined two PANoptosis related gene clusters with distinct prognosis and proved
that the PANoptosis related gene cluster served as an independent prognostic factor. For promotion of clinical
practice, a nomogram model consisting of PANoptosis related gene cluster and multiple clinicopathological
characteristics was constructed, with high AUC values (0.855 and 0.865 at 1 and 2 years) for predicting the
prognosis in gliomas. The results of C-index and DCA confirmed the outstanding performance of the nomogram
model. Interestingly, most of PRGs were highly expressed in PANoptosis related gene cluster A compared to gene
cluster B, including critical molecules usually activated in PANoptosis pathway such as CASP8/3/7, GSDMD and
RIPK3/1. In addition, glioma patients were classified into two PANoptosis related molecular patterns (C1, C2)
based on the expression profiles of PRGs by using consensus clustering analysis. Similarly, most of PRGs were
highly expressed in C1 compared to C2. As shown in Fig. 2G and Fig. 3A, PANoptosis related molecular pattern
C1 almost overlapped with gene cluster A, which was in accordance with our findings. These results revealed
that the two gene clusters represented distinct PANoptosis patterns, in which glioma cells were prone to PANo-
ptosis in gene cluster A. In contrary to our findings, Malireddi et al. demonstrated that PANoptosis inhibited
tumor growth in diverse cancer lineages'. In fact, tumor cells in the core or inner regions of many forms of solid
tumors may suffer from oxygen and glucose deprivation due to ischemic conditions, which induces necroptotic
cell death””. Moreover, emerging data have indicated that necroptosis could promote cancer progression, imply-
ing that necroptosis acts as a double-edged sword in the development of cancer?. Sugimoto et al. suggested
that high proportion of tumor necrosis predicted poor prognosis in surgically resected high-grade tumors®.
Apoptosis is reported to be very common in many types of cancer, particularly high-grade forms®. Thus, this
raises the possibility that, in the context of oxygen and glucose deprivation, tumor cells with high aggressive-
ness are susceptible to PANoptosis, resulting in the alteration of the expression patterns of PRGs. Furthermore,
high intratumoral heterogeneity, which could be explored by single-cell analysis at the resolution of cells, might
account for this anomalous result to some extent®!. Further exploration is needed to confirm the activation of
PANoptosis in subgroups of gliomas, in which more cellular and molecular biological experiments in vitro and
in vivo may provide more evidence in the in the future.
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Figure 7. Validation of the ANN model in independent external datasets. (A) The differential expression
patterns of the featured genes between two PANoptosis related gene clusters in validation dataset from

CGGA database (dataset ID: mRNAseq_325). (B) ROC curve showing the efficacy of the ANN model for
discriminating two PANoptosis related gene clusters in the validation dataset from CGGA database. (C)
Kaplan-Meier analysis showing the comparisons of overall survival between two gene clusters in the validation
dataset from CGGA database. (D-F) Similar results obtained in the validation dataset from GEO database
(GSE43378). ANN artificial neural network, ROC receiver operating characteristic. (G) ROC curve showing the
efficacy of the in the validation dataset from the ten-fold cross-validation data.
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Dataset TN |FN |TP |FP Specificity | Sensitivity | Accuracy | AUC
Train 460 | 10 194 |21 0.9563410 | 0.9509804 | 0.9547445 | 0.98
mRNAseq_325 209 |3 45 68 0.754512 0.9375000 0.781538 0.89
GSE43378 20 |10 20 0 1 0.6666667 | 0.8000000 | 0.92
trainCV 117 |3.75 | 7.8 |453 |0.9358631 |0.8887498 |0.9226744 |0.97

Table 2. Performance results of ANN in three independent datasets.

Further analysis probed into the distinct TME between two PANoptosis related gene clusters. It has been well
documented that cancer associated fibroblasts (CAFs) inhibit the functions of immune cell in TME and promote
tumor progression by secretion of various cytokines and/or metabolic products. Moreover, CAFs inhibit the
infiltration of immune cells in TME by reshaping the extracellular matrix®>**. The majority of non-neoplastic
cells in TME, tumor associated macrophages (TAMs) have been reported to play an important role in tumor
progression®*, in which they are reshaped by cytokines such as IL-4 and IL-10 to impede anti-tumor immunity?.
Consistent with the previous studies, we found more non-tumor compositions in PANoptosis related gene clus-
ter A, especially fibroblasts and macrophages, which was further confirmed by MCP counter and CIBERSORT
algorithm. Cytokines (IL-4, IL-10 and TGF-p) involved in immunosuppressive process and common immune
checkpoints (PD-1 and CTLA-4) were significantly upregulated in gene cluster A, indicating an immunosuppres-
sive pattern in gene cluster A. In addition, critical molecules participating in the negative regulation of ADCP
were highly expressed in gene cluster A, suggesting the effect of ADCP was inhibited in gene cluster A. All these
findings appealed implications in the correlation between TME and PANoptosis related gene cluster, directing
the application of immunotherapy for gliomas.

Considering the failures in targeting apoptosis in cancer therapy in some forms of cancers®, induction of
PANoptosis in cancer cells may be probably preferred for the exploration of promising therapeutics in cancer
cells bearing defects in classic PCD pathways. Actually, the widely-accepted oncolytic viruses, such as vaccinia
virus and vesicular stomatitis virus, have been reported to potentially induce PANoptosis?. In our study, the
identification of glioma-specific PANoptosis related gene signature and the corresponding molecular mechanisms
provided the underlying therapeutic targets with respect to PANoptosis in gliomas.

In the modern era, artificial intelligence (AI) has been broadly used for construction of prediction model due
to its powerful capacity in extracting and representing data®. In present study, machine learning based ANN,
which served as a sub-concept of AI method, was constructed to increase our ability to accurately discriminate
PANoptosis related gene clusters with distinct prognosis.

There were still some limitations in our study. Firstly, despite that the classification of gliomas based on
PANoptosis related gene signature and the robust performance of ANN model were verified in two independent
external datasets including gliomas with grade II, IIT and IV, our research focused on the exploration of PANo-
ptosis in patients with LGGs, in which the training cohort (merged data) mainly contained LGGs. Moreover,
the expression of featured genes in ANN model were further confirmed in gliomas with grade II, IIT and I'V.
Secondly, only the alterations of gene expression were taken into consideration in our study. More evidence
including DNA methylation and genomic mutation signature might be needed in the further research. Thirdly,
although the tumor heterogeneity across individuals was involved in the analysis of RAN-seq data and western
blotting, the intratumoral heterogeneity in gliomas was not fully addressed.

Overall, our study provided a PANoptosis related gene signature, based on which we determined two PANo-
ptosis related gene clusters and two PANoptosis related molecular patterns with distinct prognosis. According
to the latest classification for primary tumors in central nervous system, published in 2021, the importance of
molecular diagnostics has been further underscored, such as molecular mutation status and DNA methylome
profiling?. As described in our study, many PANoptosis related genes were determined to be associated with
prognosis of glioma patients. The prognostic PANoptosis related genes may be taken into consideration for the
classification of gliomas to precisely predict the prognosis in the future. For example, S100A4 in our study, was
highly expressed in patients with poor prognosis and served as an independent predictor. Gliomas with high
expression level of SI00A4 may be more likely to be classified into more higher grade in the next edition of
WHO classification.

In our study, based on the expression of PANoptosis related gene signature in gliomas, samples were classified
into distinct PANoptosis related gene clusters, which appealed implications in predicting clinical outcomes in
gliomas. Furthermore, an ANN model based on machine learning methods was developed to characterize and
discriminate distinct PANoptosis related gene clusters.

Materials and methods

Data acquisition. A dataset containing 508 LGG samples with the corresponding RNA sequencing (RNA-
seq) data were downloaded from the TCGA database (The Cancer Genome Atlas, http://cancergenome.nih.
gov/). The annotation file, Genome Reference Consortium Human Build 38 (GRCh38), which was acquired
from the Ensembl website (http://asia.ensembl.org/), was utilized to annotate the RNA-seq data. The microarray
data (dataset ID: mRNA-array_301) composed of 159 LGG samples were obtained from CGGA database (Chi-
nese Glioma Genome Atlas, http://cgga.org.cn/index.jsp)***. The corresponding clinical information for LGG
patients in the two datasets was also downloaded from the above websites. In our study, 78 PRGs were identified
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Figure 8. Validation of the featured genes involved in the ANN model at protein level. (A-F) The differential
expression patterns of the featured genes between normal brain tissues and glioma tissues which were identified
in immunohistochemistry staining on the Human Protein Atlas website. (G) Identification of the featured genes
by western blotting, in which lane 1 represented normal brain tissues, lane 2 and 3 represented grade II glioma
tissues, lane 4 and 5 represented grade III glioma tissues, lane 6 represented grade IV glioma tissues. Control:
normal brain tissue. Original blots are presented in Supplementary material.
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through extensive scanning of pyroptosis, apoptosis, necroptosis and PANoptosis-related literatures®-11-223-42,

Bioinformatic analysis and visualization of the data was performed using the R software (version 4.1.1).

Determination of PANoptosis related molecular patterns. The high throughput RNA-seq data
obtained from TCGA database were transformed into transcripts per million (TPM) values and then trans-
ferred into the log2 scale. Afterwards, the microarray data obtained from CGGA database (dataset ID: mRNA-
array_301) were merged with the RNA-seq data from TCGA database. The data were then normalized and the
batch effect was corrected before further analysis. R packages including limma and sva packages were used for
the above analyzes*>*,

Firstly, 51 PRGs with prognostic significance were identified in the univariate cox regression analysis with
the survival R package. PRGs with p <0.05 were considered to be statistically significant. Thereafter, distinct
PANoptosis-related molecular patterns were determined based on the expression profiles of 51 prognostic PRGs
in the merged data through consensus clustering method using the ConsensusClusterPlus R package®. Subse-
quently, clustering analysis based on the Partitioning Around Medoid (PAM) algorithm which was conducted
using k-means machine learning algorithm. A total of 50 repetitions were carried out in the consensus clustering
analysis to determine the stability of our classification and 80% of the LGG samples were used in each itera-
tion. The optimal number for subgroup assignment of LGG samples was comprehensively determined with the
consensus matrix heatmap and the relative change values of the area under the cumulative distribution function
(CDF) curves. Principal component analysis (PCA) was performed to assess the results of subtype assignment
in relation to the expression profiles of the 51 prognostic PRGs in LGGs.

Identification of PANoptosis related gene clusters. DEGs (differentially expressed genes) between
distinct PANoptosis related molecular patterns were determined by |log2 FC (fold change) |> 1.5 and FDR (false
discovery rate) adjusted p values < 0.05 via limma package in R software*. Univariate cox regression analysis was
applied to select the prognosis related DEGs which were defined as PANoptosis related gene signature in LGGs.
The consensus clustering analysis was utilized to identify distinct PANoptosis related gene clusters based on the
expression profiles of the PANoptosis related gene signature.

Functional enrichment analysis. GSVA (gene set variation analysis) was implemented for the function
annotation of distinct subgroups by using the GSVA package in R software*”. The differentially enriched molecu-
lar mechanisms including Gene Ontology (GO) molecular function terms and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways between subgroups were identified by using limma package in R*, in which
[log,FC|>0.1 and FDR adjusted p values <0.05 were considered significantly enriched between subgroups. The
reference files including “c5.go.mf.v7.4.symbols” and “c2.cp.kegg.v7.4.symbols” were downloaded from GSEA
database (https://www.gsea-msigdb.org/).

Evaluation of the performance of PANoptosis related classification in predicting progno-
sis. The prognostic values of PANoptosis related gene clusters were verified by univariate and multivariate
cox regression analysis and visualized in forest plots. For clinical practice, a nomogram model combining PANo-
ptosis related gene clusters and multiple clinicopathological features was constructed to efficiently predict the
prognosis of LGG patients by using rms and regplot R packages. The calibration curves, ROC (receiver operating
characteristic) curves, DCA (decision curve analysis) and C-index (consistency index) were presented to evalu-
ate the performance of the nomogram model in predicting prognosis in LGGs.

Exploration of tumor microenvironment (TME). TME in LGGs was quantified via ESTIMATE algo-
rithm (Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data), by which
immune, stromal, ESTIMATE score (positively reflecting nontumor components) and tumor purity were cal-
culated based on the estimate R package*®. The relative abundance of essential immune and stromal cells in the
TME was quantified via MCP counter®. CIBERSORT, a deconvolution algorithm based on linear support vector
regression, was employed to further evaluate the abundance of immune infiltrating cells in TME based on the
gene expression profiles of LGG samples™.

Identification of the featured genes for PANoptosis related gene clusters. We screened out DEGs
between distinct PANoptosis related gene clusters by [log2 FC |> 1.5 and FDR <0.05 via limma R package*’, based
on which two machine learning algorithms were adopted to select the key genes for discriminating PANoptosis
related gene clusters, including least absolute shrinkage and selection operator (LASSO) logistic regression® and
support vector machine-recursive feature elimination (SVM-RFE)*%. LASSO serves as a special instance of the
penalized least squares regression with L1-penalty function. LASSO logistic regression was carried out by using
glmnet R package, in which the optimal number of featured genes was determined when the lambda value was
minimal. SVM-RFE machine learning algorithm was performed with five-fold cross-validation by using 1071
R package, in which the optimal number of featured genes was determined when the root mean square error
(RMSE, cross-validation) was minimal. Afterwards, the overlapping featured genes were selected for further
analysis. ROC curves and the values of area under the curve (AUC) were analyzed to assess the accuracy of the
selected key genes obtained by the above algorithms.

Construction of artificial neural network for discriminating PANoptosis related gene clus-
ters. Based on the featured genes acquired above, random forest (RF) machine learning algorithm was used
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to further screen out featured genes via randomForest R package®. Firstly, the optimal number of the random
forest trees was determined when the cross-validation error presented minimal. Then, the random forest with
the optimal number of trees was constructed. In order to obtain featured genes with high importance, the fea-
ture importance for each gene was calculated and genes with feature importance > 10 were selected for further
analysis.

Artificial neural network (ANN) exhibits powerful performance to clarify the association between complex
and non-linear variables®* and was utilized as a special model to discriminate distinct PANoptosis related gene
clusters in LGGs in our study. Firstly, a scoring system was constructed according to the expression levels of
featured genes to eliminate the batch effect between the training dataset and validation datasets. For a featured
gene that was upregulated in gene cluster A, the gene score was set to 1 when its expression level was higher
than the median expression level and the gene score was set to 0 when its expression level was lower than the
median level. For a featured gene that was downregulated in gene cluster A, the gene score was set to 1 when its
expression level was lower than the median expression level and the gene score was set to 0 when its expression
level was higher than the median level. Afterwards, the gene scores of the featured genes were treated as input
values and the output layer was produced by connecting a hidden layer, in which the assigned weights were
appropriately calculated. The number of neurons in the hidden layer was set to five. The number of neurons in
the output layer was set to two, and the values of the two neurons in the output layer represented the possibility
of LGG samples which were classified into gene clusters A or B.

Validation of ANN in external datasets. One dataset (dataset ID: mRNAseq_325) obtained from
CGGA database®™*® and one dataset (GSE43378) obtained from GEO database® (Gene Expression Omnibus,
https://www.ncbi.nlm.nih.gov/geo/) were treated as validation datasets, respectively. LGG patients in the valida-
tion datasets were classified into two PANoptosis related gene clusters based on the expression profiles of PANo-
ptosis related gene signature by consensus clustering analysis. Similar gene scoring method was applied to three
validation datasets and ANNs were constructed to verify the performance in discriminating the PANoptosis
related gene clusters. Furthermore, we adopt the ten-fold cross-validation method to verify whether the model
was overfitting. We randomly divided the training set into ten parts. Nine folds were used to train the model and
make predictions on the remaining fold. This process is repeated 10 times until all samples have been validated
once in the test set.

Evaluation of the performance of ANN. Multiple metrics were calculated to better evaluate the perfor-
mance of ANN in the training and validation datasets, including specificity, sensitivity, accuracy, and AUC®. In
order to better characterize the evaluation metrics, LGGs in gene cluster A were defined as positive cases while
LGGs in gene cluster B were defined as negative cases. The following values were used in the definition of the
evaluation metrics: the number of true positives (TP), the number of false positives (FP), the number of true
negatives (TN), and the number of false negatives (FN).

Specificity was defined as follows:

. TN
F3 Specificity = ———.
TN + FP
Sensitivity was defined as follows:
. TP
F4 Sensitivity = ———.
TP + EN
Accuracy was defined as follows:
TP+ TN
F5accuracy = .
TP + FP + TN + EN

The AUC values ranging from 0 to 1, showed the capacity of ANN in distinguishing PANoptosis related gene
clusters.

Validation of the featured genes involved in ANN at protein level. Six genes including GBPI,
S100A4, TYMP, TNFRSF12A, VIM, and MSN were randomly selected from the nine featured genes involved in
ANN. The differential expression patterns of the above genes between normal and glioma tissues were identified
on the Human Protein Atlas website (https://www.proteinatlas.org/)®'.

Western blotting was implemented to further verify the differential expression levels of the above genes
between normal and glioma tissues. Normal brain tissues were acquired from patients with epilepsy who received
temporal lobe resection. Glioma tissues which were histologically diagnosed as grade II (G2), grade IIT (G3) and
grade IV (G4) were obtained from patients who received tumor resection.

The collected tissues were separately homogenized and lysed in RIPA lysis buffer containing protease and
phosphatase inhibitors at 0-4 °C. The homogenized protein samples were centrifuged at 1000g for 15 min at
4 °C to extract cytoplasmic proteins. The Bio-Rad protein assay kit was used to determine the protein concen-
tration. The protein samples were homogenized with a prepared loading buffer and then boiled for 5 min at
100 °C. Equal amounts of protein samples were separated through SDS-PAGE at 80 V for 1 h. Afterwards, the
protein samples were transferred onto polyvinylidene difluoride (PVDF) membranes at 50 V for 1 h. The mem-
branes were incubated for 12 h with the following primary antibodies: GBP1, S100A4, thymidine phosphorylase
(TYMP), TWEAKR (TNFRSF12A), vimentin (VIM), moesin (MSN), and -actin. Subsequently, the membranes
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were incubated with secondary anti-rabbit or anti-mouse horseradish peroxidase (HRP) antibodies. Finally, the
membranes were visualized with the enhanced chemiluminescence (ECL) solution.

Statistical analysis. The prognosis of different subgroups was compared through the Kaplan-Meier sur-
vival analysis using the survminer and survival R packages. The log-rank test was used to perform statistical
analysis. Comparisons between two groups were carried out by using the Wilcoxon rank-sum tests whereas
comparisons among multiple groups were carried out using Kruskal-Wallis tests. Categorical variables between
two groups were compared using the Chi-square tests. Continuous variables between two groups were compared
with the independent student’s ¢ test. Two-tailed p <0.05 was considered statistically significant.

Ethics approval. The study has been approved by the Ethics Committee of qingdao municipal hospital. We
have obtained the approval and informed consent from the participates.

Contribution to the field statement. PANoptosis, which shares common key features with pyroptosis,
apoptosis and/or necroptosis, is determined as an inflammatory programed cell death (PCD) pathway and can-
not be simply accounted for by any of these three identified PCD pathways alone. It has been recently reported
that PANoptosis plays an important role in tumor progression. Scholars have revealed the inhibitory effect of
PANoptosis on tumor growth in diverse cancer lineages, shedding more light on the investigation of biomarkers
and therapeutic targets for patients. However, there are little studies focusing on the exploration of PANopto-
sis in gliomas. To date, there is no PANoptosis related gene signature has been identified with implications in
prognosis in glioma patients. Due to highly variable prognosis in gliomas, it is becoming a hot spot to find bio-
markers for predicting clinical outcomes. In our study, PANoptosis related gene clusters with distinct prognosis
were identified based on the expression of PANoptosis related gene signature. Moreover, an ANN model based
on machine learning methods was developed to characterize and discriminate distinct PANoptosis related gene
clusters. Considering its prognostic values, PANoptosis related gene cluster can be an indicator for the hetero-
geneity of tumors across individuals and contributes to the development of personalized medicine, appealing
implications in clinical management of glioma patients. The identification of PANoptosis related gene signature
provided critical evidence for the exploration of PANoptosis in gliomas and sheds light on the investigation of
promising therapeutics with respect to PANoptosis. Furthermore, given that the two PANoptosis related gene
clusters represent distinct characteristics of tumor microenvironment (TME), this study facilitates in the inves-
tigation of immunotherapy in the future.

Data availability

We declare that the data sets supporting the findings of this study are available in the TCGA database (https://
portal.gdc.cancer.gov/), CGGA database (http://cgga.org.cn/index.jsp), GEO database (https://www.ncbi.nlm.
nih.gov/geo/) and Human Protein Atlas website (https://www.proteinatlas.org/). Glioma samples for western
blotting were obtained from the department of neurosurgery of qingdao municipal hospital. We confirm that
all methods were performed in accordance with the relevant guidelines and regulations.
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