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Auto-correlations of microscopic
density fluctuations for Yukawa
fluids in the generalized
hydrodynamics framework

with viscoelastic effects
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The present work develops a theoretical procedure for obtaining transport coefficients of Yukawa
systems from density fluctuations. The dynamics of Yukawa systems are described in the framework
of the generalized hydrodynamic (GH) model that incorporates strong coupling and visco-elastic
memory effects by using an exponentially decaying memory function in time. A hydrodynamic matrix
for such a system is exactly derived and then used to obtain an analytic expression for the density
autocorrelation function (DAF)—a marker of the time dynamics of density fluctuations. The present
approach is validated against a DAF obtained from numerical data of Molecular Dynamics (MD)
simulations of a dusty plasma system that is a practical example of a Yukawa system. The MD results
and analytic expressions derived from the model equations are then used to obtain various transport
coefficients and the latter are compared with values available in the literature from other models.
The influence of strong coupling and visco-elastic effects on the transport parameters are discussed.
Finally, the utility of our calculations for obtaining reliable estimates of transport coefficients from
experimentally determined DAF is pointed out.

A Yukawa system generally consists of an ensemble of a large number of charged particles embedded in an
electrically neutral or quasi-neutral medium such that the bare charge of a particle is shielded by the medium
particles. Yukawa systems have attracted a lot of research interest because of their importance in many fields
including space physics!, astrophysical systems?, gas discharges>*, microelectronics, colloidal systems, the edge of
thermonuclear fusion systems®~’, condensed matter physics (specially for understanding the phase transitions®
in 2D and 3D systems), etc. Such systems are also extensively studied in laboratories to investigate various
fundamental physics problems associated with many body systems!''~'*. As a large amount of information is
already available in the literature regarding the domain of existence and the fundamental importance of Yukawa
systems, further details about them are omitted here. Good overviews of their basic properties, applications, and
methods of experimental and theoretical studies of Yukawa systems can be found in several books and review
papers'*7. Complex plasmas or dusty plasmas are a particular class of Yukawa systems where nano-meter to
micro-meter sized charged particles (called dust) are suspended in a partially ionized plasma. Many past studies
have investigated transport processes, crystallization, phase transitions and collective modes in Yukawa systems
using various approaches such as Molecular Dynamics (MD) simulations'®*?, a Generalized Hydrodynamics
(GH) model®, a Quasi-Localized Charge Approximation (QLCA)*! and Kinetic Theory? etc.

In a Yukawa system the inter-particle shielded potential between the embedded grains is taken to be of the
form:
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where 7 is the separation between two particles having charge Q, £ is the permittivity of free space and Ap is the
screening length arising from the background plasma. Yukawa systems can be characterized by two dimension-
less parameters, namely, the Coulomb coupling strength defined asI" = Q?/(4mwegaysks Tp) and the screening
strength defined as k = a,,/Ap where a,; is the average inter-particle distance, Tp is the temperature and kg
is Boltzmann’s constant. The Coulomb coupling parameter and screening strength can be adjusted to achieve
longer or shorter correlations among the particles, that can characterize the phase state of the system as being
a fluid or a solid®.

The time evolution of small density fluctuations of fluids around the equilibrium values can be used to under-
stand the transport process at a fundamental level. This was famously noted way back by Landau-Placzek?!, who
had observed that the variation of density fluctuations in time can be described by linear hydrodynamic equations
of irreversible thermodynamics. A similar statement by Kubo that “the linear response of a given system to an
external perturbation is expressed in terms of fluctuation properties of the system in thermal equilibrium” is
also noteworthy®. One way to understand the time evolution of fluctuations is to write down conservation laws
such as conservation of density, momentum, and energy in the hydrodynamic limit with quantities having small
fluctuations around their equilibrium values. After linearising the equations one can further simplify them using
thermodynamic relations to reach a set of coupled equations. This set of equations relates fluctuations of density,
momentum, and energy to their equilibrium values. The system of equations when written in matrix form has a
coefficient matrix, which is normally called the hydrodynamic matrix*. Following some reasonable assumptions,
these equations can be solved for variation of density fluctuations in time in terms of various equilibrium values.
To understand the time dynamics of density fluctuations, a time auto-correlation function of density fluctuations
can be constructed. This is found to yield much important information on transport processes in fluids. Such a
calculation for the case of ‘simple fluids’ can be found in Ref.?. This observation has been implemented in the
light scattering studies from ideal mono-atomic liquids by Mountain?, to construct the generalized structure
factor and other dynamical quantities. Following the work of Mountain, the same approach has been used to
study thermodynamic density fluctuations for a dense charged fluid (a strongly coupled one component plasma
(OCP)) by Vieillefosse and Hansen?. They added a local electric field term in the momentum equation to incor-
porate the effects of charged particles. This procedure to understand transport parameters is more accurate as
one starts from an unambiguous quantity, the density fluctuations, and is valid for complicated situations like
materials with non-pairwise potentials such as warm dense matter etc”. Recent studies of OCPs have also shown
the estimation of dynamic structure factor in various screening regimes using an alternate approach known as
the method of moments®**!.

The situation in Yukawa fluids is more interesting as there exists a third possibility to obtain DAF through
experiments. Dusty plasmas, a particular class of Yukawa fluids, are extensively studied in the laboratory and
their dynamics are captured in the form of particle trajectories using high speed camera systems>*>-*. To exploit
this aspect we need to have an accurate expression for DAF derived from a proper hydrodynamic matrix for
Yukawa systems. It can be noted from a comparison between Refs.?®* that the DAFs, hence the transport
parameters, are different for simple fluids and OCP because of the additional term in the momentum equation.
In Yukawa fluids, strong coupling effects as well as visco-elastic effects (sometimes called memory effects) need
to be incorporated in the fluid equations. The Generalized Hydrodynamics model (GH) is one such model that
incorporates both these features®. The GH model potentially bridges the gap between hydrodynamic and kinetic
regimes by extending the usual Navier-Stokes model to higher wavelength-frequency domains. As a result, this
model is applicable over a large extent of correlations as compared to other hydrodynamic models. This model
has been applied to a dusty plasma system by Kaw and Sen? for studying low-frequency dust acoustic modes.

Recent advances in Molecular Dynamic (MD) simulations give another dimension to this method. Using such
simulations, we can numerically calculate the density fluctuations and hence the Density Autocorrelation Func-
tion (DAF). This numerically constructed DAF can then be compared with theoretical DAF to obtain important
transport parameters and acoustic speeds. Recently Cheng and Frenkel® used this combination to successfully
calculate transport parameters of simple fluids as well as for warm dense matter. These past studies of density
fluctuations of simple fluids using an analytical form of the DAF have proved very useful for understanding many
fundamental physics issues and in practical applications. A primary goal of our present study is to derive a similar
analytical form of the DAF for a complex system, such as a Yukawa system, whose dynamical characteristics are
significantly different from that of a simple fluid. Such an analytical form of the DAF has not been derived so
far for a Yukawa system although Yukawa systems have been extensively studied for a long time. Just as in the
case of the DAF for a simple fluid, our present result can be used to gain insights into the transport properties of
complex systems like a dusty plasma which is well represented by a Yukawa model. Furthermore, a dusty plasma
system offers a convenient means of carrying out an experimental verification of the results obtained using our
derived DAF. This has also served as a major motivation for our present work.

In our work, we have used the generalised hydrodynamic model to represent the complex system and derived
an appropriate hydrodynamic matrix and the density auto-correlation function. The analytic form of the DAF
incorporates contributions from strong coupling effects such as visco-elasticity and enables us to study its impact
on various physical parameters such as sound speed and transport coefficients. Our analytic results are further
validated against MD simulations by fitting the expression of DAF to numerical results. As the DAF expression
contains transport coefficients, the comparison with numerical results also provide estimations of transport
coefficients.

Hydrodynamic matrix and DAF from generalized hydrodynamic model
Hydrodynamic matrix. Assuming the hydrodynamic regime, the conservation laws for number density
p(r,t) and energy density e(r, t) can be written as
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m&p(r, )+ V.p(rt) =0, (2)

%6(1‘, t) +V. Ie(r) t) =0, (3)

where J¢(r, t) is the energy current density and p(r, t) is the momentum current density. Now, assuming the local
deviation in number density §p(r, t) to be small, Eq. (2) can be linearised as

p(r,t) = mlp 4+ Sp(r,)]u(r,t) =~ mpu(r,t) = mj(r,t),

with m as mass, u(r, t) as velocity and j(r, t) as the local density current. Using the above approximation, the
continuity Eq. (2) can be rewritten in the form

d
aép(r, )+ V.jrt)=0. (4)

Considering the heat continuity Eq. (3), the heat current is defined as
Jo(r, 1) = (e + Pu(r,t) — AVT(r,1),

where e = U/V is the equilibrium energy density, 4 is thermal conductivity and P is the overall pressure. Using
the expression for J¢, the energy equation (3) can be rewritten as,

(e(r t) — Lp(r t)) —IV238T(r,t) = 0.
P

(5)
Density of Heat Energy : q(r,t)
8q(r,t)is related to §p(r,t) and 8T (r, t) as,
§q(r,t) = Tds(r,t) = TBSS (r,t) + T aSST( t) = Tﬁvﬁ (r,t) + 8T(r,t)
r, = s(r, = —— r, — r, C r,t),
q Vv ap 14 vV aT 0 14 PCy (6)

where 8, = (% ) p, =P <%§/)> ; is the thermal pressure coeflicient. Using Eqgs. (4) and (6), the energy con-
tinuity equation (5) can be rewritten as

(3 iv2>5T ) + ﬂ”v ) =0.
TR (r, j(r, (7)

The use of equilibrium thermodynamic relations in Eq. (6) is justified on the same grounds as the use of
irreversible hydrodynamic equations to describe the time evolution of reversible microscopic fluctuations®*-%. In
other words, the irreversibility is at the macroscopic scale of the transport processes but there exists reversibility
at the local microscopic scale of the fluctuations.

As discussed earlier, a Generalized Hydrodynamic model® is used for linear momentum equation. This model
is a generalization of hydrodynamic equations of motion by taking into account the Maxwell’s relaxation theory.
The GH model uses a non-local viscoelastic operator with an exponentially decaying memory function of relaxa-
tion time 7,, known as the viscoelastic relaxation time. Theoretical formalism to generalise the hydrodynamic
equations and applications of the GH model are delineated in Refs. "%, The linear momentum equation from
Generalized Hydrodynamic model® can be written as

(1 - ) { it + — VP(r,t) + @vq; Rty - PTGy ey =0, (8)
at pm pm

with 7 as shear viscosity and ¢ as the bulk viscosity. 7,, is the relaxation time of the memory function which is
modeled as an exponentially decaying function in time®’. Fluctuations in P(r, t) to first order in 8p(r, t) and
8T(r,t)are related as

SP(r,t) = LSp(r, t)+ BT (r,t), 9)
XTP

where x7 is isothermal compressiblity. Using Eq. (9), the momentum, energy and continuity equation, for a
Yukawa system, can be rewritten as

(1+ Tm ){8”(' D Prsre, t)+—V¢>} {<1+rma)8 ivz—MVV-}j(r,t)zo
Jat m Jt pm

mxrp at pm
(10)
il A
<———V2)(ST( )+ ’SVV j(r,t) =0, (11)
ot pcy
Scientific Reports|  (2022) 12:21883 | https://doi.org/10.1038/s41598-022-26401-w nature portfolio



www.nature.com/scientificreports/

%Sp(r, )+ V -j(r,t) = 0. (12)

The relation between density p and ¢ can be established by using a modified Helmholtz* like equation that
is a static version of Eq. (3) of Ref.%’.

(V2 = Iph)e = 4 Qép. (13)

This equation relates the potential induced due to variation in the charge density (Q3p) for the systems
interacting via Yukawa interaction. Now, the GH momentum equation (Eq. (10)) along with particle and energy
conservation laws (Egs. (11), (12)) can be transformed using a double transform with respect to space (Fourier)
and time (Laplace) to obtain a relation of density j(k, s), particle current density j(k, s) and local temperature
T (k, s) with their corresponding Fourier components, pi, Ty and j, at t =0. The Laplace transform of function
f(t) has the form Z {f (1)} = f exp(tst)f (t)dt. Assuming k to be in the z direction (without losing generality) and
neglecting electromagnetic effects, the longitudinal part of Egs. (10), (11) and (12) can be written in (k, s) space.
These system of equations can be written in matrix form with b = 4"{)% anda = picv as follows.

—s 0 tk
0 — 15 + ak? Lhyik 0k (s)
prey ~
X 1 1 B g, Ti(s)
kpe(s) |1 @ | kBy(—atwk®) (T=tsty) \ [mxrp T pPme, [T 7 (s)
1—isTy, | myrp KR+i52 m(1—1sTp) +bk2—(ts+rm52) k
(1—ts71) (14)
HydrodynamicMatrix:H (s,k)
0(0)
= T(0)
. mikz (O
HOREE -

The coeflicient matrix in Eq. (14) is called the Hydrodynamics matrix Hy (s, k).
Density autocorrelation function (DAF). The dispersion relation for the longitudinal collective modes
is determined by the poles of the inverse of H (s, k) i.e. the roots of Eq. (15).
det Hy (s, k) = 0. (15)
Assuming —ts = z, det HL (s, k) can be written as follows

det Hy (s, k) = 2%t + 22(1 + atk?) + 22K (a + b + 1, K1)
2

Krt, w
akz(b—l— T’”)+ LKy
y k2 +7p

+ zk?

4
pmxr

'The approximate roots of Eq. (15) of the order k? can be determined using power series method as shown in
Appendix 1, as follows.

T 2
+ X%ﬁv have been used.

where definitions of Ky as Ky = and thermodynamic relation ¢, = ¢,

K —1
21 = —a(l — a) k> whereo = L)Z/V s
—— 13
X Kr+ mo

w? 1 Wit
24+ =+t KT—FPk—(b-{—aOl—kpm kz,

K242 2 2452
Cs Is
2
1 wWiLT,
Z4=—— 4+ b_% kz,
Tm k2+AD

where the fluctuations in temperature and density are instantaneously uncorrelated®® ((Ty o) = 0) and k can be
chosen to ensure j7 = 0. Considering these simplifications, Eq. (14) can be solved for ok (s).

or(s) 22T + 221 + atk® + zk*(a + b + t,,K7)) + (y — DKrk?/y
ok Tz — 21)(z — 224) (2 — 22-)(z — 24) '

(17)
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S.no. | Parameter Values

1. Particle number 131,072

2. Equilibration steps | 5000wt
3. Production steps 60, 000wy
4. Step size dt 0.005wyt
5. r [5, 200]

6. K [1,3.5]

Table 1. List of simulation parameters in normalised units.

Using the roots of det Hy (s, k) = 0, we can solve for gk by finding partial fraction coefficients corresponding
to each root. As we show later, the coeflicient corresponding to the fourth root in the density autocorrelation
will be zero so the same is excluded from here onwards.

pk(s): o +1—a( 1 . 1 ) (18)

Pk zZ—21 2 zZ— 24 zZ— 2

Now, above equation can be written as following using an inverse transform followed by a multiplication of
p—k(0) on both sides and thermal averaging.

<pk(t),0_k(0)> = o exp (—Akzt) + (1 —a) exp(—FSkzt) cos(cskt). (19)

The attenuation constant I'y, coefficient A and acoustic speed c; are given by

. 1 ; u);rm
s=5 + ao — e =) (20)
A=a(l —a), (21)
wﬁ
¢ =+/Kr+ ——. 22
S T k2 + }VBZ ( )

It can be noted immediately that putting t = 0 in Eq. (19) reduces DAF to unity as expected, which in turn
needs the coefficient of the fourth root to be zero.

Equation (19) contains two terms, the first one is a diffusive term driven by thermal diffusion and the sec-
ond term is a damping cosine. The frequency of the cosine is described by sound speed, and the decay rate is
determined through attenuation constant I's, hence called sound attenuation constant. The coefficients defined
in Egs. (20)-(22) are modified by viscoelastic memory effects. Indeed, in the asymptotic limit of .p — oo and
T, — 0, Eq. (19) reduces to the density autocorrelation function of a classical one-component plasma (without
memory effects) as given in Vieillefosse and Hansen?.

Validation with MD simulations
Calculation of DAF through MD.  The DAF described in Eq. (19) can be independently calculated through
the first principle method using molecular dynamics (MD) simulations. The MD simulations numerically solve
the coupled equations of motion of particles for a given inter-atomic force field. As the solver progresses in time,
the dynamical evolution of the system is recorded by storing the positions and velocities of particles, also known
as trajectories. This in turn produces a full 6N + 1 dimensional phase space of the system with N being the
number of particles. The physical observables can now be calculated from this data with various statistical tools.
In the present study we have performed MD simulations of N = 131,072 point-like particles using a well
benchmarked MD code LAMMPS*! using the inter-particle Yukawa potential described by Eq. (1) and the
simulation parameters are tabulated in Table 1. The particle number N has been chosen by considering value

of kpinaws = /47 /N as per the O(k?) assumption in the theoretical model. A periodic boundary condition is
implemented in each dimension to minimize the finite size effects.

The system is initially equilibrated using a thermostating procedure* followed by a NVE production run.
The thermostatting procedure is important as it removes the sensitivity of the results to initial conditions of the
simulation. This also prevents to a large extent the propagation of numerical errors that are sensitive to initial
conditions. The NVE production run of 60,000 wp,t time steps has been used for storing particle trajectories.

The wp, here is the dust plasma frequency given by wpq = \/nQ?/meo2ay;.

A simulation duration of 60,000 wp,t is chosen to obtain a sufficiently large number of ensembles such that
the DAFs do not differ when a simulation with an even longer duration is performed. The lengths and times are
normalized with a,,s and 27'ra)7;l1 respectively. All other quantities are also normalized using the normalization
scheme employed for time and space. The use of normalised quantities makes the calculations independent of a

particular physical system or a system of units. The normalisation also helps one to decide a suitable time step
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Figure 1. DAF curves generated using MD simulations (solid lines) and curve obtained by fitting MD data with
Eq. (19) (broken lines) for I' = 60 and k = 2.

dt of a simulation so that the solver converges and the repeatability of results is ensured. Once the results are
obtained one can simply use the expression of w,, to convert the parameters to any particular system of units as
required. As the potential given in Eq. (1) falls as r increases, a potential truncation radius is used to speed up
the computation which is chosen as per a benchmarked criterion explained by Liu and Goree®’.

In order to calculate DAF from particle trajectories, the microscopic particle density in the reciprocal space
for N point particles with positions r;(t) is defined as

N
pk(t) = % / Z 8(r — ri(t)) exp(tk - r)dr. (23)
Vi=o

The reciprocal space vector k is related to system dimensions (Ly, Ly, L;)ask = {2ty /Ly, 2mwn, /Ly, 21, /L, }.
The minimum value of magnitude of reciprocal space vector |k|min = 9.79 X 10~3. Now, the microscopic particle
density pg () is transformed with a Fast Fourier Transform (FFT) in time and Wiener-Khintchine** theorem is
used to calculate density autocorrelation in time using following equation.

(o p—k(0)) = F ~H{pr(@) " i (). (24)

The DAF calculated from the simulation for I = 60 and « = 2.0 is shown in Fig. 1 (solid lines) for 3 different
modes. Eq. (19) is then best fitted to this curve using non-linear least square fits resulting in optimal parameters
for each mode. A fitted curve for k4 mode is also shown in Fig. 1 (dashed lines) which closely follows the DAF
from MD. Additional figures of DAFs for different simulation parameters are available in Supplementary Material.

Comparison with MD and discussion. In the previous subsection, the DAF generated through MD data
is found to fit well with Eq. (19). This fitting has been performed by fixing the various transport parameters such
as ¢, I's, y and thermal diffusivity a = 4/pc, as fitting parameters. As the fitting procedure involves multiple
parameters, it should be noted that not all of them can be varied arbitrarily. Firstly, the parameter ¢, explicitly
depends only on the frequency of the DAF time series and hence gets decoupled from the others. The quantity
A independently appears in the exponential of the first term and it also appears in the exponential of the second
term (corresponds to the viscosity constant). So these two terms (A and the viscosity term) cannot be arbitrarily
chosen to fit the MD data.

In order to have better confidence in the fitting procedure, an exercise involving the statistical uncertain-
ties is also performed. A multidimensional space for the statistical errors around the fitted parameters is con-
structed. The statistical errors are quantified in terms of mean squared deviations (MSD) of each parameter.
As we have four fitting parameters for each k, the number of dimensions of this space will be four. These
values are independently calculated for each k and the maximum MSDs for individual parameters are col-
lected. The spread in the unit of fractions (ratio of the error to value of the parameter) are denoted as +o with
Omax = [0.0003,0.049,0.077, 0.041] corresponding to [cs, A, I's, «]. Here « is the coeflicient of the first term in
Eq. (19). To visualize the extent of deviations, the MSDs are shown in 3D projections of the four-dimensional
hyperspace of parameters in Fig. 2 for all modes. The Fig. 2a shows the populations of MSDs estimated in the
parametric space of or,, 04 and o, dimensions. Similar information is shown in Fig. 2b corresponding to o, 04
and o, dimensions. The colors of each scatter point show the Euclidean norm of the point which conveys the
maximum possible deviation of all dimensions combined. It is evident from the figures that the populations of
MSDs are limited to a small region within the parametric hyperspace, hence the fitting procedure is statistically
accurate.
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Figure 2. 3D projections of MSDs from the parameter hyperspace in normalized units. The colors of the points
represents the Euclidean norms and shaded spherical surface encloses the region where o < 0yax.

In addition to ensuring the statistical accuracy of the fitting procedure we have also carried out an inde-
pendent check on the validity of the estimated transport coefficients by comparing them with values available
through various models in the literature. The comparison presented below covers Yukawa systems in 2D and 3D
along with a discussion on the physical effects of strong coupling terms and the memory effects on the transport
parameters.

Before going to a one-by-one comparison, it is important to check the reduction of Eq. (19) in some important
asymptotic limits. For an ideal uncharged fluid (w, = 0 or k — ©0), Eq. (19) exactly reduces to the DAF of an
ideal fluid? as shown below

-1 1
(pr(t)p—r(0)) = (VT) exp(—Drk’t) + " exp(—Tspk?t) cos(cskt), (25)

where

y—1

1
FSF:5<b+a )andDT:a/y.

A comparison between Egs. (19) and (25) shows that the transport terms such as c;, y and thermal conduc-
tivity are modified through a new form of compressibility. While the longitudinal viscosity appearing in I’ is
modified through a term containing the relaxation time ;.

The speed of acoustic modes*® in Yukawa systems can be estimated using various methods and models includ-
ing molecular dynamic (MD) simulations*, QLCA*", and fluid models supplemented with an equation of state,
etc. For estimations of the adiabatic constant, parametric equation of state obtained from MD simulations or
other models, are used in some reported cases*®*. Among all these methods the QLCA approach requires high
coupling regimes for charges to be localized*' and the fluid approach is reported to be accurate in k < 3 regimes™.
Also, a direct experimental implementation is difficult for all the above cases.

The following important point related to the expression for sound speed using the QLCA method by Kalman
et al.>! is worth noting here. According to Eq. (19) of Ref.>! the approximate expression of longitudinal phase
velocities of Yukawa Systems for the limit of k — 01is given as

SI% = w;aws |:][(K) + Kilz] > (26)

with f(«) as a fitting function. The expression obtained through present derivation as in Eq. (22) is also in a simi-
lar form but with an explicit k dependence and a more physically meaningful k independent term, compressibility
Kr. Thus the present form avoids the need for ambiguous parametric fitting on the estimation of sound speed. A
similar form of dispersion relation is also reported in other places, for example, see Ref. ?° and references therein.

Now the left hand side of Eq. (22) can be obtained from fitting Eq. (19) with MD data for each wave-vector
k. These values can be further fitted with the expression in right hand side of Eq. (22) as shown in Fig. 3. The
fitting procedure is also capable of separating the wavelength dependent term from the other term in expression.
The circles in the Fig. 3 show MD point for the left hand side of Eq. (22) and broken lines show the fit using the

expression in the right hand side. The term+/1/(k + «2) is shown with inverted triangles and calculated values
of Kr is also mapped in Fig. 3. The values for ¢; are then extrapolated to k — 0 and compared with results of
Khrapak and Thomas*® in Fig. 4. The figure shows the comparison for two values of I's and different values of
k ranging from 0.5 to 3.5 for a 3D system. The acoustic speed estimation for « = 3.5 and I' = 10 shows a slight
deviation from the results of Khrapak and Thomas. The work by Khrapak and Thomas uses a parametric form
of the equation of state to derive the acoustic speed. This approximation is not strictly valid beyond « = 3, and
this could be the cause of the deviation of their result from that of our present study beyond « = 3.
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Figure 3. Sound speed (c;) with ka, for different I" and « in a 3D system. The inverted triangles represent
v/'1/(k + «?) term and dashed line shows the fitting with analytic expression for sound speed from Eq. (22).
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Figure 6. Comparison of sound speed and adiabatic constant across with results from Semenov

et al.”® (solid lines). Following the same normalization used in Ref. *, the sound speed is
normalized as cs* = csk / (wpdaws) and effective coulomb coupling parameter as '« = I'/ I, where
[ (c) = 131/[1 — 0.388«2 + 0.138«> — 0.0138«%).

To check the validity of the present model for 2D dusty plasma, the following comparisons are performed.
A plot for 2D cases exactly similar to Fig. 3 is shown in Fig. 5. Similarly, the sound speed estimated for 2D cases
and a comparison of present calculations with Semenov et al.*” is shown in Fig. 6a. The solid lines are from Ref.*
and circles are from the present calculations using a combination of MD data, Eqgs. (19) and (22). The inverted
triangles are for the limiting case of simple fluids as in Eq. (25). Both the axes are normalized as described in the
caption to make it analogous to the work of Semenov et al.*. The comparisons are presented for three cases with
k=0.5, 1,2 and for many values of I" from 1 to 100. Following important points can be noted from Fig. 6a. Firstly,
the present model agrees well with the results of Semenov et al.*’. Secondly, as « increases the values calculated
with the GH model (Eq. 19) approach the values estimated using the simple fluid model. As discussed earlier
this point is also in line with expectations. This in turn validates the present derivation. A similar comparison
for adiabatic constant y is also given in Fig. 6b. It should be noted that for calculating y, an equivalence between
the quantity (y — 1)/y Kr for the cases with and without background, as explained by Salin®?, is used. Here also
the present method can estimate values closer to that of Semenov et al.*® even for y's close to one.

From the above discussions, it is clear that the sound speeds and ys obtained using the present model and
MD data in rigorous ways agree with other available models in the literature even though they are very differ-
ent from the present approach. For completeness, in the rest of this section a comparison of another important
transport parameter, the thermal conductivity is presented.

The thermal conductivity estimation can be done by equilibrium MD simulations using Green-Kubo formula,
which is based upon the fluctuation-dissipation theorem®. This method involves the computation of heat current
auto-correlation which has a slow convergence®*. The definition of local heat current is not unique**, and in
many cases (for example, if the potential is not pairwise additive) accurate estimation of thermal conductivity
requires specific formulation in GK method*>*%. Another method to calculate thermal conductivity is to use
non-equilibrium molecular dynamics (NEMD) simulations® by inducing a local temperature gradient in a small
region of the system to estimate the heat flux**. In principle NEMD methods closely mimic the experimental
situations and are not difficult to implement in MD, but there exist many computational issues**. The limitations
include finite-size effects and non-linear responses due to temperature gradient®. A review of both equilibrium
methods and non-equilibrium methods with merits and demerits are available in a study by Schelling et al.>.
However, both of the aforementioned methods are difficult to deploy in experimental Yukawa systems. For GK
methods, experimentally estimating the local heat current is challenging, while in non-equilibrium methods
creating a local thermal gradient and keeping the overall system at a constant average temperature, and measur-
ing local heat flux is difficult.

To validate the prediction of thermal conductivity using the present model, MD calculations for NEMD are
separately performed as described below. For NEMD calculation, a reversible non-equilibrium method proposed
by Miiller-Plathe®® (MP) is used. It is based on the idea of deliberately imposing a heat flux and measuring the
system response as a temperature gradient profile. The system is divided into 32 slabs along x direction and heat
flux is imposed by exchanging the kinetic energy of the ‘coldest’ particle in one slab with ‘hottest’ in another
slab. The induced temperature gradient, as the response of the system, is measured by taking ensemble averages.
The temperature profile after establishing the temperature gradient is shown in Fig. 7. Now, for a 2D system the
thermal conductivity is related to heat flux using Fourier’s law as

E

= 2Lt{(8T /5x) @7)
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Figure 7. Temperature profile constructed for estimation of thermal conductivity from NEMD method.

/P
3.5
I/I
3.0 i/
/
g
’52.5' by ,4"
< RSN §ei
2,04 "~ =l %
QQ \‘_'~~ X
. X "=~ -
1.54 o ?\\\x\ b
~ X
X X X X
1.0- .
10! 102
r

Figure 8. Comparison of heat conductivity calculated with NEMD Method (dashed lines), and the present
work using Eq. (19). The thermal conductivity is normalized with ), as Znorm = A/nkg wpaa,s.

where E is the total energy exchanged in time ¢, L is length of slab and (§ T /5x) is the ensemble average of tem-
perature gradient. The mean values of the gradients of temperature (AT/Ax) were calculated by considering
the interval x/L, € (0,0.5)and x/L, € (0.5, 1).

Eq. (27) is used to estimate the thermal conductivity from a known heat flux and temperature profile. A
comparison of the results obtained using Eq. (19) with that obtained using NEMD for k = 1and x = 2 for many
values of I' is shown in Fig. 8. The present simulation agrees well with NEMD method considering the reported
inaccuracy of NEMD method up to 20%.

As discussed earlier, the NEMD method has its own computational disadvantages. As the present method
closely follows the analytical treatment and the DAF is calculated from particle fluctuations, it is free from such
problems but can be prone to statistical errors that arise from fitting procedures.

Validation of the final parameter in Eq. (19) namely I'; is not performed here as the same expressed in the
form of Eq. (20) is not available in literature.

An important extension of this work could be an analytical estimation of the stress autocorrelation func-
tion (SACF) which is related to the viscosity using a Green-Kubo formula®®. In this regard, the matrix equation
(Eq. 14) can be extended by incorporating the transverse currents (jy,jy). This would result in a hydrodynamic
matrix of order 5, which can be inverted to approximately solve the system of equations resulting in analytical
expressions of current densities. These current densities can be used along with the conservation law of momen-
tum to calculate the stress tensor.

One could also have an alternate approach to obtain viscosity using the auto correlation of the time derivative
of the current density. For example, this can be achieved using the following form of expression, which has been
previously used for the case of simple fluids®.

m 1,
n=—— lim lim Re/ — (7 ()j_(0)) exp(rot)dt. (28)
\% 0o k2

0—>0k—0

Furthermore, we would like to make the following important point. As shown above, the present approach
of using Eq. (19) and MD simulations can be used for accurate estimation of various transport parameters in
a single framework. Moving forward, as explained below, there exists an interesting possibility to replace MD
data with experimental data. One of the beauties of laboratory dusty plasma systems is their simplicity in obtain-
ing the particle trajectories using fast cameras®>'®*. These particle trajectories can be used to obtain a DAF.
The experimentally obtained DAF can then be matched with Eq. (25) as discussed earlier. In other words, the
particle trajectories obtained through MD simulation in the present work can be replaced with experimental
measurements. As discussed earlier, the experimental implementation of previous individual models for each
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thermodynamic quantities such as c;, y, A are difficult, need more complicated diagnostics and more importantly,
require separate treatments. Using Eq. (19) of the present work with experimentally measured particle trajectories
enables the estimation of many important transport parameters in a single framework. For normal systems like
simple fluids, this cross-validation is not possible as experimentally measuring the individual particle dynamics
and fluctuations is impossible. In short, the present work opens up a window to cross-validate the dynamics of
microscopic fluctuations at hydrodynamic limits with theoretical, computational, and experimental means. An
experimental attempt for the same is presently under way and will be reported later.

Summary

In the present work, an analytical relation for the time dynamics of DAF for a Yukawa fluid has been explicitly
derived in a generalized hydrodynamic framework which is valid over large spatial correlations and incorporates
viscoelastic effects. This analytical form is then used directly for the estimation of various transport coefficients.
This analytical form can also be compared directly with experimental or MD data to obtain important transport
coefficients using proper fitting procedures. A potential generalization of the present work is to extend the cal-
culations by including transverse current density components to obtain useful analytical expressions for other
important parameters like the stress-autocorrelation function. Furthermore, the expression of the DAF as in
Eq. (19) can be usefully employed to estimate an upper limit of integration of the various GK formulae, when
the DAF is obtained as finite time series from experimental data.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Appendix
Method of solving Eq. (15). The roots of a quartic equation such as Eq. (16) of the form
P(k)z* + Qk)Z> + R(k)Z> + S(k)z' + T(k) = 0, (29)

with the coefficients P, Q, R, S and T being functions of k, can be approximately estimated using a power series
method. In this method, a trial solution of the form z; = z;o + zi1k + z2k?... is substituted in equation. Then the
terms with same order of k are collected together and the coefficient z; is estimated by considering the lowest
order terms in k. For Eq. (16), the lowest order coefficient of trial solution is

zt0 = 0,0,0, —1/7y,. (30)

Now, this process is repeated again with substitution of trial solution with the calculated z; from previous
step to estimate next order coefficient i.e. z;. For each value of zy, the order (k) coefficient of trail solution is

—0,+, [Kr+ —2 0
zn =0, T+k2+/152,- (31)

This is repeated until required approximation in order of k, which is O(k?) in this paper, is reached. The second
order coeflicient of the trial solution is

Zpn = —a o), 5 au k2+/152 s

a)lz, Tm

R+

. (32)

The final approximate roots of order O(k?) are then estimated from Eqgs. ((30)-(32)) as shown in “Hydrody-
namic matrix and DAF from generalized hydrodynamic model” section.
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