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Development and validation 
of an artificial neural network 
model for non‑invasive gastric 
cancer screening and diagnosis
Zeyu Fan 1, Yuxin Guo 1, Xinrui Gu 2, Rongrong Huang 1* & Wenjun Miao 1,3*

Non-invasive and cost-effective diagnosis of gastric cancer is essential to improve outcomes. Aim of 
the study was to establish a neural network model based on patient demographic data and serum 
biomarker panels to aid gastric cancer diagnosis. A total of 295 patients hospitalized in Nanjing Drum 
Tower hospital diagnosed with gastric cancer based on tissue biopsy, and 423 healthy volunteers 
were included in the study. Demographical information and tumor biomarkers were obtained from 
Hospital Information System (HIS) as original data. Pearson’s correlation analysis was applied on 574 
individuals’ data (training set, 229 patients and 345 healthy volunteers) to analyze the relationship 
between each variable and the final diagnostic result. And independent sample t test was used to 
detect the differences of the variables. Finally, a neural network model based on 14 relevant variables 
was constructed. The model was tested on the validation set (144 individuals including 66 patients 
and 78 healthy volunteers). The predictive ability of the proposed model was compared with other 
common machine learning models including logistic regression and random forest. Tumor markers 
contributing significantly to gastric cancer screening included CA199, CA125, AFP, and CA242 were 
identified, which might be considered as important inspection items for gastric cancer screening. 
The accuracy of the model on validation set was 86.8% and the F1-score was 85.0%, which were 
better than the performance of other models under the same condition. A non-invasive and low-cost 
artificial neural network model was developed and proved to be a valuable tool to assist gastric cancer 
diagnosis.

Gastric cancer represents the third leading cause of cancer-related deaths and ranks fifth for cancer incidence 
worldwide. With over 1 million people diagnosed annually, China accounts for 43.9% of the cancer cases1,2. One 
of the most crucial factors affecting the prognosis of gastric cancer is the cancer stage3. The 5-year survival rate 
of early gastric cancer patients can reach over 90%, wherein, for advanced stage gastric cancer, the rate drops 
sharply to less than 30%4,5. A majority of patients with advanced-stage gastric cancer develop malignant gastric 
perforation and multiple comorbidities including anemia, infectious disease, bowel obstruction and congestive 
heart failure6, which remains a concern. Despite the fact that early and accurate detection of gastric cancer is 
of vital importance for the screening, diagnosis and subsequent intervention of gastric cancer patients, due to 
the scarce and nonspecific symptomatology, gastric cancer appears to be silent in the early stage generally with 
limited technology to detect.

Currently, excisional biopsy occupies an important position in gastric cancer diagnosis. Subsequent pathologic 
review offering clinical cancer information such as tumor size, depth of tumor invasion and histologic subtypes 
are used to direct cancer staging and treatment7. However, excisional biopsy is an invasive technique requiring 
anesthesia and not practicable for repeated sampling over times in order to detect intra-tumor heterogeneity 
and accomplish routine monitoring. Imaging tests such as endoscopic ultrasound, computed tomography (CT), 
magnetic resonance imaging (MRI) and positron emission tomography-computed tomography (PET/CT) have 
also been applied to preoperative staging and evaluation of gastric cancer8,9. Although technological innovations 
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in this area have made great contributions to improve the quality of diagnosis, problems such as high cost, low 
specificity, dependence on the skill of the operator and unavoidable interobserver variability still exist. Biomarker 
testing is also involved in the diagnosis of gastric cancer10, but diagnostic challenge remains as single biomarker 
detection lacks sensitivity and specificity.

Artificial intelligence (AI) with machine learning has drawn great attention in the field of medicine 
recently11,12. Through data mining technology, valuable information can be extracted from large-size medical 
databases to develop machine learning models for diagnostic and prognostic prediction. The unique charac-
teristics of machine learning including nonlinearity, fault tolerance and can be retrained with update databases 
are suitable for disease diagnosis. Researches on AI-aided images analysis using machine learning or deep 
learning has been the mainstream so far13–15. For example, Wang and co-workers reported a deep learning 
framework to predict gastric cancer outcome using resected lymph node (LN) histopathology images16. By 
digitizing hematoxylin–eosin (H&E)-stained LN pathology slides and selecting discovery cohort to train the 
segmentation network, they proposed a model with excellent accuracy. In particular, they selected a certain 
number of whole-slide images each year over a period of 6 years to improve the framework robustness and 
avoid bias. Ba and co-workers further assessed the performance of deep learning assisted gastric cancer diag-
nosis and proved pathologists with the aid of deep learning accomplished higher detection sensitivity than the 
ones without (90.63% vs 82.75%)17. Adopting AI to enhance endoscopy-based diagnosis is another popular 
area in this field. Yoon and co-workers reported a lesion-based model for the detection of early gastric cancer18. 
Sakai and co-workers adopted a convolutional neural network-based automatic detection model to enhance 
the diagnostic capability of endoscopists19. Besides pathology20,21 and endoscopy, AI has also been employed to 
assist CT imaging-based diagnosis. Jing and co-workers used deep learning to build a radiomics nomogram to 
improve lymph node metastasis risk prediction in gastric cancer, which exhibited AUC 0.82 in the test set22. In a 
word, AI techniques are making remarkable progress in assisting gastric cancer diagnosis, however, the clinical 
data used to construct the above models relies on the excisional biopsy or imaging tests, which are not feasible 
in routine tests. On the other hand, serum tumor markers detection is cheap and convenient. The drawbacks of 
tumor markers including low accuracy of single biomarker and the nonlinear relationship between the biomarker 
and the presence of malignancy can be compensated by taking advantage of machine learning. In this study, 
an artificial neural network using demographical information and a panel of tumor biomarkers was developed 
(Fig. 1). A total of 295 gastric cancer patients and 423 healthy volunteers were recruited and divided into train-
ing set and validation set. Then an AI-assisted diagnostic system was constructed using multilayer perceptron 
(MLP) and back propagation. Finally, the diagnostic performance of the model was assessed and compared with 
other common machine learning models.

Materials and methods
Dataset.  In this study, 718 samples were contained in the dataset. A total of 295 patients hospitalized in 
Nanjing Drum Tower hospital from January 2019 to December 2020 diagnosed with gastric cancer based on 
tissue biopsy were included. Among which 200 were male and the mean patient age was 62.71 (SD = 11.78). 423 
healthy volunteers were selected to serve as controls. The mean age was 45.7 (SD = 11.42) and 195 were male. 
After an initial review of all the clinical parameters, those obtained through invasive or expensive technologies 
were excluded, along with clinical parameters which have not been reported to be associate with gastric can-
cer. Following these principles, demographic information (gender, age) and tumor markers (alpha-fetoprotein, 
carcinoembryonic antigen, etc.) were enrolled in this study and characteristics of the original dataset were sum-
marized in Table 1. This study was approved by the Ethics Committee of Nanjing Drum Tower Hospital, the 
Affiliated Hospital of Nanjing University Medical School and written informed consent was obtained from par-
ticipants. All methods were performed in accordance with the relevant guidelines and regulations.

Figure 1.   The roadmap of the proposed system based on the CRISP methodology.
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Data preprocessing.  The original dataset included discrete data and numerical data, in order to standard-
ize the dataset, feature binarization was adopted for the former kind of data, and for the numerical data which 
could not participate in the calculation directly or exceeded the instrument measurement range, the special 
characters (greater than or less than symbol) were removed and replaced with modified data. The reason that 
these original data was not deleted directly was to avoid information loss and reduction of prediction accuracy. 
All in all, by data modification and binarization, clinical parameters within the normal range from the abnormal 
ones were differentiated without undermining data integrity, and the result dataset was shown in Table 2.

As described above, the original data within the instrument measurement range or below the lower limit of 
the measurement range was set as 0, and the original data exceeded the upper limit of the measurement range 
was set as 1 to obtain the modified data, which were then superimposed to obtain a new variable named as the 
comprehensive index. The dataset was divided into two categories according to whether the individual was 
diagnosed with gastric cancer or not, and the distribution of the comprehensive index in healthy individuals 
(n = 423) and patients (n = 295) was shown in Fig. 2.

Feature extraction.  In order to improve the robustness of the screening model, Pearson bivariate correla-
tion analysis (two-tail) was used to analyze the correlation between each variable and diagnosis results to iden-
tify important characteristic variables. Independent sample t test was used to evaluate the difference between 
each variable. As shown in Table 3 and Fig. 3, all the variables selected in this study were significantly corre-
lated with the diagnosis results (P < 0.05, inspection result was used in the correlation analysis). The correlation 
between each variable and the diagnosis results of gastric cancer, significant differences among variables and 
clinical practicability were the main three factors considered in the selection of modeling variables. According to 
these principles, the following 14 variables were selected for modeling: gender, age, inspection result (CEA, AFP, 
CA242, CA125, CA199, CA724), result state (CEA, AFP, CA242, CA125, CA199, CA724).

Table 1.   Sample of the original dataset.

Gender Age

Inspection result

CA242 AFP CEA CA724 CA125 CA199

Female 57 8.09 1.40 0.67 12.30 6.00 7.00

Male 43 8.57  < 1.30 2.66 3.17 3.50 11.80

Male 51 7.04 3.10 1.86  < 1.50 9.20 7.49

… … … … … … …

Table 2.   Sample of the preprocessed dataset.

Gender Age

Inspection result Result state Inspection result Result state …

CA242 CA242 AFP AFP …

0 57 8.09 0 1.40 0 …

1 43 8.57 0 1.30 0 …

1 51 7.04 0 3.10 0 …

… … … … … … …

Figure 2.   Distribution of the comprehensive index in healthy individuals and gastric cancer patients.
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Multilayer perceptron.  Multilayer perceptron (MLP), also named Artificial Neural Network (ANN), can 
be divided into three layers: the bottom layer (visible layer), the middle layer (hidden layer), and the last layer 
(output layer). The layers are fully connected and any neuron in the upper layer is connected to all neurons in the 
lower layer. Multiple hidden layers can be included in the middle layer. The simplest MLP has only one hidden 
layer, known as a three-layer structure (Fig. 4).

The visible layer is determined by the input data and n neurons were included in the input n-dimensional vec-
tor. Assuming that the visible layer is represented by vector X, then the output of the hidden layer is f(W1X + b1), 
in which W1 is the weight, b1 is the bias, and function f can be commonly used functions (sigmoid function 
or tanh function). The hidden layer sends data to the output layer can be regarded as a multi-category logistic 
regression, named softmax regression. The output of the output layer is softmax(W2X1 + b2), in which X2 (equal 
to f(W1X + b1)) represents the output of the hidden layer. The MLP formula of the above three layers is sum-
marized as follows (Eq. 1):

The function G is the softmax function mentioned above. Therefore, all the parameters of the MLP represent 
the connection weights and the bias between the layers, including W1, b1, W2 and b2.

Model evaluation.  The prediction performance of the model was evaluated in terms of confusion matrix, 
receiver operating characteristic curve (ROC), area under curve (AUC), classification accuracy (ACC), preci-
sion, recall and F1-score, etc. using the validation set. Wherein AUC represents the area under the receiver 
operating characteristic curve, accuracy is defined to be the percentage of correct predictions in the total number 
of predictions, precision is defined to be the proportion of the predicted positive samples that are actually posi-
tive, recall is the percentage of positive samples predicted to be positive and F1-score is the weighted harmonic 
average of precision and recall.

(1)f (x) = G
(

b(2) +W (2)
(

s
(

b(1) +W (1)x
)))

Table 3.   Variables significantly correlated with diagnostic results.

Variables Pearson’s correlation coefficient P values

Gender 0.215  < 0.001

Age 0.584 0.016

CA242 0.184  < 0.001

AFP 0.092  < 0.001

CEA 0.212  < 0.001

CA125 0.189  < 0.001

CA199 0.203  < 0.001

CA724 0.171  < 0.001

Figure 3.   The heatmap showed the Pearson’s correlation coefficient of indicators (the heatmap was created 
using an online platform for statistical services, SPSSPRO, http://​www.​spssp​ro.​com).

http://www.spsspro.com
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The prediction performance indexes such as accuracy were calculated based on Table4. The horizontal and 
vertical coordinates of the receiver operating characteristic curve are represented using False Positive Rate (FPR) 
and True Positive Rate (TPR) respectively (Eqs. 2 and 3).

Other evaluation indexes are calculated as follows (Eqs. 4, 5 and 6).

Model comparison.  The performance of the neural network model was compared with other common 
machine learning models including logistic regression, k-Nearest Neighbor, decision tree, random forest and 
XGBoost. The model creation and evaluation were performed using JetBrains PyCharm 2018.3 software, and the 
correlation analysis and t-test were performed using IBM SPSS Statistics 26 software.

Results
Performance assessment of neural network model.  In this work, the final result was set as the target 
variable, and the preprocessed variable was set as the decision variable. Due to the large amount of data involved 
in this study, “adam” was selected to serve as the solver for weight optimization, and “ReLU” was selected to serve 
as the activation function of hidden layer. Before training, the number of the hidden layers for the ANN was set 
to 3 and the number of neurons for each hidden layer is (64, 32, 32). Besides, maximum number of iterations 
(1000), L2 penalty parameter (1e−3) and default values for all the other parameters were used to construct the 
neural network model. The neural network model was trained using the training set (574 specimens) and the 

(2)FPR =
FP

FP+TN #

(3)TPR = Recall = TP
TP+FN #

(4)Accuracy =
TP+TN

TP+TN+FP+FN

(5)Precision =
TP

TP+FP

(6)F1 = 2 ∗
Precision∗Recall
Precision+Recall

Figure 4.   Three layers network structure.

Table 4.   Illustration of confusion matrices.

Reality

Prediction

Positive Negative

Positive TP (True Positive) FN (False Negative)

Negative FP (False Positive) TN (True Negative)
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performance of the model was valuated using the validation set (144 specimens). As shown in Fig. 5, the area 
under the curve was 0.916 [P < 0.001, 95% confidence interval (CI): 0.870–0.962]. And the TPR and FPR cor-
responding to thresholds ranging from 0.25 to 0.51 were presented in Table 5.

Figure 6 showed the confusion matrix of the model when the cutoff probability value was 0.5, and the color 
scale described the grid color corresponding to the occurrence times of each condition. The confusion matrix 
showed that out of 144 test results, 54 positive samples were predicted to be positive, 12 positive samples were 
predicted to be negative, 71 negative samples were predicted to be negative, and 7 negative samples were predicted 
to be positive. The accuracy of the model on the validation set was 86.8%, the precision rate was 88.5%, the recall 
rate was 81.8% and the F1-score was 85.0%.

Variable importance.  The PI (Permutation importance) method was applied to the trained neural network 
model to obtain the importance coefficients of each variable. By adding the importance coefficients of inspection 
result and result status, the variable corresponding to each tumor marker was obtained (Table 6).

Model comparison.  Using the same training set and validation set as the neural network model, five 
other common classification models (Logistic Regression, K-Nearest Neighbor, Decision Tree, Random Forest, 
eXtreme gradient boosting) were constructed. The performance of each model was evaluated by five indexes: 
area under the curve, accuracy, precision, recall and F1 score (Fig. 7, Table S1).

Results showed that MLP model outperformed the other models in all five evaluation indexes (AUC, accu-
racy, precision, recall and F1 score), and the paired sample t-test showed that there were significant differences 
between the indexes of the MLP and the average level of the five models (P < 0.05), indicating that the proposed 
neural network model exhibited higher predictive ability in gastric cancer screening than the other commonly 
used models.

Figure 5.   ROC curve of the neural network model (MLP).

Table 5.   The TPR and FPR corresponding to thresholds ranging from 0.25 to 0.51.

Thresholds TPR FPR

0.510 0.818 0.090

0.477 0.818 0.103

0.469 0.833 0.103

0.462 0.833 0.115

0.418 0.864 0.115

0.406 0.864 0.128

0.398 0.879 0.128

0.275 0.879 0.282

0.255 0.894 0.282
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Figure 6.   Confusion matrix of the classification model when the threshold was 0.5. Negative samples were 
represented by 0 and positive samples were represented by 1.

Table 6.   Importance of variables in the proposed gastric cancer screening model.

Order of importance Variables Importance

1 Age 0.325

2 CA199 0.180

3 CA125 0.148

4 AFP 0.112

5 CA242 0.096

6 CEA 0.059

7 CA724 0.047

8 Gender 0.034

0.6

0.7

0.8

0.9

1

AUC

ACC

PPVTPR

F1-score

MLP LR RF DT KNN XGBoost

Figure 7.   Comparison of each model when cut-off was 0.5. MLP (neural network model), LR (Logistic 
Regression), RF (Random Forest), DT (Decision Tree), KNN (k-Nearest Neighbor), XGBoost (eXtreme gradient 
boosting), AUC (area under the receiver operating characteristic curve), ACC (accuracy), PPV (precision, 
positive predictive value), TPR (recall, true positive rate).
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Discussion
This study retrospectively analyzed the data of 295 gastric cancer patients and 423 healthy volunteers to develop 
an intelligent model for assisting gastric cancer diagnosis with non-invasive and low-cost items. Firstly, the data-
set was preprocessed and the modified data was obtained at the same time. Then, the correlation of variables was 
checked using Pearson’s correlation coefficient to exclude irrelevant variables. The dataset with full and selected 
variables was fed into the ML models separately. Finally, the models’ performance was evaluated and compared 
based on the confusion matrix criteria including the five evaluation indexes. The results of comparing the six 
selected ML algorithms after feature selection showed that the MLP achieved the highest performance in the diag-
nosis of gastric cancer patients with an accuracy of 86.8%, precision of 88.5%, recall of 81.8%, F1-score of 85.5%, 
AUC of 91.6%. Algorithms close to this level were LR and XGBoost, with AUC of 90.8% and 90.3%, respectively. 
However, other evaluation indexes of these two algorithms were significantly worse than those of MLP.

Evaluation of the modified data.  In the data preprocessing stage, modified data were introduced to 
complement the original numerical data which were not able to participate in the operation directly with elimi-
nation of the error caused by removal of the special characters (greater than or less than symbol). Using paired 
sample t test, significant differences between the two groups of data in the comprehensive index (P < 0.05) were 
identified, indicating that the comprehensive index was strongly related to gastric cancer. Meanwhile, the accu-
racy of the trained model was down to 0.806 without the modified data. The F1-score was 0.768, which was 9.6% 
lower than after the usage of modified data. And the area under curve also decreased slightly. All these results 
proved the importance of the modified data we introduced.

Selection of model threshold in clinical application.  In this study, default cut-off value (0.5) was 
frequently used as this point is the closest to the expected value of the upper-left corner (0, 1) in the ROC curve, 
and both sensitivity and specificity reach a high level. Nevertheless, in clinical practice, misdiagnosis of positive 
patients is more serious than misdiagnosis of negative healthy people. Therefore, the cut-off should be reduced 
appropriately to transfer the model into clinical application, which means certain specificity should be sacrificed 
within the acceptable range to improve the sensitivity as much as possible. The thresholds ranging from 0.25 to 
0.51 in the ROC curve and their corresponding TPR and FPR were shown in Table 5 According to the principle 
described above, the priority of TPR should be slightly higher than FPR, and the threshold values between 0.398 
to 0.406 could be selected as the cut-off values as outside this interval might result in negative impact on the 
comprehensive performance of the model due to the sudden decline of TPR or sudden rise of FPR.

Variable importance analysis.  From the perspective of the demographic information, age occupied the 
first place in the importance of variables with a coefficient of 0.325 and played a very important role in the 
model, meanwhile, gender ranked the bottom with an importance coefficient of 0.034 and barely participate in 
decision-making. According to the general distribution of age and gender of gastric cancer in China, the major-
ity of gastric cancer patients belong to middle-aged and elderly. The incidence of gastric cancer is relatively low 
in those under 35 years old. And the incidence of male is higher than female, with a ratio of 2:1, approximately23. 
These statistics were consistent with the sample we selected. At the same time, the age indicator in the model was 
roughly in line with the actual situation. However, age is not the determining factor of gastric cancer, nor could 
age be the most important factor in gastric cancer decision-making. Although age was strongly related to gastric 
cancer according to the analysis of the data, whether it should be used in the prediction model and how does 
age impact on gastric cancer decision-making still needs further discussion. In addition, there was no obvious 
difference in the incidence of gastric cancer between male and female, which may be related to the interaction 
between gender and age in the incidence of gastric cancer, or gender might be an indecisive factor in the diagno-
sis of gastric cancer compared with other tumor markers, resulting in the low importance coefficient of gender.

From the perspective of tumor markers, the importance coefficient of CA199, CA125 and AFP were high, 
and the coefficient difference between these variables was relatively small, indicating that these variables played 
important roles in gastric cancer screening. However, single biomarker detection lacks sensitivity and specific-
ity, it is more valuable in clinical practice to performed combined detection. In addition, CA199 ranked second 
among all variables and first among tumor markers with an importance coefficient of 0.180, indicating that 
CA199 might have a non-negligible importance in the diagnosis of gastric cancer, which is consistent with the 
research results of Yang Rong et al.24. In this study, the participation of CA724 in the model was very low, so we 
speculated that the value of CA724 in gastric cancer screening was dispensable, which was consistent with the 
results of Wang et al.25. Besides, in the previous study on the correlation of indicators, we found that the Pearson’s 
correlation coefficient between CA242 and CA199 reached 0.765, which was a strong correlation. Even though 
there is no relevant literature reported at present and the functionality of the correlation between CA242 and 
CA199 is unclear, the phenomenon represents a putative biomarker candidate for gastric cancer diagnosis and 
could be a potential topic for further clinical research.

Limitations and implications.  The proposed model is likely to predict the patients with gastric cancer 
accurately based on patient demographic data and serum biomarker panels, which makes it applicable to clinical 
practice. However, potential limitations still exist. First, we assumed that the results of diagnosis were correct for 
all samples involved in this study and the measurement of the indicators was rigorous. Then, we introduced new 
modified data to describe the values that fell outside the defined range, which undoubtedly expanded the dimen-
sion of data and increased the amount of calculation. This was applicable under the conditions of our study, but 
not in the case of high-throughput datasets. Second, we dealt with a single-center dataset with a limited sample 
size that might affect the quality of modeling, comprehensiveness, and generalizability of data. Third, the dataset 
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did not collect data on Helicobacter pylori, pepsinogen, smoking or other non-invasive factors that may lead 
to gastric cancer. The inclusion of these factors may increase the predictive power of the models. Furthermore, 
there was still a certain gap between the predictive power of this non-invasive approach and the current main-
stream recognition model based on machine learning for gastric cancer slides. Therefore, it is recommended that 
more studies be conducted after more accurate validations to improve the quality of modeling and minimize 
prognosis bias.

Conclusion
Serum tumor markers can be detected through convenient, non-invasive and low-cost clinical routine test. 
However, challenge remains as single biomarker detection lacks accuracy, and statistical model is lacking for the 
data analysis of combined detection. Here we established a neural network model based on patient demographic 
data and serum biomarker panels to aid gastric cancer screening and diagnosis. The AUC of the model reached 
a relatively high level (0.916) compared with other commonly used models. In addition, clinical parameters 
contributing significantly to gastric cancer screening included age (which needs further discussion), CA199, 
CA125, AFP, and CA242 were identified and might be considered as important inspection items for gastric can-
cer screening. Limited by the low dimension of sample data, other biomarkers related to gastric cancer such as 
gastrin, MG7-Ag (gastric carcinoma-associated MG7-Ag) were not included in this study. Despite the big gap in 
specificity between the proposed model and mainstream machine-assisted pathological image recognition, it is 
still a valuable tool to assist physicians in large-scale initial screening. In summary, using clinical data and multi-
layer perceptron, a gastric cancer screening model with good predictive performance was constructed to assist 
physicians in gastric cancer diagnosis. Furthermore, with the ability to improve the diagnostic value of labora-
tory tests results, the proposed model can be trained to be applied in various diseases other than gastric cancer.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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