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Uncertainty quantification 
of multi‑scale resilience 
in networked systems 
with nonlinear dynamics using 
arbitrary polynomial chaos
Mengbang Zou 1, Luca Zanotti Fragonara 1, Song Qiu 3* & Weisi Guo 1,2

Complex systems derive sophisticated behavioral dynamics by connecting individual component 
dynamics via a complex network. The resilience of complex systems is a critical ability to regain 
desirable behavior after perturbations. In the past years, our understanding of large-scale networked 
resilience is largely confined to proprietary agent-based simulations or topological analysis of graphs. 
However, we know the dynamics and topology both matter and the impact of model uncertainty 
of the system remains unsolved, especially on individual nodes. In order to quantify the effect of 
uncertainty on resilience across the network resolutions (from macro-scale network statistics to 
individual node dynamics), we employ an arbitrary polynomial chaos (aPC) expansion method to 
identify the probability of a node in losing its resilience and how the different model parameters 
contribute to this risk on a single node. We test this using both a generic networked bi-stable 
system and also established ecological and work force commuter network dynamics to demonstrate 
applicability. This framework will aid practitioners to both understand macro-scale behavior and make 
micro-scale interventions.

In a connected world, local component dynamics contribute collectively to system-of-system behaviour. This 
can be observed in engineered critical infrastructure (CI) systems1, ecosystems2, biological systems3 etc. Com-
ponents of the complex system affect each other through interactions among them and all together result in 
a more sophisticated multi-scale network wide dynamics. One important part of the system’s behaviors is the 
resilience which is defined as the ability of a system to maintain its original functionality when perturbations 
happen2. This ability is of great importance in reducing risks and mitigating damage4,5. Research on resilience of 
networks has attracted a lot of attention in recent years in a wide range of fields from nature to man-made net-
works, including blackouts in power systems6, failure of water supply system7 to loss of biodiversity in ecology8. 
Whilst the past research on resilience gives us insight into how a few interacting components (small networks) 
work5, the loss of resilience in large-scale networked systems (e.g. 105 nodes) is difficult to predict and analyze 
analytically. Current industrial standards use high fidelity agent-based simulations, but these lack a generalizable 
understanding on how and why network topology and dynamics combine to contribute to resilience and how 
uncertainty affect the resilience.

Review on multi‑scale resilience of complex systems.  Many performance-based methods have been 
proposed to quantify the macro resilience of systems in different domains with different metrics9,10. But the loss 
of resilience of complex system with large number of components in complex natural and man-made system 
is still difficult to predict. The limitation is that the most analytical framework of resilience is designed to treat 
low-dimensional models with a few interacting components2. In a high-dimensional system with large number 
of interacting components, the network topology of the system plays an important role in dynamic behaviors. 
Traditional methods pay little attention to the importance of the network topology of the system. Therefore, 
these methods are difficult to analyze the resilience of the networked system when perturbations happen to 
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the network topology. To solve this problem, a network-based theoretical framework was developed to analyze 
the resilience of the multi-dimensional system consisting of a lot of interacting components. They reduced the 
multi-dimensional dynamics equations of the system to an effective one-dimensional equation to analyze the 
macro-scale (network-level) resilience according to the network topology of the system2. Whilst this has given 
us insight into the coupling relationship between topology and dynamics, the effect of individual nodes on sys-
tem’s resilience is still not clear. To break this limit, a new centrality index, resilience centrality, is derived in11 
to quantify the ability of nodes to affect the resilience of the system. However, these methods are still unable to 
make the prediction of micro-scale (node-level) dynamics. Node level is important to make critical interven-
tions to specific components while preserving our multi-scale (macro and micro scale) understanding of general 
system behaviors. To precisely identify the node-level resilience function, a sequential heterogeneous estimation 
approach is proposed recently12. In12, it is assumed that the model of the system is certain and all of the infor-
mation is known. Yet, in a real system, uncertainty may exist. How does the uncertainty affect the resilience of 
system from macro-scale and micro-scale is not clear.

Review on uncertainty in multi‑scale resilience of complex systems.  Model uncertainty may stem 
directly from the incomplete information of the system or measurement noise of the initial data as well as from 
parameters of models whose values are not known exactly13,14. In order to know the effect of uncertain param-
eters on the network-level resilience, previous work introduced a polynomial chaos method15 to understand net-
work-level resilience loss with uncertainty. Uncertainty not only affects the macro-level resilience but also can 
affect individual nodes’, especially uncertainty may cause different effects on different nodes in a network. This 
can paint a different picture to that of the overall macro-scale network behavior found in previous work15. That is 
to say, a macro-scale resilient network may hide non-resilient behavior at the micro-scale, which if not addressed 
in time can cause long term issues. Methods to analyze the resilience of system are summarized in Table 1. Com-
paring with previous methods, we analyze both the macro and micro scale resilience of high dimensional system 
consisting of interacting components as well as the effects of uncertainty on multi-scale resilience.

Since uncertainty is widespread in practical problems in the real world and has an effect on systems’ per-
formance, how to quantify these uncertain factors is the main purpose of research on Uncertainty Quantifica-
tion (UQ). UQ methods mainly include: Monte Carlo methods16, perturbation methods17, moment equation 
methods18, polynomial approximation methods19. Due to the high accuracy and computational efficiency com-
paring with traditional UQ methods like Monte Carlo methods, polynomial chaos expansion (PCE) methods 
have been widely used in dynamic systems20. For example, a PCE method was used to estimate the dynamic 
response bounds of nonlinear system with interval uncertainty21 and to analyze the effect of uncertainty in 
parameters on the received signal concentration in molecular signals22. The PCE was initially proposed to ana-
lyze stochastic processes based on Hermite polynomials, which were only suitable for random variables (r.v.) 
following Gaussian distribution19. However, uncertainty does not always obey the Gaussian distribution. While 
a normal score transformation could be used to solve this problem23, it will lead to slow convergence24. To solve 
this problem, the generalized polynomial chaos (gPC) has been developed24,25. The gPC extends PCE toward a 
broader range of applications which could be used to encompass the more general Gamma distribution, Beta 
distribution, and many other flexible distribution functions. This is further advanced to consider stochastic 
processes represented by r.v. of any probability distributions26.

The methods mentioned above need to know the detailed information of the involved probability density 
functions (PDF). However, information about distribution is usually difficult to know or incomplete in practical 

Table 1.   Methods to analyze resilience of system.

Method Dimension of system
Interacting of 
components

Network-level 
resilience Node-level resilience

Uncertainty of 
system Limitations References

Performance- based 
methods with metrics

Low; captured by 
a one-dimensional 
nonlinear dynamic 
equation or time- 
series data analysis 
without modelling

No Yes No No

Not suitable to high 
dimensional system 
with interacting com-
ponents; not consider 
network topology

9,1028–30

Network-based 
method

High; consider ODE 
dynamics of each 
component of system

Yes; interaction is 
characterized by ODE Yes No No

Cannot estimate resil-
ience of individual 
nodes; not consider 
effects of uncertainty

2,1131

Sequential estimation 
method

High; consider ODE 
dynamics of each 
component of system

Yes; interaction is 
characterized by ODE No Yes No

Not consider effects of 
uncertainty on node- 
level and network-
level resilience

12

Specific network- 
based method with 
PCE

High; consider ODE 
dynamics of each 
component of system

Yes; interaction is 
characterized by ODE Yes No Yes

Not consider effects 
of uncertainty on 
node-level resilience; 
need to know the dis-
tribution of uncertain 
parameters

15

Specific sequential 
estimation method 
with aPC

High; consider ODE 
dynamics of each 
component of system

Yes; interaction is 
characterized by ODE Yes Yes Yes

Not suitable for net-
worked system with 
PDE dynamics

This paper
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applications. In different models or circumstances, statistical information of parameters may exist in many differ-
ent forms. They could be discrete, continuous, or discretized continuous, even exist analytically in the probability 
density distribution or numerically as a histogram. There are two main reasons that limit the widespread use of 
the above methods. The first reason is that there exist strict restrictions in most cases when they are used. The 
second is that the information of problems to be solved is not always complete and perfect27. When quantifying 
the uncertainty on the network-level resilience, mean field estimation and Central Limit Theorem (CLT) can 
be employed to make the system’s equilibrium depend on a r.v. following Gaussian distribution15. So, the PCE 
methods can be directly used. However, when estimating the node-level resilience, CLT is not suitable to be 
used. In this situation, if parameters of the system do not obey distributions as mentioned above, the gPC is no 
longer effective. To quantify the uncertainty following arbitrary probability distributions, arbitrary polynomial 
chaos (aPC) method has been proposed27. Therefore, this method can be employed to quantify uncertainty of 
individual node’s resilience.

Novelty and contribution.  We have listed different methods to analyze resilience of system in Table 1 
and compared them with this paper from different aspects. Our previous work has explored how to estimate the 
resilience of networked system with interacting components. In12, a sequential estimation method is proposed 
to estimate the node-level resilience. It is assumed that all parameters of the system model are known and deter-
mined. However, uncertainty, which may stem from incomplete information of the system or measurement 
noise of the initial data as well as parameters of model not known exactly, is widespread in practical problems 
in real world and affects performance of the system. To quantify the effects of uncertainty on the network-level 
resilience of the system, a specific network-based method with PCE is employed in15. However, it was not clear 
before our new paper:

(1) how uncertainty of the system model affects the performance of each node. Similar network-level dynamic 
behavior may hide different individual node behavior. Therefore, research on network-level and node-level 
behavior are both important for us to comprehensively understand the networked system;

(2) how global network topology and local network topology affect the resilience of individual node with the 
existing of system uncertainty.

The novelty of this paper comparing with previous work is that a specific sequential estimation method 
with multi-dimensional aPC is employed to quantify uncertain factors, which addresses the lack of uncertainty 
quantification in the multi-scale resilience (network-level and node-level) of complex networks with nonlinear 
dynamics. The use of aPC enable parameter uncertainty that follows arbitrary distributions, which makes our 
method a wide range of application scenarios.

Another contribution is that we build the relationship between network topology and node-level resilience 
with uncertainty. We find that when the average degree across network (global topology) is greater than a high 
critical value (threshold value of critical weight), all of the nodes are resilient, and the uncertainty of the system 
will not affect the resilience. The critical value is useful in practical applications to help predict the resilience of 
the system. For example, in a work force commuter network, the weight of a city is decided by the number of 
services for commuting to this city. If the average number of services by rail transport links of the system is greater 
than the threshold value of critical weight, then the working population of all cities is resilient. Otherwise, the 
probability to be resilient of each node is decided by both global and local topology (average degree across net-
work and in-degree of each node). The establishment of this relationship help us better understand the effects of 
network topology on macro and micro behavior of the networked system and also enable us to predict the impact 
of perturbations on macro and micro resilience of the system according to the global and local network topology.

Problem formulation
Nonlinear dynamics and resilience of single node.  The behavior of a one-dimensional nonlinear 
dynamic system in ecology32, engineering33 etc. could be characterized by the equation:

where x is the state of the system evolving with time (shown in Fig. 1a). One of the stable fixed points x0 of Eq. 
(1) could be found by

and

where f is smooth, Eq. (2) provides the system’s steady state and Eq. (3) guarantees its linear stability. We assume 
that a stable equilibrium xe > 0 always exists which is away from the origin. Besides, the bifurcation may occur 
near to the origin. We define two different kinds of stable equilibrium: healthy equilibrium and unhealthy equi-
librium. The healthy equilibrium is far from the origin and it is a desired state of the system. The unhealthy equi-
librium is near to the origin and it is an undesired one. If there only exists the healthy equilibrium the system is 
resilient. While, if in the system healthy and unhealthy equilibria exist at the same time, the system will transit 
from the desired stable fixed point to the undesired one, which indicates the loss of resilience in the system 
shown in Fig. 2. Here we illustrate this concept by exploring the abundance of species in an ecological network2. 
If a healthy equilibrium and an unhealthy equilibrium exist, the system will transit to an unhealthy state, which 
means that the species is in an undesirable low-abundance state. In this situation, the system lose its resilience. 

(1)ẋ = f (x),

(2)f (x0) = 0

(3)
df

dx

∣

∣

∣

∣

x=x0

< 0,
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However, if there only exist a healthy equilibrium away from origin, the system will maintain a high-abundance 
state. That is to say the system keeps resilient.

Dynamics and resilience of system with connected nodes.  Networked system often consists of a 
large number of components interacting with each other through the network shown in Fig. 1b. The dynamics 
of a node in the networked system of N nodes is defined by

Node i’s behavior is characterized by the self-dynamics f (·) and the coupling dynamics g(·) . Mji is the ele-
ment of connecting matrix M . a and b both are vectors of parameters. The number of parameters in a and b is 
N1 and N2 , respectively. Here, we define vectors x = (x1, x2 . . . , xN ), a = (a1, a2, . . . , aN1) , b = (b1, b2 . . . , bN2).

Generally, the relationship between topology (e.g. properties of Mji ) and resilience of the network is still not 
very clear. One way to solve this problem is to compress the multi-dimensional dynamics to one-dimensional 
dynamics and map the overall effective dynamics of a networked system to its topology. Indeed, a common 
network-level effective dynamics may hide different node-level dynamics of different nodes (shown in Fig. 3). 
Also, the effects of uncertainty on macro scale and micro scale is unclear.

(4)ẋi = f (xi , a)+
N
∑

j=1

Mjig(xi , xj , b).

Figure 1.   It shows the dynamics of one-dimensional system and multi-dimensional system. In a one-
dimensional system, node behavior is controlled only by the self-dynamics f (·) . (b) In a multi-dimensional 
dynamic system, node behavior is characterized by the self-dynamics f (·) and the coupling dynamics g(·).

Figure 2.   Red line describes a system with more than one stable equilibrium (healthy one and unhealthy 
one both exist). The system in this situation will remain in a low-level state. The blue line describes a system 
with only one stable equilibrium, and the system will recover to a high-level state at last. When there exists an 
unhealthy equilibrium, the system loses resilience. This picture shows the ability of the system to recover to the 
original state from an undesirable state. The resilience margin shows the ability of the system to withstand the 
perturbation. If the local minimum value is much larger than 0, the system can withstand more perturbations 
and keeps resilient. However, if the local minimum value is close to 0, small perturbation may cause the lose of 
resilience.
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Figure 3.   Similar network dynamics hide different node dynamics. It shows different dynamic response at node 
level. While the mean dynamics shows that the network is resilient, node 1 and node 2 have different dynamics.
Node 1 only has one healthy equilibrium, but node 2 has a healthy equilibrium and an unhealthy equilibrium. 
Node 1 recovers to the healthy state, while node2 remains in an unhealthy state at last.

Figure 4.   Method to quantify the uncertainty of multi-scale resilience of networked system.
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Methods
To address this question, a specific sequential estimation method with aPC is used to estimate the effect of uncer-
tainty on resilience at both network-level and node-level (The method is shown in Fig. 4). We do so by defining 
arbitrary uncertainty distributions on system’s parameters. A mean field estimation is used to approximate the 
network-level resilience and PCE is used to quantify the effect of uncertainty on network-level resilience as we 
have done in our previous work15. By this step, we can quantify the effect of uncertainty on network level.

To quantify the effect of uncertainty on node-level resilience, we first need to employ a specific sequential 
estimation method to estimate the node-level dynamics, and then use aPC to quantify uncertainty on each node. 
In Eq. (4), we know that the dynamics of a node in a networked system is determined by the self-dynamics 
function and the coupling dynamics function of neighboring nodes. The basic idea of the sequential estimation 
method is to estimate the effects on each node’s dynamics from network-level state to neighboring nodes’ state. 
In the sequential estimation method, a mean-field estimation is firstly used to approximate the network-level 
state. Then, the previous approximation can be used to estimate the effect of neighboring nodes’ state on a single 
node dynamics to get more accurate estimation of node-level dynamics. Finally, aPC is used to quantify the 
uncertainty on node-level resilience.

Network‑level resilience with uncertainty.  Uncertainty may exist in self-dynamics, coupling dynam-
ics, or topology of networked systems. It is assumed that uncertain parameters in dynamic functions could be 
represented by random variables. Parameters may obey distribution like Gaussian distribution, Beta distribu-
tion, etc., or we only know the PDF of parameters. Firstly, we could estimate the equilibrium of the mean-field 
dynamics of the networked system, which can be calculated by

�(x) depends on a and b which are both vectors of r.v.. Therefore, �(x) is a function depending on the random 
variable x. For fixed x, f (x, a) is a function depending on iid r.v. in a . We set

Assume that the total number of uncertain parameters in vector a and b is l. Futher, we assume that the 
uncertain parameters in vector a are represented by r.v. ξ1, ξ2, . . . ξl1 and uncertain parameters in vector b are 
represented by r.v. ξl1+1 , ξl1+2 , . . . ξl . µf (x) and δf (x) can be calculated by

where w(ξi) represents the PDF of ξi.
According to Central Limit Theorem, for big enough N ( N ≥ 30 ), 1N

∑N
i=1 f (x, a) can be approximated by a 

normally distributed random variable with mean µf (x) and standard deviation 1N δf (x) , i.e.

g(x, x, b) is a function depending on random variable x. Similarly, we can get µg(x) and δg(x) . Then we can get

where m =
∑N

i,j=1 Mji . From the above mentioned, we know that �(x) is the sum of 2 normally distributed r.v.. 
Then we have

�α(x) could be realised by drawing ζα from N(0, 1) and we can get

It is assumed that every realization of �(x) has the shape described in Fig. 3. To identify system’s resilience, the 
local minimum value τ can be used as an indicator. As is shown in Fig. 2, for a given realization of ζα , if τα > 0 , 
there only exsits one healthy equilibrium and the system is resilient. If τα < 0 , both the healthy equilibrium and 
unhealthy equilibrium exist. Therefore, the system loses resilience. The probability of the system to be resilient 

(5)�(x) :=
1

N

N
∑

i=1

(f (x, a))+
1

N

N
∑

i,j=1

Mjig(x, x, b).

(6)
µf (x) := E[f (x, a)],

δf (x) :=
√

Var[f (x, a)].

(7)µf (x) =
∫

. . .

∫

f (x, a)dw(ξ1) . . . dw(ξl1 ),

(8)δ2f (x) =
∫

. . .

∫

(f (x, a)2 − µ2
f (x))dw(ξ1) . . . dw(ξl1),

(9)
1

N

N
∑

i=1

f (x, a) ∼ N

(

µf (x),
1

N
δ2f (x)

)

.

(10)
1

N

N
∑

i,j=1

Mjig(x, x, b) ∼ N

(m

N
µg(x),

m

N2
δ2g(x)

)

,

(11)�(x) ∼ N

(

µf (x) +
m

N
µg(x),

1

N
δ2f (x) +

m

N2
δ2g(x)

)

.

(12)�α(x) = µf (x) +
m

N
µg(x) +

√

1

N
δ2f (x) +

m

N2
δ2g(x)ζα .
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is P(τ > 0) . Since τ is a function of ζ , τ(ζ ) can be estimated by PCE truncated to degree r and it is denoted by 
τ̃r(ζ ) (the detail of PCE is shown in supplement material S1). Here, we define the function

Since ζα is a normal distributed r.v. in Eq. (12), then the probability of network-level resilience is

Node‑level resilience with uncertainty.  From the above analysis, we can quantify the effects of uncer-
tainty on network-level resilience. However, such effects on node-level resilience are still unclear. Here, a specific 
sequential estimation method is employed to estimate the node-level dynamics, and then the aPC is applied to 
quantify the uncertainty on each node.

Step 1.  A mean field estimation is used to drive sequential substitution and estimation of node-level resilience. 
The initial estimation of equilibrium x0e  is calculated by �(x) := 1

N

∑N
i=1(f (x, a))+ 1

N

∑N
i,j=1 Mjig(x, x, b) = 0. 

For a given connecting matrix M , x0e  is a function of uncertain parameters ξ1, ξ2, . . . , ξl in a and b and we set 
x0e = h(ξ1, ξ2, . . . , ξl) . Notice that the method in the above section (Network-level resilience with Uncertainty) 
is not suitable to estimate the x0e  here. This is because according to Eq. (12), the estimation of equilibrium x0e  
depends on the variable ζ . ζ depends on uncertain parameters ξ1, ξ2, . . . ξl . When we estimate the node-level 
dynamics by x0e  , the estimation function will contain ξ1, ξ2, . . . ξl and ζ , which are not independent with each 
other. This will make the uncertainty quantification of node-level resilience more complicated. Taking this into 
account, we use the function h(ξ1, ξ2, . . . , ξl) to represent x0e  , which will not bring new variables when we esti-
mate the node-level equilibrium.

Step 2.  The previous approximation could be used to estimate the dynamics of the network-level state. In 
a networked system, the state of each node is affected by the state of its immediate neighbors. Therefore, in 
this step, we will further estimate the effects of neighboring nodes on a single node’s dynamics to estimate 
the equilibrium of a single node. The effect of an in-edge on the dynamics of node i is g(·) and the probabil-
ity of a node j is on the other side of the in-edge is proportional to its out-degree. So, the average effect is 
∑N

j=1 w
out
j g(xi , xj , b)/

∑N
j=1 w

out
j  . To approximate mean effect of the neighbors, components in g(·) are weighted 

by wout . Therefore, the previous step’s estimation could be used to make further estimation. We can approximate 
the effects of neighboring nodes on single node’s dynamics by

As we have mentioned before that if there only exists one equilibrium in Eq. (15), node i is resilient. Other-
wise, the node loses its resilience. To identify the resilience of node i, the local minimum value τ i of ẋi can be used 
as an indicator. We have assumed that the uncertain parameters in a and b were represented by r.v. ξ1, ξ2, . . . , ξl . 
For a given realization of ξα1 , ξ

α
2 , . . . , ξ

α
l  , if τ iα > 0 , node i is resilient. The probability of a node to be resilient is 

P(τ i > 0) . For node i, win
i  is determinated and τ i is a function of ξ1, ξ2, . . . , ξl . τ i(ξ1, ξ2, . . . , ξl) can be estimated 

by aPC, which is denoted by τ̃ i(ξ1, ξ2, . . . , ξl) . Then, the probability of node i being resilient can be calculated by

The indicator τ i(ξ1, ξ2, . . . , ξl) of node i can be approximated by a multivariate polynomial expansion

The number of Z in Eq. (17) is decided by the number of input parameters l and the expansion order r accord-
ing to the formula27

Here, we need to construct the orthogonal polynomial basis �i for ξ1, ξ2, . . . , ξl . Assuming that the input 
parameters are independent, the multi-dimensional basis can be constructed as a simple product of the cor-
responding univariate polynomials

In Eq. (19), αi
j is a multivariate indicator with information on how to list all possible products of individual 

univariate basis functions. We define the polynomial P(k)j (ξj) of degree k in the random variable ξj as

(13)pos(x) =
{

1 if x > 0
0 otherwise

.

(14)
1√
2π

∫

pos(τ̃r(ζ ))e
−ζ 2/2dζ .

(15)ẋi = f (xi , a)+ win
i

∑N
j=1 w

out
j g(xi , x

0
e , b)

∑N
j=1 w

out
j

.

(16)
∫

. . .

∫

l
pos(τ̃ i(ξ1, . . . , ξl))dw(ξ1) . . . dw(ξl).

(17)τ i(ξ1, ξ2, . . . , ξl) =
Z
∑

i=1

ci�i(ξ1, ξ2, . . . , ξl).

(18)Z = (l + r)!/(l!r!).

(19)�i(ξ1, ξ2, . . . , ξl) =
∏l

j=1 P
(αij )

j (ξ1, ξ2, . . . , ξl),
∑l

j=1 α
i
j ≤ Z, i = 1, . . . , l.
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where P(k)i,j  are coefficients in P(k)j (ξj) . The key of the aPC method is to construct the polynomials in Eq. (20) to 
form an orthonormal basis for arbitrary distributions which could be discrete, continuous raw data sets or by 
their moments. We define the orthonormality for polynomials P(k)j  and P(q)j  as

Here we assume the leading coefficients of all polynomials: P(k)k,j = 1 ∀k . The kth raw (crude) moment of 
the random variable is defined as

The relationship between raw moments of ξj and their coefficients P(k)i,j  can be written in matrix form (the 
detail process could be seen in27,34)

Other types of uncertainty.  Uncertainty mainly includes parameter uncertainty, model uncertainty, 
observation uncertainty, measure noise35–37. We have studied the effect of parameter uncertainty on resilience 
and now we discuss how observation uncertainty affects the resilience of the system. Firstly, we consider the 
observation noise

where γi is the observation uncertainty which can be regarded as a random variable. The mean-field dynamics 
of the networked system can be calculated by

The resilience of the mean-field dynamics can also be determined by the local minimum value. Here we set the 
local minimum value of the deterministic part 1N

∑N
i=1(f (x))+ 1

N

∑N
i,j=1 Mjig(x, x) as τ1 . If τ1 + 1

N

∑N
i=1 γi > 0 , 

the system is resilient. According to Central Limit Theorem, for big enough N(30 ≤ N) , 1N
∑N

i=1 γi can be 
approximated by a normally distributed random variable with mean µγ and standard deviation 1N δγ , i.e.

where µγ := E[γ ] and δµ :=
√
Var[γ ] . Then 1N

∑N
i=1 γi = µγ +

√
1/Nδγ ζ , where ζ is a normal distributed 

random variable. If τ1 + µγ +
√
1/Nδγ ζ > 0 , the system is resilient, which equals to ζ > − (τ1+µγ )√

1/Nδγ
 . The prob-

ability to be network-level resilient is

To quantify the effect of uncertainty on the node-level resilience, according to our method, firstly we need 
to calculate the equilibrium x0e  of the mean-field dynamics by

We can approximate the effects of neighboring nodes on single node’s dynamics by

(20)P
(k)
j (ξj) =

k
∑

i=0

P
(k)
i,j ξ

i
j , k ∈ [0, r],

(21)
∫

P
(k)
j (ξj)P

(q)
j (ξj)dw(ξ) =

{

0 ∀k �= q
1 else

.

(22)µk,j =
∫

ξ kj dw(ξj).

(23)
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(24)ẋi = f (xi)+
N
∑

j=1

Mjig(xi , xj)+ γi ,

(25)�(x) :=
1

N

N
∑

i=1

(f (x))+
1

N

N
∑

i,j=1

Mjig(x, x)+
1

N

N
∑

i=1

γi .

(26)
1

N

N
∑

i=1

γi ∼ N(µγ ,
1

N
δ2γ ),

(27)
1

2π

∫ +∞

− (τ1+µγ )√
1/Nδγ

e−ζ 2/2dζ .

(28)�(x) :=
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N
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The local minimum value of the deterministic part f (xi)+ win
i

∑N
j=1 w

out
j g(xi ,x

0
e )

∑N
j=1 w

out
j

 is set as τ2 . If τ2 + γi > 0 , then 

node i is resilient. The probability of node i to be resilient is 
∫ +∞
τ2

w(γ )dγ , where w(γ ) is the probability density 
function of γ.

Results
Bi-stable dynamical systems are common across social (e.g., population logistic model38), ecological (e.g., soil 
health39), climate (e.g., ocean circulation40), and human conflict systems41. There exist a stable undesirable state 
(e.g., population collapse or conflict) and a stable desirable state (e.g., healthy population with collaboration42), 
with an unstable transition brink in between, and this is ideal for demonstrating the concept of resilience and 
uncertainty. Networks that connect such systems represent a wider interacting ecosystem and often a mutualistic 
coupling represents positive reinforcing interactions. Interaction examples include gravity, radiation, or Boltz-
mann Lotka Volterra (BLV) models43 frequently use a xi × xj mutualistic attractor component.

Case study A: ecological pollinator network.  A case of pollinator networks44 is used to illustrate the 
dynamics of networked system at micro and macro scale. xi represents the abundance of species i, which is given 
by

Bi represents the incoming migration rate of species i from other ecosystems. The second term on right hand 
shows logistic growth with carrying capacity Ki of the system, and the Allee effect (low abundance ( xi < Ci ) 
causes negative growth)45. The third term is a coupling function which saturates for large xi or xj (j’s positive 
contribution to xi is bounded).

For simplicity, we use homogeneous parameters: B = 0.1,C = 1,K = 5,D = 5,E = 0.9,H = 0.1 . 
Besides, it is assumed that some parameters’ value has to be within 10% of its mean. Here, we set 
C = E[C](1+ 0.1ξ1),E = E[E](1+ 0.1ξ2) , where ξ1, ξ2 are random variables uniform in [−1, 1] ( ξ1, ξ2 could 
be r.v. that follow arbitrary distributions.). The definition of system resilience in this model is the ability of the 
system to recover species abundance from extinction12. To achieve this, the system should be in the regime 
where only one equilibrium exists. This is because if over one equilibrium exists in the system, the system will 
be trapped in the state with low abundance, which means that the system cannot recover its species abundance 
and loses its resilience.

Relationship between network topology and resilience.  In Fig. 5, we show what happens when a network becomes 
less connected by removing edges. In this case, parameters are certain and the figure explicitly shows the bounds 
of equilibrium under different perturbations and the regime where loss of resilience happens. Critical function 
describes resilience regime which maps macro (network-level) properties (average weighted degree wav to micro 

(29)ẋi = f (xi)+ win
i

∑N
j=1 w

out
j g(xi , x

0
e )

∑N
j=1 w

out
j

+ γi .

(30)
dxi

dt
= Bi + xi

(

1−
xi

Ki

)(

xi

Ci
− 1

)

+
N
∑

j=1

Mji
xixj

Di + Eixi +Hjxj
.

Figure 5.   Critical resilience value identifies vulnerable nodes with certain parameters. (a) Resilience bounds 
show the upper-bound and lower-bound of equilibrium when links removed. In this figure, it explicitly predicts 
when the loss of resilience will happen. (b) Critical resilience shows the relationship between average weight 
value of network and critical weight value. When win

i > wcrit , the node is resilient; otherwise it is not.
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(local-level) properties (critical resilience value wcrit ), wav = 1
N

∑N
i=1

∑N
j=1 Mji ). For each wav , corresponding 

wcrit could be calculated by

The critical weight, wcrit , is a function of wav since it is a function of x0e  and x0e  is a function of wav . In Fig. 5b, 
we see the graph of wcrit versus wav . Since x0e  is discontinuous, wcrit is also discontinuous.

In this case, a threshold value of critical weight w∗ is about 6.9 where the bifurcation will happen. When the 
average weight is greater than 6.9, the system is resilient and almost every node in this system is resilient. The 
critical weight can reveal some basic properties for the dynamics on a nodal level. For example, we see in Fig. 5b 
that when when wav > w∗ , wcrit is almost 0. This implies that if the system on average is in the resilient region, a 
node will also be in the resilient region even if it is very weakly connected to the rest of the network. However, 
in the case with uncertain parameters, even if the average weight is greater than 6.9, the system is possibly not 
resilient.

Analysis on the effect of uncertainty.  We initially do not know what the exact order r is for an accurate estima-
tion. For a given problem, it is not trivial to analytically find the optimal r. Usually, this is done heuristically. We 
truncate the series to arbitrary orders r from 2 to 5 (Fig. 6). It is clear that the convergence of the function can 
be improved with the increase of the polynomial order r. However, with the increase of the order, much more 
simulation is needed. Therefore, we have to make a compromise between accuracy and computational efficiency. 
In Fig. 6, it clearly shows the difference among different orders, especially d = 2 . To calculate the probability of 
resilience, a graph of Cumulative Distribution Function (CDF) with different truncation is shown in Fig. 6b. 
In Fig. 6, when d = 3, 4, 5 , the results are almost the same. However, there is an obvious difference for d = 2 . 
Considering the accuracy and computational efficiency, we choose d = 3 for the polynomial order. So, we can 
see the effect of uncertain parameters on system resilience as well as node-level resilience. When parameters are 
certain and the average weight is 6.9, the system is resilient and all nodes are resilient. However, when parameters 

(31)ẋi = f (xi)+ win
i g(xi , x

0
e (wav)).

Figure 6.   Approximate resilience of system by Polynomial Chaos Expansion. We truncate the series to order 
r from 2 to 5. (a) Approximate the minimum value of the system by PCE. (b) Approximate the probability of 
resilience. It is clear that there is a significant difference in results between r = 2 and r = 3, 4, 5 in (a) and (b).
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are uncertain in this case, the probability of resilience of the system is about 0.561. So according to the analysis 
above, some nodes will also possibly lose resilience.

Secondly, we use specific sequential estimation method with aPC to estimate the resilience of each node. We 
truncate the series to arbitrary orders r from 1 to 4 shown in Fig. 7 to estimate the resilience indicator τ i . The 
probability of node i to be resilient is P(τ i > 0) . Since we get the polynomial chaos expansion with different 
truncate order, according to Eq. (16), we can calculate the probability to be resilient. The results are respectively 
0.783, 0.625, 0.54, 0.5396. To check the accuracy of aPC with different truncate order, the result estimated by 
Monte Carlo with 2000 samples is regard as the standard (The probability of node resilience is 0.514). Table 2 
shows the results of specific sequential estimation method with aPC and Monte Carlo. With the increase of 
truncate order, the accuracy of aPC improves a lot without much increase of computational time. Otherwise, the 

Figure 7.   Approximate the local minimum value τ i of node i by aPC. These four subfigures show the results of 
aPC truncate to different orders from 1 to 4. If τ i > 0 , node i is resilient. Otherwise, the node loses resilience.

Table 2.   Methods to estimate node-level resilience.

Method Truncate order/Number of samples Accuracy Computational time (s) Explainability

Specific sequential estimation method 
with aPC

1 0.5233 4.58

Yes
2 0.8224 4.89

3 0.9495 5.84

4 0.9502 6.11

Specific sequential estimation method-
with Monte Carlo

50 0.7549 7.9

No
100 0.9299 10.9

400 0.9834 27.2

1000 0.991 68.79
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computational time of specific sequential estimation method with Monte Carlo increases a lot with the increase 
of samples. Besides, the specific sequential estimation method with aPC provides the analytic expression of 
resilience with uncertainty which helps to explain the effects of uncertainty on node-level resilience. However, 
the Monte Carlo methods lack explainability. Considering the accuracy, computational time, and explainability, 
the specific sequential estimation method with aPC is effective to estimate the resilience of individual nodes.

In Fig. 8, we show effects of uncertainty on the resilience of the whole network and each node. In Fig. 8a, it is 
clear that with certain parameters the networked system could maintain its resilience when the average weight is 
greater than 6.9. However, with the effect of uncertain parameters, the system could lose resilience even though its 
average weight is greater than 6.9. With the growth of average weight, the system has more chance to be resilient. 
When the average weight is greater than a certain value, the system is absolutely resilient. Similarly, in Fig. 8d 
red part shows that when node’s weight is greater than a critical value under a certain average weight, the node 
could maintain its resilience. While, with the effect of uncertainty represented by blue part, a node may lose 
resilience even though its weight is greater than the critical value in Fig. 5b. Therefore, the method mentioned 
above could help us understand the effect of uncertainty on network-level and node-level resilience. Also, it help 
us to predict whether a node is resilient and the probability of a node to lose resilience.

Figure 8.   It shows the effect of uncertainty parameters on resilience of network and each node. (a,b) The 
probability of resilience at network-level and node-level in system with uncertainty. (c,d) The difference between 
resilience with certain parameters and uncertain parameters at network-level and node-level (blue represents 
system with uncertain parameters and red represents system with certain parameters).
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Case study B: work force commuter network.  Introduction to commuter networks.  In our second 
example, we are motivated by a commuter network, where census data is used to populate how UK commuters 
travel from home to work (and vice versa). Here, we focus on the rail network as per earlier study by ourselves 
published in46. Each node is a railway station in the UK closest to the person’s home or work address (and that 
has indicated they use rail to travel to work) - all data can be found in46. From previous studies, we know that the 
well-established case of Boltzmann-Lotka-Volterra dynamics (similar to gravity and radiation mobility models) 
can be used to model the commuter competition dynamics43. Here, xi represents the total number of workers in 
city i, which is given by

The first term on right hand shows logistic growth with transport carrying capacity Ki of the system, and the 
Allee effect (e.g., the city will collapse if less than Ci jobs are available). The second term is a coupling competition 
function which shows that the number of people coming to city i from city j is also subject to the competitive 
dynamics of other neighboring connected cities k in the denominator. The parameters of: α signify the general 
attractiveness of cities that already have a lot of jobs (critical mass effect), d signify the distance between cities 
and β signify the impact of distance as a cost.

Data and analysis.  We used the last census data from England in the United Kingdom (Office of National 
Statistics) to weigh the work force population parameter xi given above. The parameters are C is assumed to be 
a minimum 10% of jobs per city to maintain criticality, K = jobs per city at census, α = 0.5,β = 2 are standard 
scaling components, and the data is mapped to a real map of the United Kingdom using rail as the main source 
of inter-city links to inform Mji , which we show the uncertainty impact of this assumption below.

The results (in a similar manner to Case Study A) are shown in Fig. 9. Part (a) shows our data acquisition of 
commute travel from different postcode areas in England and then clustering this to 51 major cities and linking 
them by major rail transport as a demonstration (see46 for more details of this process and we acknowledge the 
authors and data sources there). Part (b), we show that transport link removal is impacting the ability for jobs 
to be satisfied in cities and how uncertainty in the rail as only source of link between cities causes uncertainty 
fluctuations in resilience probability. As in our previous work46, a short discussion on the impact of this work is 
given here. Each link is actually a service, not necessarily a physical rail track. As such, link removal or a reduction 
in the average link weight means a reduction in services during the rush hours for commuting. What we show is 
that there is a criticality and this relates to specific links being more sensitive to others. As in our previous studies, 
we did focus on specific stations in the Thameslink for example, where the addition or removal of services can 
have a significant effect (see more in46). This did lead to a detailed discussion with Department for Transport to 
understand UK rail network resilience and the role of certain critical service links.

Conclusion
Resilience is an important ability of a system to maintain its original function when perturbations happen. At 
present, the research of how to estimate resilience of dynamic networked systems with uncertainty is still limited. 
Node-level resilience is important to make critical interventions to specific components whilst preserving our 
multi-scale understanding of general system behavior. To solve this problem, a specific sequential estimation 
method with multi-dimensional arbitrary polynomial chaos (aPC) was employed in this paper to quantify the 
effects of uncertain parameters on macro and micro resilience. Besides, we have compared dynamics with certain 
parameters to dynamics with uncertainty when estimating the micro and macro resilience. This could help us 
make a prediction of macro and micro-scale behavior in networked systems and reduce the risk of uncertainty. 
However, how the community structure of a network affects network-level and node-level resilience is still 
vague, for example, whether there exists a relationship between the modularity of community in a network and 
resilience. Therefore, in the future, we will explore the effects of community structure of networks on dynamics.

(32)
dxi

dt
= xi

(

1−
xi

Ki

)(

xi

Ci
− 1

)

+
N
∑

j=1
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xj exp[α log(xi)− d
β
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Figure 9.   UK commuter network with urban job dynamics coupled by a competitive commuter mobility 
model. (a) Raw data consists of census data of home to work travel across 34,000 Lower Layer Super Output 
Areas (LSOA). This is then clustered to nearest major cities and the number of services for commuting inform 
the weight of the matrix. (b) simulated labor mobility dynamics with transport link removal causes simulated 
mobility dynamics to collapse.
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Data availibility
The dataset used in Case Study A: Ecological Pollinator Network is available at https://​github.​com/​Marti​nezou/​
Ecolo​gical-​Polli​nator-​Netwo​rk.​git. The dataset used in Case Study B: Work Force Commuter Network is available 
at https://​www.​ons.​gov.​uk/​census/​2011c​ensus.
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