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Enhancing grasshopper
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with levy flight for engineering
applications
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The grasshopper optimization algorithm (GOA) is a meta-heuristic algorithm proposed in 2017 mimics
the biological behavior of grasshopper swarms seeking food sources in nature for solving optimization
problems. Nonetheless, some shortcomings exist in the origin GOA, and GOA global search ability

is more or less insufficient and precision also needs to be further improved. Although there are

many different GOA variants in the literature, the problem of inefficient and rough precision has still
emerged in GOA variants. Aiming at these deficiencies, this paper develops an improved version of
GOA with Levy Flight mechanism called LFGOA to alleviate the shortcomings of the origin GOA. The
LFGOA algorithm achieved a more suitable balance between exploitation and exploration during
searching for the most promising region. The performance of LFGOA is tested using 23 mathematical
benchmark functions in comparison with the eight well-known meta-heuristic algorithms and seven
real-world engineering problems. The statistical analysis and experimental results show the efficiency
of LFGOA. According to obtained results, it is possible to say that the LFGOA algorithm can be a
potential alternative in the solution of meta-heuristic optimization problems as it has high exploration
and exploitation capabilities.

Till date, researchers and practitioners have presented and experimented with various nature-inspired
metaheuristic algorithms to handle various search problems. O. N. Oyelade et al.! (2022) proposed an appeal-
ing Ebola Optimization Search Algorithm, they achieved some attractive results, especially when the EOSA
algorithm was applied to address the complex problem of selecting the best combination of convolutional neural
network (CNN) hyperparameters in the image classification of digital mammography. But the mathematical
model of EOSA is a little complicated. Laith Abualigah et al.? (2022) proposed a unique Reptile Search Algo-
rithm (RSA) and achieved better results than the other competitive optimization algorithms when applied their
RSA algorithm to solve seven real-world engineering problems. Since the RSA algorithm introduction, many
RSA variants have been proposed. It will be better; if they gave the statistical numerical results (such as mean
and standard deviation) of the RSA algorithm and other comparative algorithms in solving seven engineering
problems. Abualigah, Laith Mohammad et al.* (2021) proposed a novel mathematically modelled: Arithmetic
Optimization Algorithm (AOA), that utilizes the main arithmetic operators: Multiplication (M), Division (D),
Subtraction (S), and Addition (A). Although, the better performance of the AOA is evaluated using twenty-nine
benchmark functions and several real-world engineering design problems. But the parameter Math Optimizer
Accelerated (MOA) is increased linearly from 0.2 to 0.9 still needs extensively discussed. Hussien, A.G et al.*
(2022) comprehensively reviewed the recent widespread applications and variants of Harris hawk optimizer
(HHO) in-depth. The authors thoughtfully investigated several possible future directions and possible ideas of the
recent applications and variants of well-established HHO. As soon as Snake Optimizer (SO) is proposed (2022)
by Fatma A. Hashim et al.5, the SO algorithm attracted researchers and practitioners and the SO algorithm was
applied to many dominions, as the SO optimization algorithm is simple and efficient. Since the SO algorithm
introduction, many SO variants have been proposed to tackle optimization problems. Zheng, Rong et al.® (2022)
proposed an improved wild horse optimizer (IWHO) integrated three improvements: random running strategy
(RRS), dynamic inertia weight strategy (DIWS), and competition for waterhole mechanism (CWHM). The
IWHO algorithm has successfully overcome the crucial drawbacks of the origin WHO may be stuck in local
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optimal regions or has a slow convergence. The IWHO algorithm is evaluated by classical benchmark functions
and five real-world optimization problems and compared with nine well-known algorithms. Huangjing Yu
etal.” (2022) proposed an improved Aquila optimizer (mAO), the highlight of the mAO algorithm is the restart
strategy, which is simple but effective. Their mAO algorithm has solved five engineering optimization problems;
but has not been compared with other algorithms by numerical statistics such as mean and standard deviation.
Feature selection problem is one of the main difficulties in machine learning domain to find the smaller number
of informative features among a huge amount of feature space which guides the maximum classification ratio.
Hussien, A.G., Amin, M.# (2022) proposed an improved version of HHO called IHHO, which not only solves
5 constrained engineering problems but also has been applied to solve feature selection problems using 7 UCI
datasets.

Pengchuan Wang et al.’ (2020) comprehensively and extensively overviewed the recent widespread appli-
cations and variants of Complex-valued encoding algorithm in-depth. The authors successfully tested eight
complex-valued encoding algorithms by standard benchmark functions and solved five engineering optimization
design problems. But the mathematical model of Complex-valued encoding algorithm is a little complicated.
Chen et al'® (2020) proposed an improved arithmetic optimization algorithm (IAOA) based on the population
control strategy to solve numerical optimization problems, which successfully solved optimization problems to
consume less energy during robotic arm movement.

Grasshopper optimisation algorithm, variants, and applications. According to the behavior of
grasshopper swarms in nature, Shahrzad Saremia. et al. in 2017 proposed a unique and novel swarm intelli-
gence algorithm called the grasshopper optimization algorithm (GOA)'!, making utilization of the swarm intel-
ligence to solve optimization problems. This algorithm is proven to be efficient in solving global unconstrained
and constrained optimization problems. Since 2017, GOA has attracted increasing interest from academics and
researchers, most researchers and practitioners have achieved success with the GOA algorithm to solve vari-
ous complex and real-world problems in many different domains'>'%. On the other hand, to fully extend the
performances of the GOA, most researchers and practitioners constructed a variety of hybrid variants'® based
on GOA and other metaheuristics; and embedded different key parameters into the GOA, to solve their practi-
cal fields’ complex real-world problems. Arora, S et al.'® (2019) introduced the chaotic method with GOA for
solving global optimization. Zhao, S et al.'” (2021) embedded trigonometric substitution into GOA to enhance
Cauchy mutation. Ahmed A et al.'® (2022) merged Crossover Operators with GOA for feature selection and solv-
ing engineering problems. Yildiz et al.’? (2021) proposed using elite opposition-based learning to enhance GOA
for solving real-world engineering problems. Yi Feng et al.?’ (2020) introduced Dynamic Opposite Learning
assisted GOA for the Flexible Job Scheduling Problem. Qin, P et al.*! (2021) have successfully applied improved
GOA to optimise the parameters of the BP neural network for predicting the closing prices of the Shanghai Stock
Exchange Index and the air quality index (AQI) of Taiyuan, Shanxi Province.

The nature-inspired meta-heuristic algorithm with levy flight. Wang, Shuang et al.?2 (2022) pro-
posed an improved version of ROA called Enhanced ROA (EROA) using three different techniques: adaptive
dynamic probability, SFO with Levy flight, and restart strategy; and have successfully overcome slow conver-
gence and stagnation in local optima of the origin ROA. As soon as the Levy flight trajectory-based WOA
(LWOA) algorithm is proposed by Zhou, Y., Ling, Y. and Luo, Q.?* (2018), which attracted researchers and prac-
titioners and applied the LWOA algorithm to many dominions, because the LWOA algorithm effectively adapta-
tion, few control parameters, and simplicity of structure. Xuan Chen et al.* (2021) employments of Opposition-
based learning and the Genetic algorithm with Levy’s flight to improve the Wolf Pack Algorithm and achieved
maintain the diversity of the initial population during the global search. Their experimental results show that
their proposed algorithm has a better global and local search capability, especially in the presence of multi-peak
and high-dimensional functions.

Above mentioned cases are only a few typical models, but they show the nature-inspired meta-heuristic algo-
rithm gets the best global value largely dependent on together with levy flight. On the other hand, these studies
affirm that levy flight can considerably enhance the performance of meta-heuristic optimizers.

Our main contribution is to use the grasshopper optimization algorithm with Levy Flight distribution strat-
egy (LFGOA) to seven real-world problems, which cover hybrids (continuous, discrete, and integer variables)
nonlinear constrained optimization, such as Himmelblau’s nonlinear optimization problem, Cantilever beam
design, Car Side Impact Design, Gear train Design, Pressure vessel design, Speed Reducer Design, and tabular
column design.

Another contribution is that the levy flight strategy is properly embedded with GOA to help explore the
search space. The comprehensive effect of levy flight mechanisms strengthens the exploration-exploitation bal-
ance during the search process.

The third contribution is that performance of the LFGOA algorithm was validated by 23 mathematical bench-
mark functions in comparison with the eight well-known meta-heuristic algorithms (AHA, AO, DA, DMOA,
GBO, HGS, HHO, and MVO) and the comprehensive performance of the LFGOA algorithm is superior to the
eight algorithms and the origin GOA algorithm.

The fourth contribution is that the extensibility test with different scales of dimensions 50, 100, 300, and 500,
is undertaken by comparing LEGOA with the original GOA to assess the dimensional influence on problem
consistency and optimization quality. The comparisons show that the proposed LFGOA algorithm still holds a
simple and efficient structure that significantly improves the performance of the origin GOA algorithm.

In the rest of this paper, Section 2 provides the key idea and structure of the Grasshopper Optimization Algo-
rithm (GOA). Section 3 provides Grasshopper Optimization Algorithm with Levy Flight (LFGOA), improvement
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Figure 1. The grasshopper swarm searches with two stages.

steps in in-depth and LFGOA pseudo-code. Section 4 extensively introduces the experimental design and simu-
lation results. Section 5 presents seven real applications of LFGOA in nonlinearly-constrained engineering
optimization problems. Finally, section 6 concludes the paper and future directions.

The grasshopper optimization algorithm (GOA)
GOA algorithm is inspired by the foraging and swarming behavior of grasshoppers in nature for solving numeri-
cal optimization issues. The life cycle of the grasshopper includes two stages called nymph and adulthood. The
nymph stage is characterized by small steps and slow movements, while the adulthood stage is characterized by
long-range and abrupt movements. The movements of nymphs and adulthood constitute the intensification and
diversification phases of GOA. Intuitively speaking, the GOA search process splits into two stages: exploration
and exploitation are shown in Fig. 1.

In the exploration stage, we update all the positions’ values and compute the fitness value of all grasshopper
swarms (search for food sources). In the exploitation stage, we find the best solution among all solutions (search
for better food sources).

Principal of the grasshopper optimization algorithm. In the GOA algorithm, each grasshopper rep-
resents a solution in the population. The grasshopper swarms behavior is mathematically modelled and used to
calculate the position X; of each solution as follows:

Xi =S8+ G+ A (1)

where X; indicates the ith grasshopper’s position, S; denotes the grasshopper interaction between the solution and
the other grasshoppers’ swarms, G; is the gravity force on the ith solution, and A; represents the wind advection,
which can be represented by the below equations:
N —
Si ZZS(dij) dij, where i # j ()

j=1
s :fe_Tr —e 7 3)
where N denotes the number of grasshoppers, djj = |x; — x;| defines the Euclidean distance between the ith and

| —xil
ij

the jth grasshoppers swarm, d;; = represents the unit vector from the ith to the jth grasshopper swarm.

Scientific Reports |

(2023) 13:124 | https://doi.org/10.1038/s41598-022-27144-4 nature portfolio



www.nature.com/scientificreports/

In addition, s represents the strength of two social forces (repulsion and attraction between grasshopper swarms),
where [ is the attractive length scale and fis the intensity of attraction.

When the distance between two grasshoppers swarm in the range [0, 2.079], repulsion occurs, and when the
distance between two grasshoppers swarm is exactly 2.079, neither attraction nor repulsion occurs, which forms
a comfort zone. When the distance exceeds 2.079, the attraction force increases, then progressively decreases
until it reaches 4. The function s fails to apply forces between grasshoppers’ swarms when the distance between
them is larger than 10. To solve this problem, we map the distance of grasshoppers’ swarms in the interval [1, 4].

The equation below shows how to calculate the force of gravity G;:

Gi = —gé (4)

where g denotes the gravitational constant and é; is unit vector toward center of earth.
The equation below shows how to compute A;:

A,‘ = ue}, (5)

where u represents the drift constant and ¢,, is the unit vector in the wind direction.
After replacing the values of S;, G;, and A;, equation (1) can be reconstructed as follows by Equations 2, 3, 4
and 5:

X0 = s(dy)dy - g5 + s
j=1

- .
s(|xj — xﬂ)% —gég +uey where i # j
ij

o

1

J

However, the mathematical model of equation (6) cannot be used directly to solve the optimization problems, as
mainly the grasshoppers quickly reach their comfort zone and the grasshopper’s swarms from failing to converge
to the location target or a specified point (global optimum). To solve optimization issues and prevent grasshop-
per swarms from quickly reaching their comfort zone, the equation truly actuarily applied to solve optimization
problems is proposed by the author as follows:

N

sl —xdDL—" | + Ty )

d
X, =
d;

1
j=1

where UB,; and LB, are the upper and lower bounds in the dth dimension respectively, T, denotes the best solu-
tion found so far in the dth dimension space. In Eq. (7), the gravity force is not considered, that is, there is no G;
component. And assume that the wind direction (A; component) is always towards a target T;. The second term

Ty, simulates the tendency of grasshoppers to move towards the food source.

The key parameter cin mathematical model. In the grasshopper swarm algorithm, parameter c in Eq.
(7) is very important for local and global search. The inner ¢ in Eq. (7) is used to reduce the repulsion, attraction
and comfort zone between grasshoppers correspondingly to the number of iterations; is also responsible for the
reduction of repulsion/attraction forces between grasshoppers’ swarms, which is proportional to the number of
iterations. The outer ¢ in Eq. (7) is responsible to reduce the grasshopper’s movements around the target (food)
and helps reduce the search coverage around the target as the iteration goes on increasing. The coefficient ¢ is
proposed as follows:
Cmax — Cmin
€= Cpoy — t——— (8)
tmax

where ¢yax and ¢y are the maximum and minimum values of ¢ respectively, ¢pax and cpuin can be set as 1 and
0.00001 respectively, where ¢ is the current iteration, and t,.x is the maximum iteration value. The position
of a grasshopper is updated based on its current position, the global best position, and the positions of other
grasshoppers within the swarm.

The grasshopper optimization algorithm with levy flight
Mantegna’s algorithm from levy flights random walks. The study shows that the distribution prob-
ability density function of the variation of the Levy’s flight step can be approximated as follows:

L(s) ~ |s| 7177, )

Where s is the random step length of Levy’s flight behavior, and 6 is bounded as [0, 2] as a power-law index
and is set to be 1.5, which controls the peak sharpness of the levy distribution graph. The different values of the
parameter 6 cause different distributions, it makes longer jumps for smaller values, whereas it makes shorter
jumps for bigger values. True Levy distribution is hard to implement in computer code, but the approximate
form. Mantegna algorithm is one of the fast and accurate algorithms which generate a stochastic variable whose
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probability density is close to the Levy stable distribution characterized. Mantegna’s algorithm can be split into

three steps. For random walks, Mantegna’s algorithm determines the step length S as follows:
S=—+

> 10

V| ) (10)

where S is the random step length variable, while U and V are two normal stochastic variables with standard
deviation oy and oy, U and V should be attained based on normal distributions:

U~N(0, 03), V~ (0,07) (11)

The symbol ~ in Eq. (11) denotes the random variable obeys the distribution on the right-hand side; that is,
samples should be drawn from the distribution. As the standard deviation oy and oy cannot be chosen inde-
pendently for an arbitrary value of 0, for simplicity we usually set

oy =1 (12)

After this setting, the standard deviation oy can be obtained by:

(13)

B T(1+60) x sin(0570) 7
VT T[0.5(1 +6)] x 6 x 2056-D

The step size of Levy flight has been achieved by the Egs. (9) - (13), which simulates the search of short walking
distance and occasionally longer walking distance. Then the step size is calculated by
step size=f xS (14)

Where, the factor value f(f = 0.01) derived from L/100 determines the levy walks and the factor is dependent
on the dimension of the desired problem, where L is the wide-scale; unless Levy flights become too aggres-
sive, it helps the new solution move away from the search space. The process of Levy flight can be exhibited in
Algorithm 1.

Algorithm 1 Pseudo code of the Levy flight function.

Require: Current Position.
Ensure: New Position.

1: Begin

2: Calculate the step length S based on Mantegna’s algorithm using Eq. (10)

3 85= 7U1
vie

: where 0 parameter is a random value inside the [0, 2] interval.
: U and V based on normal distributions with standard deviation 6y and oy, and gained by Eq. (11):

. For simplicity, the standard deviation oy usually be set

oy =1

4
5
6: U~N(0, 63),V~(0,07%)
7
8
9

: The standard deviation oy can be obtained by Eq. (13):
1

10: oy = {F[

I'(146)xsin(0.576) }a
0.5(1+46)] x 6 x205(6=1)

11: the step size is calculated by Eq. (14):

12: step size=f xS

13: Execute the actual random walk or flight with:

14: New Position = current Position « LFGOA_Levy(dim)'
15: return New Position

16: End

The step size value will be added to update the equations of the LFGOA algorithm for finding the best posi-
tion. From theoretical perspectives, this random walk is based on a long tail distribution which can be used to
help an algorithm escape from getting stuck at a local optimum?-?’. In other words, the Levy flight distribution
is an effective mathematical operator for producing varied solutions in the searching space and increasing the
exploration capability of the LFGOA algorithm.

From Algorithm 1, it is worth noting the formula:

NewPosition = currentPosition * LFGOA_Levy(dim)';

Firstly, LFGOA_Levy(dim) represents the Levy flight function, and dim is the dimension size of the prob-
lem. the Levy flight Strategy is integrated into the GOA by the above formula. The Levy flight has a relatively
high probability of large strides in random walking, which can effectively improve the randomness of the GOA
algorithm. This way, the risk that the algorithm gets stuck in a local optimum is drastically reduced, while it is
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Figure 2. The flow chart of the LFGOA algorithm.

still possible to perform sufficient local refinements. In other words, the algorithm presents a natural balance
between exploration and exploitation.

Secondly, in the case of stagnation, Levy-triggered searching (hunting) patterns can help LFGOA to jump out
of them toward new better positions. By this mechanism, the LFGOA algorithm can overcome the deficiencies
of the little diversity of the origin GOA algorithm and greatly increase the probability of getting the best position
(solution), which is also the highlight and unique feature of the LFGOA algorithm.

Despite being a simple change in the LFGOA algorithm, this new distribution induces drastic changes in
the optimization process, LFGOA-based jumps can redistribute grasshoppers around the fitness landscape to
prevent the population from the loss of diversity and to put more emphasis on the global searching tendency.

Enhancing grasshopper optimization algorithm (GOA) with levy flight. How and where place
Levy Flight in the GOA algorithm will directly produce totally different results, in some cases even give worse
results. Based on the above facts, through an in-depth comprehensive study and trial-and-error experiments,
we successfully embedded Levy flight into the GOA algorithm by the following simple but effetely mechanisms.

Firstly, except for the first grasshopper initialled with rand values (since the first iteration was dedicated to
calculating the fitness of the grasshopper), the other grasshoppers were assigned Levy flight distribution values,
not rand values, which directly produced a better start for most of the grasshoppers with wide diversity in the
initialization stage. Secondly, the target is achieved by the Levy flight mechanism during executing iteration,
which overcomes the deficiencies and can be escaped from a local optimum and restarted in a different region
of the search space for the LFGOA. The flow chart of the Levy flight mechanism embedded in the GOA is shown
in Fig. 2. The pseudo-code of the LFGOA algorithm is presented in Algorithm 2.
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Algorithm 2 Pseudo-code of the LFGOA algorithm

end for

-V SR S

—_—
—_- O

=2

—
(3]

. Initialize parameters of ¢4y, Ciin, maximum number of iterations L
Swarm Initialization
: X = rand(N,dim). x (up — down) + down
. since the first iteration was dedicated to calculating the fitness of grasshopper.
for j=2to N do
ch] = LFGOA_Levy(dim)!.* (high— low) + low

: Calculate the fitness value for each grasshoppers (search agent)
. Find the best grasshopper (target) in the first population

. TargetPosition = sorted_grasshopper(1,:)

. TargetFitness = sorted_fitness(1)

13: Start from the second iteration
14: Since the first iteration was dedicated to calculating the fitness of grasshopper
15: while ! < L+ 1(Each Grasshopper;agent 1 € (1,2,...N)) do

16: C = Cmax

_ lcmax_cmin %Eq (8)

Max_iter

17.  for i = 1toN do
18: map the distance of grasshoppers in the interval [1, 4].

19: X4 =c

1

1y UBitles(d M) 7y g, (7)

20: GrassHopperPositions(i,:) = GrassHopperPositions(i,:). « LFGOA_Levy(d im)

21:  end for

2 XMV =X 4T,
23:  Update the best solution if thers’s a better one
24:  if GrassHopperFitness(1,i) < TargetFitness then

25: TargetPosition = GrassHopperPositions(i,:);
26: TargetFitness = GrassHopperFitness(1,i);
27:  end if

28: end while

29: return So far, the optimal solution is obtained as the global optimal solution

In sharp contrast: although the existing method has greatly improved GOA, there is still a large probability
of falling into local optimum by the reason of immature convergence, and the truth reason derived from the
diversity is underdeveloped for the GOA algorithm. On the other hand, initializes the position of agents in the
search space by Levy flight as the below formula:

X; = LFGOA_Levy(dim)/. % (high — low) + low.

The above formula, LFGOA_Levy(dim) represents the Levy flight function, and dim is the dimension size of the
problem, which provides a large-scale deployment schema for the LFGOA algorithm, all grasshoppers assigned
Levy flight value not random numbers between [0, 1] from the uniform distribution at the initialization stage,
which directly increase the wide diversity of the LFGOA algorithm. Secondly, randomization is more efficient as
the step length is heavy-tailed random redistribution, and any large step is possible, which effectively increases
the probability of LFGOA's global search ability and precision.

From Fig. 2, it is worth noting the following three formulas:

Tp = GrassHopperPositions(i,:) > ub';
Tm = GrassHopperPositions(i,:) < W
GrassHopperPositions(i,:) = (GrassHopperPositions(i, :). * (~ (Tp + Tm))) + ub'. x Tp + Ib'. x Tm.

Where Tp is assigned logical ‘0> when the value of the grasshoppers’ position is less than the upper boundary,
otherwise Tp is assigned logical ‘1’

Where Tm is assigned logical ‘0> when the value of the grasshoppers’ position is more than the lower bound-
ary, otherwise Tm is assigned logical ‘1"

Where (~ (Tp + Tm))1is assigned to value 1 when the grasshoppers’ position is not at the boundary, otherwise
is assigned to value 0.

When the grasshoppers go outside the search space, the grasshoppers will be drawn back by the above for-
mula. After that, the positions of the grasshoppers are directly replaced (similar restarted)® by the below formula:

GrassHopperPositions(i, :) = GrassHopperPositions(i, :). * LFGOA_Levy(dim).

Based on the above formula, the positions of all the grasshoppers random redistribution around the fitness
landscape to prevent the population from the loss of diversity and to put more emphasis on the global searching
tendency. The balance between exploration and exploitation can be achieved according to the Levy flight based
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jumps, which allows grasshoppers to escape from local minima and explore different search areas. However, it
cannot ensure the new update position is better than the current position.

The proposed approach. As a newly proposed algorithm, GOA has achieved good results on some test
functions. However, experiment results show that it still has the defects of insufficient global exploration and
local optimum stagnation. The lack of global exploration capacity can be attributed to the deficient searches with
two stages. Thus, GOA properly integrated with Levy Flight is utilized to improve the global search ability in this
work. Meanwhile, a restart strategy of Levy Flight is added to GOA that helps the GOA algorithm escape from
local optima.

To the best of our knowledge, the main reason behind the effectiveness of LFGOA is that the Levy flight based
jumps can effectively redistribute the search agents to enhance their diversity and to emphasize more explora-
tive steps in case of immature convergence to local optima. It is a successful GOA variant of combining GOA
with Levy Flight and gained better results of applying LFGOA in seven real-world engineering problems. The
statistical analysis and experimental results show the efficiency of LFGOA.

In section 4, the strict experiments will exhibit that LFGOA is superior to the GOA algorithm in most per-
formance metrics, especially at the parts of correct getting the best solutions with quick convergence speed. In
fact, LFGOA still holds the advantages of simple structure and few-parameter-turnings even added extra Levy
flight mechanism.

Experimental results and analysis

In this section, all experiments were carried out under the Windows 10 OSx64 using MATLAB R2019a software,
and the hardware platform used was configured with Intel(R) Core (TM) i7-8700 CPU @ 3.20GHz and 8 GB
RAM.

The performance of the suggested LFGOA is assessed in this section by using five experiments. Accordingly,
the first one evaluates AHA, AO, DA, DMOA, GBO, HGS, HHO, LFGOA, and MVO about the average value,
the standard deviation, and the best value using twenty-three mathematical benchmark functions presented in
Table 1. These benchmark functions are categorized into three groups: unimodal, multi-modal, and composite.

Here, the LFGOA performance is tested using twenty-three benchmark functions. This benchmark contains
seven unimodal, six multimodal, and ten fixed-dimension multimodal functions. The mathematical description
of each type is given in Table 1 where N denotes the number of grasshoppers, T refers to the maximum itera-
tion value, dim refers to the number of dimensions, Range shows the interval of search space, F,;, refers to the
optimal value that the corresponding functions can achieve.

The second one strictly tests the convergence performance of the LFGOA with AHA, AO, DA, DMOA, GBO,
HGS, HHO, and MVO respectively. The third experiment aims to test the LFGOA by a non-parametric Wilcoxon,
Friedman, and Nemenyi statistical test. The fourth tests the scalability performance of the LFGOA compared
with the GOA comprehensively and thoroughly under conditions of 50, 100, 300, and 500 Dimensions. The fifth
part presents some quantitative metrics of LFGOA.

Comparing LFGOA with AHA, AO, DA, DMOA, GBO, HGS, HHO, and MVO.  To comparing and
evaluating the performance of the LFGOA on the well-known 23 mathematical benchmark functions, we select
below the eight advanced well-known and the latest meta-heuristic algorithms respectively.

1) Artificial hummingbird algorithm (AHA)%,

2) Aquila Optimizer (AO)*,

3) Dragonfly algorithm (DA)*!,

4) Dwarf Mongoose Optimization Algorithm (DMOA)¥,
5) Gradient-based optimizer (GBO)*,

6) Hunger Games Search (HGS)*,

7) Harris hawks optimization (HHO)%,

8) Multi-Verse Optimizer (MVO)?.

In order to provide a fair comparison, the main controlling parameters of these algorithms all run 30 times on
each of the benchmark function, number of search agents and maximum iteration are all equal to 100 respectively.
In the experiments, the key parameters of these nine algorithms are set up as shown in Table 2.

In the following Tables, where best results are all marked in bold.

In addition, to check the differences and rankings between nine algorithms, another non parametric mul-
tiple comparison method is used to calculate the average ranking value by the Friedman test. When applying
Friedman’s test, the best algorithm is the one that receives the lowest rank while the worst algorithm receives the
highest rank. In order to assess the statistical performance of LFGOA and each other method on the 23 test suites,
the average (or mean) and standard deviation values of the rank of each method were taken into account. The
average and Std rankings of LFGOA in conjunction with other methods using Friedman’s test are summarized
in Tables 3 and 4, respectively.

In Table 3, there are 17 out of 23 average values obtained by LFGOA algorithm, which are all less than those
obtained by the other eight algorithms. From Table 3, it can be seen that the average searching quality of LFGOA
is better than those of other methods.
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Dimensions
Function (N, T, dim) Range Fpin
Univariate test functions
Fl:sphere function
dim 2 100,100,30 [-100, 100] 0
Fi(x) = Y
F2: Schwefel’s problem 2.22
dim dim 100,100,30 [-100, 100] 0
F(x) = Z, 1 |xi] +H1 1 [xi]
F3: Shifted schwefel’s problem 1.2
d;m 100,100,30 [-10, 10] 0
F3(x) = Z] 1%
F4: Schwefels problem 221
100,100,30 | [-100,100] |0
Fy(x) = max;lx;|, 1 < i < dim
F5: Generalized rosenbrocKk’s function
dim—1 100,100,30 [-100, 100] 0
Fs(x) = >0 [100 (xi—1 — x7) + (x; — 1)?
Fé: Step function
d 100,100,30 [-30, 30] 0
Fe(x) = 310 (1xi + 0.5])
F7:Quartic functlon i.e. noise
7 100,100,30 [-1.28,1.28] |0
Fr(x) = Y iX;* + random(0, 1]
Multidimensional test functions
F8: Generalized schwefel’s problem 2.26
d 100,100,30 [=500, 500] —418.9829 * dim
Fyg(x) = o —1 |xil = xi sin(y/]xi])
F9: Generahzed rastrigin’s function
— 100,100,30 | [-5.12,5.12] |0
Fo(x) = >0 [x? — 10 cos (2mx;) + 10]
F10: Ackley’s function
100,100,30 -32,32 0
Fio(x) = —20 exp ( i+ S dim 2> — exp (dtm S dim cos(an,)) +20+e [ |
F11: Generalized griewank’s function
dim 2 dim 100,100,30 [-600, 600] 0
Fii(x) = 40002 1x7 =2 1cos(ﬁ)+1
F12: Generalized penalized function 1
; 2 ; " 100,100,30 [-50, 50] 0
Fio(x) = 7 10sin®(y1) + > ()/1 — D*[1 4+ sin®(wyiyny] + Gaim — 1* + D Ufun(xi, 10, 100, 4)
F13: Generalized penalized function 2
Fi3(x) = 0.1{5in2(37rx1) + 39 (e — D21 + sin? G xi1)] + Kaim — D211 + sin? 7 xgim)] + 347 Ufun(x;, 5, 100, 4)}
k(xi—a)™  xi>a 100,100,30 [-50, 50] 0
Ufun(x;,5,100,4) =< 0—a —a<xi<a
where k(—x; —a)™ xi < —a
yi=1+%H
Composite multidimensional (or fixed multidimensional ) test functions
Dimensions
Function (N, T, dim) Range Fpin
F14: Shekel’s foxholes function
—1
Fla(x,%2) = (555 + Yoy —=r——) -
w + DR T e 100,100,2 [656553'2(3)]60’ 0.9980
ajj = {—32; —16; 0; 16; 32; —32; —16; 0; 16; 32; —32; —16; 0; 16; 32; —32; —16; 0; 16; 32; —32; —16; 0; 16; 32} ’
ay = {—32; —32; —32; —32; —32; —16; —16; —16; —16; —16; 0; 0; 0; 0; 0; 16; 16; 16; 16; 16; 32; 32; 32; 32; 32}
F15: Kowalik’s function
_ x1 (bf+bix2) 12
Fis(x) = > lak — m]
i a; bl_l
1 0.1957 0.25
2 0.1947 0.5
3 01735 1
4 016 2 100,100,4 [-5, 5] 0.0003075
5 0.0844 4
6 0.0627 6
7 0.0456 8
8 0.0342 10
9 0.0323 12
10 0.0235 14
11 0.0246 16
Continued
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Dimensions
Function (N, T, dim) Range Fpin
F16: Six-hump camel-back function
100,100,2 [-5,5] ~1.0316285
Fie(x1,x) = 4xf — 2.1x? + éxf + x1x0 — 4x% +4x§
F17: Branin function
= 5 . 100,100,2 [-5,0, 10, 15] | 0.397887
Fi7(x1,%2) = (%2 — ﬁxlz + Fx - 6)% + 10(1 — g)cosxl +10
F18: Goldstein-price functionn
Fig(x,x2) = [1 + (x1 + % + D?(19 — 14x; + 3x] — l4x,+
100,100,2 [-5,5] 3
6x1%2 + 3x3)] X [30 + (2x1 — 3x2)% — 3x2)2
x (18 — 32x) + 12x7 + 48x, — 36x,x, + 273 )]
F19 and F20:Hartman’s Family
F19: Hartman's family
100,100,3 [0,1] -3.863

Fio(x) = — 21, i exp(— 0, @ (x5 — pi)?)

F20: Hartman’s family

Fao(x) = — i, ciexp(— Z;’:l (x5 = py)*)
i aij Ci Pij 100,100,6 [0,1] -3.322
1 3.0 10.0 30.0 1.0 0.689 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470

3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547
Where, in this exercise: 4 0.1 10.0 35.0 3.2 0.0381 0.5743 0.8828

Dimensions
Function (N, T,dim) | Range Foin
F21 and F22 and F23:Shekel’s Familyl
Fy(x) = = S ey —ap)? +g1 - 1
F21:Shekel’s 5 family
Fa@=-2L [c-a)x—a) +al -1
444 [0l ~
1111 02 100,100,4 [0,10] 5.0551
a= 188 8 8|c= (0.2
6666 0.4
Where, in this exercise: L1373 7] L0.6
F22: Shekel’s 7 family
Fr@)=—37_ [(x—a)(x—a)’ +cl—1
4 4 4 4] [0.17
1111 0.2
8888 02 100,100,4 [0,10] —5.088
a= |6 6 6 6[c= |04
3737 0.4
2929 0.6
Where, in this exercise: L5 5 3 3] 10.3]
F23:Shekel’s 10 family
P =—30 [(x—a)x—a)" + 11
4 4 4 4 0.1
1 111 0.2
8 8 8 8 0.2
6 6 6 6 0.4 100,100,4 [0,10] —5.128
373 7] _ loa
=12 9 2 9|°= |os
5533 0.3
8 1 8 1 0.7
6 2 6 2 0.5
Where, in this exercise: 7 3.6 7 3.6 0.5

Table 1. Twenty-three benchmark functions.

From the statistical results of Table 3, it is clear that the LFGOA with the complete improvement strategies
performs best with a Friedman test ranking value of 2.4783. All in all, there are 18 out of 23 average ranking
first obtained by LFGOA, which are all more than those obtained by the other eight optimization algorithms.
However, LFGOA gives unsatisfactory results in F14, F15, F17, and F18. The results show that LFGOA achieves
the average ranking third in F12. The LFGOA performs the best among the nine algorithms, proving that the
utilization of Levy Flight can effectively enhance the performance of the GOA algorithm.

In Table 4, only the composite functions F14-F18, the standard deviation value obtained by LFGOA algorithm
are 5.90E+01, 4.91E-03, 7.49E-03, 8.58E-01, and 6.66E+00, which are not less than the other eight algorithms.
All in all, there are 18 out of 23 standard deviation values obtained by LEGO algorithm, which are all less than
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Algorithm | Parameters Value
AHA migration coefficient 2n
A0 quality function used to equilibrium 2xrand—1

— _ — _t — 1-T)2
the search strategies QF the slope from the Gr=2xrand —1G, =2 x (1 - p)QF(®) =1 «

first location (1) to the last location (t)

w = max + t x (memin)

inertia weight w
min = 0.4, max = 0.9

separation weight s s=2x rand x [0.1 — t(%)]
DA alignment weight a a=2xrand x [0.1 — t(%)]
the cohesion weight ¢ c=2xrand x [0.1 — t(%)]
food factor f f=2xrand
enemy factor e e=01-— t(%)
DMOA convergence constant a a=(— %)Zx 7
B the most significant parameter B = Bunin + (Brsax — Bonin) X (1 — (%)3)2
GBO in the GBO to balance the exploration
and exploitation searching processes Bmin = 0.2, Bmax = 1.2, pr = 0.5
HGS convergence constant a a=2x(1— %)

Ej is the initial state of its energy, E indicates the escaping energy

= _ t
HHO of the prey. E=2Ex(1-71)
LFGOA C=Cpax —t X cmnx;cmin
convergence constant C Ciax = 1, Cpin = 0.00001
MVO travelling distance rate (TDR) € [0.61] TDR = 1 — %’ p=6

Table 2. The setup of the parameters. ¢ Current iteration, T The maximal iteration.

those obtained by the other eight algorithms. The better values of the standard deviations prove that the LFGOA
algorithm stable performs better than the other eight algorithms.

As shown in Table 4, we evaluate the performance of the algorithms using the Friedman test. All algorithms
are ranked according to the Std value. LFGOA ranks first in all unimodal functions (F1-F7) and all multi-modal
functions (F8-F13) and achieves a Std ranking value of 2.2609. However, LFGOA gives unsatisfactory results
in F14, F17, and F18. In this regard, the results show that LFGOA achieves the Std ranking third in F16 and the
fourth in F15. The statistical results show that LFGOA has the best performance compared to the eight algorithms
mentioned above for solving the 23 classical test functions.

In Table 5, for the unimodal functions and the multimodal functions, the best values obtained by the LFGOA
algorithm are not desired in comparison with other eight algorithms. For the composite functions, only the F15,
the LFGOA algorithms get nearly accurate approximation values, for the other composite functions F14 and
F16-F23, the LFGOA algorithm all get better accurate approximation values.

To further analyze the differences between the algorithms, a post-hoc Nemenyi test was employed. If the
null-hypothesis is rejected, we can proceed with a post-hoc test. The Nemenyi test (Nemenyi, 1963) is similar to
the Tukey test for ANOVA and is used when all classifiers are compared to each other. The performance of two
classifiers is significantly different if the corresponding average ranks differ by at least the critical difference (CD).

cz;::;W% (15)

where N is the number of datasets (23) and k (9) is the number of algorithms being compared.
Ata = 0.05, the critical value (Table 6) g, for 9 classifiers (algorithms) is 3.102 and the corresponding CD is

3.102 x |/ 2299 ~ 2.5051.

Ata = 0.10,q, = 2.855, N = 23,k = 9; corresponding CD is 2.855 x ,f% ~ 2.3056.

To find differences in nine algorithms, critical difference (CD) based on the Nemenyi test was used. The criti-
cal value gy is 3.102, so the CD is 2.5051. A post-hoc test concludes that if the difference in Friedman ranking
values between the two algorithms is less than the CD value, there is no significant difference between the two
algorithms; conversely, there is a significant difference between the two algorithms.

In Table 7, the “Diff with LFGOA” in the third column indicates the differences in average rank between
LFGOA and other eight algorithms, and the “Diff with LFGOA” in the fifth column indicates the differences in
Std rank between LFGOA and other eight algorithms respectively.

Critical Difference (CD) diagrams in Fig. 3 are simple and intuitive visualizations of the results of a Nemenyi
post-hoc test that is designed to check the statistical significance between the differences in average rank of a set
of nine algorithms respectively on a set of 23 benchmark test functions.
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F Index AHA AO DA DMOA GBO HGS HHO LFGOA MVO

Average 2.65E+00 1.46E+02 1.36E+03 6.97E+02 7.83E+07 6.45E+02 9.34E+02 3.06E-09 7.17E+02
i Rank 2 3 8 5 9 4 7 1 6

Average 3.93E-02 5.57E-01 9.15E+00 4.21E+00 3.43E+35 9.42E+07 1.88E+08 9.21E-29 6.37E+00
2 Rank 2 3 6 4 9 7 8 1 5

Average 2.38E+02 1.02E+02 3.76E+03 2.28E+03 9.40E+01 2.30E+03 1.51E+03 7.95E-10 9.03E+02
B Rank 4 3 9 7 2 8 6 1 5

Average 1.41E-01 7.46E-01 2.77E+01 1.63E+01 4.17E+06 1.57E+00 1.61E+00 6.59E-06 8.98E+00
k4 Rank 2 3 8 7 9 4 5 1 6

Average 7.12E+01 8.44E+04 1.61E+06 4.63E+05 2.57E+03 2.14E+06 2.02E+06 4.00E+00 8.94E+05
s Rank 2 4 7 5 3 9 8 1 6

Average 1.13E+02 1.41E+02 2.45E+03 8.13E+02 6.81E+05 2.11E+03 8.03E+02 1.25E+00 5.66E+02
o Rank 2 3 8 6 9 7 5 1 4

Average 6.74E-02 5.60E-02 7.09E-01 1.53E-01 1.03E+01 3.38E+00 1.48E+00 5.55E-01 2.46E-01
7 Rank 2 3 8 6 9 7 5 1 4

Average -5.94E+03 -2.39E+03 -2.26E+03 -7.12E+12 5.11E+01 -1.20E+04 -1.20E+04 -1.34E+00 -2.20E+03
' Rank 6 5 4 9 2 7 8 1 3

Average 4.13E+00 1.60E+00 5.73E+01 5.01E+01 1.56E+01 1.11E+01 9.63E+00 0.00E+00 4.75E+01
o Rank 3 2 9 8 6 5 4 1 7

Average 2.90E-01 2.77E-01 1.09E+01 6.54E+00 3.24E-01 1.15E+00 6.42E-01 9.81E-09 6.25E+00
F10 Rank 3 2 9 8 4 6 5 1 7

Average 2.86E-01 1.37E+00 2.48E+01 7.30E+00 4.95E-03 5.31E+00 5.76E+00 1.51E-07 7.25E+00
i Rank 3 4 9 8 2 5 6 1 7

Average 8.05E-01 3.27E+05 4.29E+06 6.53E+05 2.31E+00 4.66E+06 4.26E+06 4.11E+00 1.63E+06
f12 Rank 1 4 8 5 2 9 7 3 6

Average 4.41E+00 3.38E+05 3.73E+06 2.33E+06 6.65E+01 1.21E+07 1.00E+07 5.02E-01 3.40E+06
3 Rank 2 4 7 5 3 9 8 1 6

Average 1.97E+00 3.50E+00 1.22E+00 1.63E+00 4.54E-01 1.57E+00 2.16E+00 2.11E+01 1.62E+00
Fie Rank 6 8 2 5 1 3 7 9 4

Average 2.92E-03 2.42E-03 6.09E-03 1.58E-03 7.85E-04 1.71E-03 4.71E-03 1.48E-01 2.91E-03
F13 Rank 6 4 8 2 1 3 7 9 5

Average -1.03E+00 -1.01E+00 -1.00E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.02E+00 -9.94E-04 -1.01E+00
Fe Rank 6 3 2 7 8 9 5 1 4

Average 4.10E-01 5.22E-01 4.17E-01 4.13E-01 4.04E-01 4.16E-01 4.09E-01 5.55E+01 4.37E-01
7 Rank 3 8 6 4 1 5 2 9 1
F1s Average 3.11E+00 3.55E+00 4.09E+00 3.16E+00 3.59E+00 3.13E+00 3.20E+00 6.00E+02 3.71E+00

Rank 1 5 8 3 6 2 4 9 7
Flo Average -3.86E+00 -3.75E+00 -3.85E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.83E+00 -6.81E-02 -3.84E+00

Rank 6 2 5 7 8 9 3 1 4

Average -3.26E+00 -2.67E+00 -3.06E+00 -3.25E+00 -3.29E+00 -3.26E+00 -2.98E+00 -5.15E-03 -3.09E+00
F20 Rank 7 2 4 6 9 8 3 1 5

Average -7.79E+00 -9.99E+00 -6.84E+00 -9.09E+00 -4.98E+00 -7.51E+00 -4.87E+00 -2.74E-01 -6.15E+00
1 Rank 7 9 5 8 3 6 2 1 4

Average -7.96E+00 -1.03E+01 -7.43E+00 -9.24E+00 -9.94E+00 -9.18E+00 -4.93E+00 -2.94E-01 -2.42E+00
F2 Rank 5 9 4 7 8 6 3 1 2

Average -8.32E+00 -1.04E+01 -7.14E+00 -8.72E+00 -4.85E+00 -9.98E+00 -4.94E+00 -3.23E-01 -6.08E+00
k3 Rank 6 9 5 7 2 8 3 1 4
Friedmans test 3.7826 4.4348 6.4783 6.0435 5.0435 6.3478 5.2609 2.4783 4.8696

Table 3. The values of average and average Rank on nine algorithms. The best of the comparison results are in
[bold].

Fig. 3 shows the analysis results of the data from Table 7. In each line segments, we plot the average ranks
about mean (left side in the Fig. 3) and Std (right side in the Fig. 3) of nine algorithms. The length of the line
segment indicates the CD value, and the center of each line segment labeled “circle mark” represents the value of
the average rank position about mean (left side) and Std (right side) of the respective each algorithm across all
23 benchmark test functions. If the value of the center between two line-segments (intervals) is greater than the
CD, it means that the two algorithms do not overlap each other, which indicate there is a statistically significant
difference between them.
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Index | AHA AO DA DMOA GBO HGS HHO LFGOA MVO

Std. 1.69E+01 1.43E+03 2.43E+03 1.78E+03 4.95E+08 5.02E+03 7.37E+03 1.25E-08 1.89E+03
F1 Rank |2 3 6 4 9 7 8 1 5

Std. 2.07E-01 5.17E+00 7.58E+00 8.06E+00 3.43E+36 9.42E+08 1.88E+09 1.99E-28 1.46E+01
F2 Rank |2 3 4 5 9 7 8 1 6

Std. 2.13E+03 9.34E+02 4.18E+03 2.20E+03 4.74E+02 1.33E+04 9.35E+03 4.05E-09 2.27E+03
F3 Rank |4 3 7 5 2 9 8 1 6

Std. 8.32E-01 6.23E+00 2.22E+01 1.18E+01 3.07E+07 1.08E+01 9.66E+00 1.36E-05 1.10E+01
F4 Rank |2 3 8 7 9 5 4 1 6

Std. 4.20E+02 8.44E+05 6.66E+06 2.51E+06 1.36E+04 2.13E+07 1.77E+07 1.64E-03 3.96E+06
F5 Rank |2 4 7 5 3 9 8 1 6

Std. 1.13E+02 1.41E+03 2.99E+03 2.23E+03 6.25E+06 1.05E+04 6.55E+03 2.04E-02 1.44E+03
F6 Rank |2 3 6 5 9 8 7 1 4

Std. 5.96E-01 5.37E-01 1.79E+00 3.36E-01 2.56E+00 1.65E+01 1.35E+01 2.87E-01 9.85E-01
F7 Rank |4 3 6 2 7 9 8 1 5

Std. 1.20E+03 4.22E+02 3.82E+02 2.53E+13 4.07E+02 1.17E+03 1.96E+03 2.05E+01 2.95E+02
F8 Rank |7 5 3 9 4 6 8 1 2

Std. 2.44E+01 L.11E+01 3.44E+01 1.78E+01 1.12E+02 4.78E+01 4.94E+01 0.00E+00 1.58E+01
F9 Rank |5 2 6 4 9 7 8 1 3

Std. 1.60E+00 1.93E+00 7.42E+00 5.05E+00 1.04E+00 3.53E+00 2.94E+00 1.47E-08 4.19E+00
F10 Rank |3 4 9 8 2 6 5 1 7

Std. 2.63E+00 1.33E+01 2.56E+01 1.71E+01 4.95E-02 5.15E+01 4.76E+01 1.20E-06 1.82E+01
F11 Rank |3 4 7 5 2 9 8 1 6

Std. 3.10E+00 3.27E+06 1.24E+07 4.82E+06 6.67E+00 4.66E+07 4.23E+07 8.73E-02 1.08E+07
F12 Rank |2 4 7 5 3 9 8 1 6

Std. 1.48E+01 3.38E+06 1.44E+07 1.10E+07 3.70E+02 1.21E+08 9.32E+07 9.20E-03 2.26E+07
F13 Rank |2 4 6 5 3 9 8 1 7

Std. 1.34E+00 1.59E+00 2.25E+00 1.46E+00 2.49E+00 1.92E+00 1.05E+00 5.90E+01 2.91E+00
Fl4 Rank |2 4 6 3 7 5 1 9 8

Std. 7.43E-03 7.37E-03 2.15E-02 1.77E-03 1.87E-03 4.16E-03 3.19E-02 4.91E-03 8.15E-03
F15 Rank |6 5 8 1 2 3 9 4 7

Std. 1.98E-03 2.72E-02 1.25E-01 7.10E-03 2.56E-02 2.63E-02 1.12E-01 7.49E-03 1.27E-01
F16 Rank |1 6 8 2 4 5 7 3 9

Std. 3.62E-02 1.72E-01 9.71E-02 9.61E-02 3.65E-02 1.32E-01 7.35E-02 8.58E-01 1.44E-01
F17 Rank |1 8 5 4 2 6 3 9 7

Std. 4.88E-01 5.43E-01 4.64E+00 1.08E+00 5.84E-+00 9.35E-01 1.49E+00 6.66E+00 3.90E+00
F18 Rank |1 2 7 4 8 3 5 9 6

Std. 6.50E-03 3.48E-02 2.18E-02 2.95E-02 3.10E-02 1.72E-02 7.80E-02 1.50E-04 6.82E-02
F19 Rank |2 7 4 5 6 3 9 1 8

Std. 1.60E-01 1.32E-01 2.23E-01 2.09E-01 1.61E-01 2.20E-01 4.77B-02 1.43E-04 3.67E-01
F20 Rank |4 3 8 6 5 7 2 1 9

Std. 1.73E+00 1.12E+00 3.62E+00 2.27E+00 3.96E-01 2.64E+00 5.42E-01 1.44E-03 2.71E+00
F21 Rank |5 4 9 6 2 7 3 1 8

Std. 2.43E+00 1.02E+00 3.31E+00 2.28E+00 1.55E+00 2.71E+00 6.57E-01 1.32E-02 5.30E-01
F22 Rank |7 4 9 6 5 8 3 1 2

Std. 1.64E+00 9.47E-01 3.28E+00 2.82E+00 8.53E-01 1.72E+00 6.13E-01 2.45E-03 3.39E+00
F23 Rank |5 4 8 7 3 6 2 1 9
Friedmans test 3.2174 4.0000 6.6957 4.9130 5.0000 6.6522 6.0870 2.2609 6.1739

Table 4. The standard deviations and Std rank on nine algorithms. The best of the comparison results are in
[bold].

As shown in Fig. 3, LFGOA ranks first (The best average ranks are to the left side) in Mean and Std respec-
tively. From the Fig. 3 and Table 7, we can clear see that LFGOA versus AO and LEFGOA versus AHA have similar
performance in terms of average ranks of Mean and Std.

Comparing the performance of LFGOA with AHA, AO, DA, DMOA, GBO, HGS, HHO, and MVO

algorithm. The performance of the AHA, AO, DA, DMOA, GBO, HGS, HHO, LFGOA, and MVO algo-

rithms are respectively benchmarked in the following figures. In the first column in Fig. 4, Fig. 5, and Fig. 6, the
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F AHA AO DA DMOA GBO HGS HHO LFGOA MVO

F1 5.27E-34 1.99E-39 4.47E-02 3.84E-02 7.49E-17 0.00E+00 6.22E-33 2.20E-11 1.20E-01
F2 4.34E-15 7.20E-20 5.21E-01 2.10E-02 1.20E-33 1.01E-26 2.72E-20 1.94E-31 8.16E-02
F3 3.32E-29 1.95E-39 1.20E+01 3.49E+02 1.61E-22 1.45E-38 4.74E-27 1.19E-12 2.91E-01
F4 2.48E-14 2.72E-20 3.99E+00 4.13E+00 2.63E+01 3.20E-28 2.25E-15 5.18E-07 1.64E-01
F5 2.87E+01 1.28E-04 1.01E+01 1.47E+02 1.05E-22 2.28E-02 4.26E-02 3.84E+00 5.99E+01
F6 0.00E+00 2.20E-06 1.52E+00 1.94E-02 2.02E-20 6.45E-06 3.88E-04 2.31E-01 1.19E-01
F7 3.63E-04 1.91E-04 7.03E-03 8.41E-03 2.18E+00 1.10E-04 7.29E-04 1.31E-04 3.82E-03
F8 -7.51E+03 | -3.01E+03 | -2.51E+03 |-1.38E+14 |2.25E-02 -1.26E+04 | -1.26E+04 |-1.58E+03 |-2.57E+03
F9 0.00E+00 0.00E+00 1.64E+01 3.42E+01 3.82E-04 0.00E+00 0.00E+00 0.00E+00 3.79E+01
F10 4.44E-15 8.88E-16 2.35E+00 5.68E-01 7.90E-14 8.88E-16 4.44E-15 1.45E-09 1.86E-01
F11 0.00E+00 0.00E+00 7.60E-01 7.01E-01 2.42E-13 0.00E+00 0.00E+00 3.51E-10 7.12E-01
F12 6.31E-02 4.23E-08 3.75E-01 2.46E-01 5.73E-01 3.19E-06 8.01E-06 9.23E-05 3.79E-03
F13 2.71E+00 7.88E-07 1.55E-02 1.51E-01 4.81E-01 1.92E-06 3.46E-05 1.97E-05 3.54E-02
F14 9.98E-01 2.98E+00 9.98E-01 9.98E-01 1.01E-14 9.98E-01 1.99E+00 9.98E-01 9.98E-01
F15 4.17E-04 4.87E-04 1.66E-03 1.06E-03 3.07E-04 7.78E-04 3.25E-04 1.31E-03 7.55E-04
F16 -1.03E+00 | -1.03E+00 |-1.03E+00 |-1.03E+00 |-1.03E+00 |-1.03E+00 |-1.03E+00 |-1.03E+00 |-1.03E+00
F17 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
F18 3.00E+00 3.02E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
F19 —-3.86E+00 |-3.85E+00 |-3.86E+00 |-3.86E+00 |-3.86E+00 |-3.86E+00 |-3.86E+00 |-3.59E+00 |-3.86E+00
F20 -3.32E+00 |-3.08E+00 |-3.17E+00 |-3.32E+00 |-3.32E+00 |-3.32E+00 |-3.02E+00 |-3.32E+00 |-3.32E+00
F21 -9.61E+00 |-1.02E+01 |-1.02E+01 |-1.02E+01 |-5.06E+00 |-1.02E+01 |-5.05E+00 |-5.06E+00 |-1.02E+01
F22 -1.04E+01 |-1.04E+01 |-1.04E+01 |-1.04E+01 |-1.04E+01 |-1.04E+01 |-5.09E+00 |-5.09E+00 |-2.77E+00
F23 -1.04E+01 |-1.05E+01 |-1.05E+01 |-1.05E+01 |-5.13E+00 |-1.05E+01 |-5.11E+00 |-5.13E+00 |-1.05E+01

Table 5. The best values of AHA, AO, DA, DMOA, GBO, HGS, HHO, LFGOA, and MVO. The best of the
comparison results are in [bold].

#classifiers 2 3 4 5 6 7 8 9 10
q0.05 1.96 2.343 | 2.569 |2.728 |2.85 2.949 |3.031 |3.102 |3.164
q0.10 1.645 |2.052 |2.291 |2459 |2.589 |2.693 |2.78 2.855 292

Table 6. Critical values for post-hoc tests after the Friedman test.

Average Std

Algorithm | Mean rank | Diff with LFGOA | Std Rank Diff with LFGOA
AHA 3.782608696 | 1.3043 < 2.5051 3.217391304 | 0.9565 < 2.5051
AO 4.434782609 | 1.9565 < 2.5051 4.000000000 | 1.7391 < 2.5051
DA 6.478260870 | 4.0000 > 2.5051 6.695652174 | 4.4348 > 2.5051
DMOA 6.043478261 | 3.5652 > 2.5051 4913043478 | 2.6522 > 2.5051
GBO 5.043478261 | 2.5652 > 2.5051 5.000000000 | 2.7391 > 2.5051
HGS 6.347826087 | 3.8696 > 2.5051 6.652173913 | 4.3913 > 2.5051
HHO 5.260869566 | 2.7826 > 2.5051 6.086956522 | 3.8261 > 2.5051
LFGOA 2.478260870 | 0 2.260869565 | 0

MVO 4.869565217 | 2.3913 < 2.5051 6.173913043 | 3.9130 > 2.5051

Table 7. The Average and Std ranks of nine algorithms using Friedman’s test based upon their results on the
23 test functions.

graph is a three-dimensional drawing of the cost function. The second column of the Fig. 4, Fig. 5, and Fig. 6,
the graph shows the independently convergence progress of the AHA, AO, DA, DMOA, GBO, HGS, HHO,
LFGOA, and MVO algorithms respectively. The third column of the Fig. 4, Fig. 5, and Fig. 6, the graph focus
on the convergence progress of the LFGOA algorithm on each of the F1-F23 benchmark functions respectively.
The fourth column of the Fig. 4, Fig. 5, and Fig. 6, the graph focus on the average fitness history of the LFGOA
algorithm on each of the F1-F23 benchmark functions respectively. The fifth column of the Fig. 4, Fig. 5, and
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Figure 3. Average rank of Mean (left side) and Average rank of Std (right side) about LFGOA and the other
algorithms using Friedman’s test based upon their results on the 23 test functions.

Fig. 6, the graph focus on the best fitness history of the LFGOA algorithm on each of the F1-F23 benchmark
functions respectively.

The unimodal test functions F1-F7.  Since there is only one extreme point in F1-F7 unimodal benchmark func-
tions, the unimodal benchmark functions are suitable for assessing the convergence rate and benchmarking the
exploitation behavior of the algorithm. In the second column in Fig. 4, the LFGOA algorithm shows the best
results in 6 out of 7, especially on F1-F4 respectively in unimodal benchmark, but for F5, the result unsatisfac-
tory for the LFGOA algorithm. In unimodal functions of F6-F7, the GBO algorithm shows better result that
nearly reaches to zero.

The multimodal test functions F8-F13. 'The F8-F13 multimodal benchmark functions are used to assess the
exploration capability of the LFGOA algorithm to find global optima when the number of local optima increases
exponentially with the problem dimension.

The second column of Fig. 5, for F8, as the GBO algorithm present a wrong value of positive (reference the
Table 5) against the value of negative that gotten by the AHA, AO, DA, DMOA, HGS, HHO, LFGOA, and MVO
algorithms respectively, the figure only shows the best convergence progress of the AHA, AO, DA, DMOA,
HGS, HHO, LFGOA, and MVO algorithms respectively without GBO, because great difference values on two
directions can’t be appropriately plotted in the same figure. For F9-F13, the convergence progress of the LFGOA
algorithm is satisfactory especially for FO-F11; the convergence rate of the LFGOA algorithm is rapidly. Since the
multimodal functions have an exponential number of local solutions, the results show that the LFGOA algorithm
can explore the search space extensively and find promising regions of the search space.

For the third column of Fig. 5, the convergence progress of the LFGOA algorithm on each of the F8-F13
benchmark functions all exhibit excellent convergence rate on each of the F8-F13 benchmark functions. It can
also be seen in the third column of the Fig. 5, that the LFGOA algorithm does not provide uniform convergence
behavior in all the benchmark functions. This shows that the LFGOA algorithm is good in handling of different
problems.

The composite test functions F14-F23. The second column of Fig. 6, for F14-F20, all of the algorithms reached
the satisfactory convergence rate. For F21 and F23 (reference the Table 5), only the final results of the conver-
gence progress of the GBO and LFGOA algorithms respectively are satisfactory, the other seven algorithms
unsatisfactory. For F22 (reference the Table 5), only the final results of the convergence progress of the HHO
and LFGOA algorithms respectively are satisfactory, the other seven algorithms unsatisfactory. All in all, for
the composite benchmark functions of F14-F23, the comprehensive result of the convergence progress of the
LFGOA algorithm is superior to the other algorithms, which is very similar to the situation of the Table 5. From
the third column of the Fig. 6, the convergence progress of the LFGOA on each of the F14-F23 benchmark func-
tions all exhibit better convergence rate. For the fourth column of the Fig. 6, even the average fitness of all grass-
hoppers on the F20-F23 with high fluctuation during the exploration phase (at nearly the early iteration stage)
and low changes in the exploitation phase (at the end of iteration stage). This proves that the LFGOA algorithm
is able to eventually improve the fitness of initial random solutions for a given optimization problem. For the
fifth column of the Fig. 6, even the best fitness of all grasshoppers on the F14 and F20-F23 with high fluctuation
during the exploration phase (at nearly the early iteration stage) and low changes in the exploitation phase (at
the end of iteration stage), which guarantee that the LFGOA algorithm exploration extensively over the initial
stage and exploitation locally at the end of optimization, and eventually convergences to optimization points.
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LFGOA vs the other eight optimization algorithms on the p-Values of the wilcoxon. Due to the
stochastic nature of the algorithms, the averages and standard deviation only compare the overall performance
of the algorithms, while a statistical test considers each run’s results and proves that the results are statistically
significant. Derrac et al”’, recommended that to evaluate the performance of algorithms, statistical tests should
be done. The non-parametric Wilcoxon statistical test is conducted and the p-values that are less than 0.05 could
be considered as strong evidence against the null hypothesis. To assess the overall performance of the LFGOA
algorithm, and to confirm the significance and robustness of the results, we apply Wilcoxonss statistical test with
a 5% significance level to the obtained average accuracy results.
At Table 8, the P-values are more than 0.05 appeared in the following cases:

e LFGOA/AO in F2, F9, and F14 in the third column of Table 8.

LFGOA/DA, the F4, F14, and F17 in the fourth column of Table 8, as above depicted, both the DA and
LFGOA algorithms all embedded Levy Flight mechanism, which means both of the two algorithms have
some extent similarity properties.

LFGOA/DMOA in F6 and F11 in the fiveth column of Table 8.

LFGOA/GBO in the F2 in the sixth column of Table 8.

LFGOA/HGS, which is consistent with the F2 and H9 in the seventh column of Table 8.

LFGOA/MVO, in the F4, F11, and F17, as above depicted, both the exploration and exploitation swarming
behaviors of MVO are very similar to LFGOA.

The results of the p-values in Table 8 show that the superiority of the LFGOA algorithm is statistically significant.

The scalability test for LFGOA. Comparing comprehensive and thoroughly the property of the LFGOA
algorithm with the GOA algorithm, we conducted the scalability test here. As we known, the scalability test can
help us to some extent understand the impact of the dimension on the capability of the solution and the effec-
tively of the LFGOA algorithm. An in-depth exploration of the impacts on the solution functionality to catch
what appears for the features of the LFGOA and GOA algorithms as the dimension of function experiences a
growth respectively. Therefore, four dimensions of the functions F1-F23 are used here: 50, 100, 300, and 500.
The whole circumstances have remained consistent; each algorithm uses 100 search agents and runs 30 times
respectively. The mean values, the standard deviation values and the best optimal values were picked by the
LFGOA and GOA algorithms under 50, 100, 300, and 500 dimensions, which are shown in the following tables.

In Table 9 (D = 50), there are 15 out of 23 average values obtained by the LFGOA algorithm, which are all
less than those obtained by the GOA algorithm.

In Table 9 (D = 100), there are 14 out of 23 average values obtained by the LFGOA algorithm, which are all
less than those obtained by the GOA algorithm. Table 9 also tell us the LFGOA algorithm consumed a little more
time than the GOA algorithm under dimensions equal to 50 and 100 respectively.

In Table 10 (D = 300), there are 15 out of 23 average values obtained by the LFGOA algorithm, which are all
less than those obtained by the GOA algorithm.

In Table 10 (D = 500), there are 14 out of 23 average values obtained by the LFGOA algorithm, which are all
less than those obtained by the GOA algorithm. Table 10 also tell us the LFGOA algorithm consumed a little
more time than GOA under dimensions equal to 300 and 500 respectively.

In Table 11 (D = 50), only for the unimodal functions F1 and F2, the Std values obtained by the LFGOA
algorithm are 3.8798E-08 and 1.1745E-19, for the multimodal function F12, the Std values obtained by the
LFGOA algorithm is 1.3597E-11, for the composite functions F17-F19 and F21-F22, the Std values obtained
by the LFGOA algorithm are 1.4536E-12, 6.8103E-12, 1.7853E-15, 1.8687E-11, and 2.5783E-11, which are less
than the GOA algorithm.

In Table 11 (D = 100), for the unimodal functions F1, F2 and F7, the Std values obtained by the LFGOA
algorithm are 1.2465E-08, 1.9946E-28, and 2.8663E-01, for the multimodal functions F12 and F13, the Std values
obtained by the LFGOA algorithm are 1.6469E-11 and 1.3907E-11, for the composite functions F16-F17 and
F20-F23, the Std values obtained by the LFGOA algorithm are 1.7963E-13, 2.7986E-13, 5.9709E-14, 2.0967E-12,
2.7518E-12, and 2.6440E-12, which are less than the GOA algorithm.

In Table 12 (D = 300), only for the unimodal functions F1 and F2, the Std values obtained by the LFGOA
algorithm are 1.3549E-10 and 1.1144E-64, for the multimodal function F11 and F13, the Std values obtained by
the LFGOA algorithm is 6.7423E-11 and 3.0608E-13, for the composite functions F14-F16 and F20-F22, the
Std values obtained by the LFGOA algorithm are 1.2862E-15, 3.4063E-14, 6.5956E-15, 8.1218E-15, 1.3714E-12,
and 6.8134E-13, which are less than the GOA algorithm.

In Table 12 (D = 300), for the unimodal functions F1, F2, F7, the Std values obtained by the LFGOA algorithm
are 3.0527E-11, 1.4144E-82, and 2.8175E-01, for the multimodal function F10, F12, and F13, the Std values
obtained by the LEFGOA algorithm are 1.4097E-09, 7.3866E-14, and 2.6744E-13, for the composite functions
F15, F17 and F19-F21, the Std values obtained by the LFGOA algorithm are 1.7152E-14, 8.7437E-14, 2.0085E-
15, 5.3160E-15, and 3.6452E-13, which are less than the GOA algorithm.

In Table 13 (D =50, D = 100), there are 17 out of 23 best values obtained by the LFGOA algorithm, such that
the number is far exceeded by the GOA algorithm.

In Table 14 (D = 300, D = 500), there are 17 out of 23 best values obtained by the LFGOA algorithm, such
that the number is far exceeded by the GOA algorithm.

Some quantitative metrics of LFGOA algorithm. In the first, second and third columns of Fig. 7,
Fig. 8, and Fig. 9, the quantitative metrics about the dynamic change of grasshopper position (search history),
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F AHA AO DA DMOA GBO HGS HHO MVO

F1 1.33E-29 | 1.12E-30 | 1.10E-03 | 1.36E-04 | 4.92E-04 | 1.66E-27 |3.81E-29 | 1.07E-02
F2 9.55E-05 |2.89E-01 | 1.72E-34 |2.39E-31 | 3.18E-01 | 1.65E-01 |5.83E-04 |5.94E-34
F3 3.71E-26 | 2.20E-29 | 9.50E-09 | 1.83E-34 | 1.52E-14 | 1.24E-23 |4.49E-19 | 3.11E-07
F4 2.00E-30 |5.28E-31 |9.68E-01 |4.04E-11 |2.07E-34 |8.90E-30 |8.74E-27 |1.83E-01
F5 5.63E-15 | 1.06E-28 | 6.79E-29 |2.17E-34 | 4.57E-09 |8.19E-15 |6.66E-21 | 5.05E-31
F6 3.07E-34 | 1.76E-32 | 3.17E-12 | 6.34E-01 | 3.17E-08 |1.93E-26 | 1.01E-28 | 8.20E-03
F7 1.14E-02 | 1.30E-03 | 9.41E-35 |8.51E-35 |4.41E-23 |3.21E-31 |7.59E-30 |2.60E-34
F8 7.48E-39 | 1.34E-36 | 7.30E-39 |8.07E-39 |8.08E-39 |7.95E-39 |8.06E-39 |4.71E-39
F9 2.15E-05 | 9.75E-01 |1.01E-36 |2.79E-38 |4.14E-31 |4.55E-01 |2.44E-05 |1.15E-36
F10 2.62E-23 | 9.46E-27 | 6.68E-09 |9.96E-18 |3.73E-11 |4.66E-23 |7.46E-24 |1.71E-28
F11 1.53E-29 | 7.68E-33 | 9.95E-04 | 1.68E-01 |2.57E-34 |7.94E-28 |3.83E-27 |2.63E-01
F12 1.85E-04 |7.78E-35 |3.61E-13 |3.93E-16 |3.70E-03 |5.03E-32 |5.03E-32 |5.71E-16
F13 1.76E-34 | 2.18E-33 | 2.72E-13 |2.11E-23 | 4.80E-09 |3.18E-24 |1.97E-27 |9.16E-15
F14 1.56E-16 |2.73E-01 | 1.34E-01 |1.29E-05 |5.18E-26 |4.46E-32 |8.75E-29 |2.08E-28
F15 1.27E-24 |2.31E-04 |9.33E-10 |7.59E-14 |9.82E-04 |2.00E-19 |7.58E-29 |7.45E-12
Fl6 3.80E-19 |7.14E-33 | 4.09E-27 |3.11E-29 |2.82E-33 |2.05E-30 |5.70E-28 |8.30E-08
F17 5.99E-12 | 6.12E-08 |9.03E-01 |1.05E-24 |1.52E-20 |9.27E-26 |2.03E-21 |7.26E-01
F18 3.38E-11 |3.17E-41 |3.94E-02 |1.19E-25 |7.84E-36 |4.45E-26 |1.09E-26 |2.20E-03
F19 7.38E-39 | 1.21E-40 | 4.98E-39 |7.74E-39 |8.06E-39 |8.09E-39 |8.10E-39 |7.54E-39
F20 1.77E-35 | 5.95E-37 |1.26E-35 |1.82E-35 |1.88E-35 |1.89E-35 |1.89E-35 |1.78E-35
F21 3.67E-22 | 3.59E-36 |4.94E-06 |3.29E-17 |2.56E-31 |1.25E-25 |3.58E-20 |6.52E-23
F22 6.72E-26 | 3.38E-38 | 6.45E-16 |2.06E-29 |9.21E-25 |6.63E-34 |6.22E-26 |7.86E-16
F23 1.59E-22 |2.73E-38 | 1.48E-12 |8.93E-33 |9.58E-25 |6.51E-33 |2.71E-28 |4.35E-14

Table 8. The p-Values of the Wilcoxon rank-sum test over 23 benchmark functions.

Average (D=50) Average (D=100)
GOA Time LFGOA Time GOA Time LFGOA Time
F1 3.6191E+01 1.2050 | 2.4942E-08 1.2275 1.2055E+00 2.3869 | 3.0569E-09 2.9643
F2 1.3482E-03 1.0951 | 5.7176E-20 1.1334 | 2.4131E-05 2.2161 | 9.2086E-29 3.0393
F3 2.3206E-03 1.1223 | 6.7550E-09 1.1118 | 5.8872E-03 2.2003 | 7.9485E-10 2.4450
F4 6.5617E-02 1.1066 | 5.7340E-05 1.1322 | 1.5523E-02 2.2044 | 6.5922E-06 2.5821
F5 1.7916E+00 1.1356 | 3.9995E+00 1.1487 | 3.8084E+00 2.2154 | 3.9998E+00 2.6185
F6 3.9447E-03 1.1237 | 1.2511E+00 1.0964 | 3.5299E-04 2.1987 | 1.2513E+00 2.5916
F7 5.4859E-01 1.1118 | 5.1284E-01 1.1538 | 5.0714E-01 2.2203 | 5.5455E-01 2.5345
F8 -1.5817E+03 1.1047 | 8.8354E-01 1.1323 | -1.7396E+03 2.2013 | -1.3428E+00 2.5719
F9 9.9496E+00 1.0977 | 0.0000E+00 1.1305 | 2.0894E+01 2.1709 | 0.0000E+00 2.6047
F10 2.9110E-02 1.1078 | 1.6046E-08 1.1006 | 1.8809E-04 2.2013 | 9.8080E-09 2.5264
F11 2.8866E-01 1.1249 | 6.8659E-06 1.1194 | 2.1058E-01 2.2216 | 1.5094E-07 2.6239
F12 9.0110E-04 1.1309 | 4.1278E+00 1.1495 | 7.2328E-05 2.2531 | 4.1089E+00 2.6204
F13 2.8781E-04 1.1260 | 5.0433E-01 1.1367 | 2.0603E-04 2.2669 | 5.0215E-01 2.6213
F14 9.9800E-01 1.2246 | 1.6838E+01 1.1961 | 9.9800E-01 2.3730 | 2.1102E+01 2.7878
F15 1.6420E-03 1.0955 | 1.4814E-01 1.1130 1.6133E-03 2.1531 | 1.4768E-01 2.5356
Fl6 -1.0316E+00 | 1.1029 | -2.1599E-04 1.0986 | -1.0316E+00 2.1633 | -9.9360E-04 2.5900
F17 3.9789E-01 1.0719 | 5.5426E+01 1.0845 | 3.9789E-01 2.1448 | 5.5550E+01 2.5279
F18 3.0000E+00 1.0768 | 6.0187E+02 1.0914 | 3.0000E+00 2.1536 | 6.0022E+02 2.5008
F19 -3.8556E+00 | 1.1103 | -6.8414E-02 1.1153 | -3.8628E+00 2.1828 | —6.8054E-02 2.5666
F20 -3.3220E+00 | 1.1251 | -5.1192E-03 1.1571 | =3.2031E+00 2.1761 | -5.1526E-03 2.5948
F21 —-1.0153E+01 | 1.1073 | -2.7445E-01 1.1072 | -1.0153E+01 2.2019 | -2.7443E-01 2.5493
F22 —1.0403E+01 | 1.1054 | -2.9499E-01 1.1164 | -1.0403E+01 2.1760 | -2.9359E-01 2.5634
F23 -5.1756E+00 | 1.1077 | -3.2385E-01 1.0913 | -1.0536E+01 2.1356 | —3.2322E-01 2.5238

Table 9. The average values and consumed time under dimensions are equal to 50 and 100. The best of the
comparison results are in [bold].
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Average (D=300) Average (D=500)

GOA Time LFGOA Time GOA Time LFGOA Time

F1 1.3993E-01 7.0597 | 3.2786E-11 7.1007 | 4.4886E-02 11.6255 | 6.3759E-12 11.6318
F2 1.0234E-04 6.4803 | 5.0309E-65 6.6171 | 3.8426E-05 10.7531 | 4.5746E-83 10.7092
F3 3.4992E-07 6.5596 | 2.1009E-11 6.5256 | 2.8104E-09 10.8761 | 1.6953E-12 10.8769
F4 6.1214E-05 6.5041 | 7.4812E-07 6.6153 | 2.2518E-05 10.6880 | 2.2156E-07 10.8303
F5 2.2175E+01 6.4526 | 4.0006E+00 6.6215 | 4.4415E-01 10.7493 | 4.0267E+00 10.8675
F6 9.6501E-08 6.4276 | 1.2483E+00 6.6123 | 6.1274E-09 10.7097 | 1.2499E+00 10.7890
F7 4.7933E-01 6.4718 | 4.7956E-01 6.7439 | 5.3289E-01 10.7331 | 4.8982E-01 10.7668
F8 —-1.5422E+03 | 6.5236 | 1.4705E-01 6.6725 | —1.8565E+03 |10.8361 |-6.3545E-01 | 10.8322
F9 1.1940E+01 6.5637 | 0.0000E+00 6.5827 | 3.9798E+00 10.6932 | 0.0000E+00 10.8322
F10 2.8382E-05 6.4535 | 1.4523E-08 6.6826 | 1.3150E-05 10.7786 | 2.0263E-09 10.8077
F11 1.0846E-01 6.5031 |2.7470E-11 6.7343 | 2.9332E-01 10.8807 | 9.4160E-12 10.9145
F12 6.9024E-09 6.5605 | 4.1202E+00 6.7251 | 1.3700E-10 11.1410 | 4.1246E+00 11.0573
F13 5.2347E-09 6.5703 | 5.0618E-01 6.8489 | 2.7928E-09 11.1144 | 5.0520E-01 11.0723
F14 9.9800E-01 7.1762 | 2.7061E+01 7.1094 | 9.9800E-01 11.8381 | 1.4163E+01 11.9388
F15 2.0363E-02 6.3858 | 1.4785E-01 6.5066 | 1.2232E-03 10.5673 | 1.4900E-01 10.6402
F16 -1.0316E+00 |6.3136 |-1.5066E-04 |6.5308 |-1.0316E+00 |10.4830 |-5.5530E-04 10.6101
F17 3.9789E-01 6.3308 | 5.5468E+01 6.4903 | 3.9795E-01 10.5142 | 5.5418E+01 10.6483
F18 3.0000E+00 6.3583 | 6.0081E+02 6.4867 | 3.0000E+00 10.4125 | 2.8383E+03 10.7202
F19 —-3.8628E+00 |6.3754 | -6.8537E-02 |6.6820 |-3.8628E+00 |10.8593 |-6.8651E-02 |10.7968
F20 —-3.3220E+00 |6.3398 | -5.1478E-03 |6.5773 |-3.3220E+00 |10.5832 |-5.1397E-03 |10.7650
F21 —1.0153E+01 |6.4471 |-2.7419E-01 |6.5988 |-1.0153E+01 |10.6039 |-2.7433E-01 |10.6293
F22 —1.0403E+01 |6.3645 |-2.9496E-01 |6.6207 |-5.0877E+00 |10.5663 |-2.9534E-01 |10.6410
F23 —5.1756E+00 | 6.4597 |-3.2337E-01 |6.6613 |-5.0877E+00 |10.5663 |-3.2345E-01 |10.9356

Table 10. The average values and consumed time under dimensions are equal to 300 and 500. The best of the
comparison results are in [bold].

Std.(D=50) Std.(D=100)

GOA LFGOA GOA LEGOA

F1  [6.0155E-08 |3.8798E-08 |1.4776E-08 | 1.2465E-08
F2  |23807E-09 |1.1745E-19 |7.1900E-19 | 1.9946E-28
F3  |9.3962E-10 |2.6617E-08 | 1.5437E-09 | 4.0466E-09
F4 |1.1334E-08 |1.0041E-04 |1.5319E-08 | 1.3578E-05
F5 | 1.1839E-09 |54491E-03 |1.9185E-09 | 1.6444E-03
F6 | 1.4169E-09 |22225E-02 |57538E-10 | 2.0425E-02
F7  |2.5696E-01 |2.7239E-01 |3.0056E-01 | 2.8663E-01
F8  |6.7393E-09 |9.0843E+00 |1.2751E-09 | 2.0548E+01
F9  |4.0619E-11 |0.0000E+00 |2.1905E-13 | 0.0000E+00
FI0 |[2.7113E-09 |1.6339E-08 |2.2388E-09 | 1.4696E-08
F11 |4.4558E-09 |50581E-05 |6.4376E-10 | 1.2040E-06
F12 |4.6808E-11 |1.3597E-11 |2.1111E-11 | 1.6469E-11
F13 |1.9813E-11 |3.0507E-10 |3.1630E-11 |1.3907E-11
Fl4 |8.6804E-16 |1.6792E-15 |8.6517E-16 | 1.6865E-15
F15 |3.2066E-13 |1.8154E-12 |3.8729E-13 | 5.5304E-13
F16 |3.0710E-13 | 1.0826E-12 |3.2260E-13 | 1.7963E-13
F17 |6.1888E-12 |1.4536E-12 |9.7940E-13 | 2.7986E-13
F18 | 1.1610E-11 |6.8103E-12 | 1.6063E-12 | 1.1737E-11
F19 |8.9265E-15 |1.7853E-15 |3.5706E-15 | 8.0339E-15
F20 |4.4562E-13 | 1.1664E-10 |8.0186E-14 |5.9709E-14
F21 |34335E-11 |1.8687E-11 |2.3315E-11 |2.0967E-12
F22  [52950E-11 |2.5783E-11 |1.0470E-11 |2.7518E-12
F23 | 1.6863E-11 |24249E-11 |1.2424E-11 |2.6440E-12

Table 11. The Std values of dimensions are equal to 50 and 100. The best of the comparison results are in
[bold].
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Std.(D=300) Std.(D=500)
GOA LFGOA GOA LEGOA

F1 5.4447E-09 1.3549E-10 | 3.0741E-09 3.0527E-11
F2 1.1990E-12 1.1144E-64 | 5.4483E-20 1.4144E-82
F3 1.5002E-11 | 8.2788E-11 2.3827E-12 | 4.3344E-12
F4 1.7313E-08 | 1.0348E-06 1.5959E-08 | 2.7880E-07
F5 8.5595E-11 | 5.7502E-03 1.2438E-09 | 2.0807E-01
Fé6 1.0759E-11 | 2.4281E-02 2.7215E-12 | 1.4023E-02
F7 2.7826E-01 | 2.9240E-01 2.9060E-01 2.8175E-01
F8 6.8847E-11 | 1.2264E+01 | 3.5845E-12 | 1.3473E+01
F9 1.7825E-14 | 0.0000E+00 | 9.8192E-15 | 0.0000E+00
F10 2.5067E-09 | 1.6168E-08 2.3197E-09 1.4097E-09
F11 2.6284E-10 6.7423E-11 | 4.7477E-11 | 5.6309E-11
F12 2.5738E-13 | 5.2260E-13 9.7933E-14 | 7.3866E-14
F13 5.3530E-13 3.0608E-13 | 4.4706E-13 | 2.6744E-13
F14 1.4440E-15 1.2862E-15 1.4267E-15 | 1.7586E-15
F15 6.1666E-12 3.4063E-14 | 3.1147E-14 | 1.7152E-14
Fl6 1.5544E-14 | 6.5956E-15 | 6.1553E-15 | 6.6566E-15
F17 6.0061E-14 | 7.3601E-13 1.5832E-11 | 8.7437E-14
F18 1.5891E-13 | 1.0284E-12 6.3152E-14 | 1.6779E-09
F19 6.2486E-15 | 9.2926E-03 5.3559E-15 | 2.0085E-15
F20 8.2629E-15 8.1218E-15 | 5.6553E-15 | 5.3160E-15
F21 1.8562E-12 1.3714E-12 | 4.6740E-13 | 3.6452E-13
F22 7.9963E-13 6.8134E-13 | 9.2293E-14 | 3.1330E-13
F23 1.5963E-13 | 3.3840E-13 9.2293E-14 | 7.0228E-13

Table 12. The Std values of dimensions are equal to 300 and 500. The best of the comparison results are in
[bold].

Joest (D = 50) Joest (D = 100)

GOA LFGOA GOA LFGOA

F1 3.6191E+01 1.3103E-09 1.2055E+00 2.1951E-11
F2 1.3482E-03 2.4163E-21 2.4131E-05 1.9438E-31
F3 2.3206E-03 9.8987E-12 5.8872E-03 1.1903E-12
F4 6.5617E-02 7.8056E-06 1.5523E-02 5.1792E-07
F5 1.7916E+00 3.7966E+00 3.8084E+00 3.8440E+00
Fé6 3.9447E-03 3.8284E-01 3.5299E-04 2.3066E-01
F7 2.1050E-02 9.9672E-05 1.4000E-02 1.3129E-04
F8 —1.5817E+03 | —1.4125E+03 | -1.7396E+03 | -1.5779E+03
F9 9.9496E+00 0.0000E+00 2.0894E+01 0.0000E+00
F10 2.9110E-02 1.0108E-09 1.8809E-04 1.4488E-09
F11 2.8866E-01 6.6189E-09 2.1058E-01 3.5065E-10
F12 9.0110E-04 2.9048E-04 7.2328E-05 9.2275E-05
F13 2.8781E-04 3.5316E-03 2.0603E-04 1.9707E-05
F14 9.9800E-01 9.9800E-01 9.9800E-01 9.9800E-01
F15 1.6420E-03 2.0722E-03 1.6133E-03 1.3146E-03
Fl16 -1.0316E+00 | -1.0316E+00 | -1.0316E+00 | -1.0316E+00
F17 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01
F18 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00
F19 —-3.8556E+00 | —9.9789E-01 —3.8628E+00 | —3.5906E+00
F20 —-3.3220E+00 | -3.2503E+00 | -3.2031E+00 | -3.3220E+00
F21 —-1.0153E+01 —5.0552E+00 | —1.0153E+01 —5.0552E+00
F22 —1.0403E+01 —5.0877E+00 | —1.0403E+01 —5.0877E+00
F23 —5.1756E+00 | —5.1285E+00 | —1.0536E+01 | -5.1285E+00

Table 13. The best values of dimensions are equal to 50 and 100. The best of the comparison results are in
[bold].
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ﬁ)esl (D = 300) fbest (D = 500)

GOA LFGOA GOA LFGOA

F1 1.3993E-01 4.8395E-13 4.4886E-02 1.0601E-13

F2 1.0234E-04 1.7641E-67 3.8426E-05 2.0369E-93

F3 3.4992E-07 1.2297E-13 2.8058E-09 4.8504E-16

F4 6.1177E-05 5.2908E-08 2.2484E-05 2.5675E-08

F5 2.2175E+01 3.4648E+00 4.4415E-01 3.2320E+00

F6 9.6501E-08 1.5732E-01 6.1218E-09 1.2891E-01

F7 2.5094E-03 1.6588E-05 1.7812E-03 3.3404E-05

F8 -1.5422E+03 | -1.3501E+03 | -1.8565E+03 | -1.2817E+03
F9 1.1940E+01 0.0000E+00 | 3.9798E+00 0.0000E+00
F10 2.8376E-05 2.1260E-09 1.3150E-05 2.3226E-10
F11 1.0846E-01 1.8996E-13 2.9332E-01 5.6066E-14
F12 6.9018E-09 2.4229E-08 1.3700E-10 -9.9993E-01
F13 5.2347E-09 1.1367E-08 2.7928E-09 2.5812E-09
F14 9.9800E-01 9.9800E-01 9.9800E-01 9.9800E-01
F15 2.0363E-02 1.2232E-03 1.2232E-03 1.2232E-03
Fl6 -1.0316E+00 | -1.0316E+00 | -1.0316E+00 | -1.0316E+00
F17 3.9789E-01 3.9789E-01 3.9795E-01 3.9789E-01
F18 3.0000E+00 | 3.0000E+00 | 3.0000E+00 1.9540E+03
F19 -3.8628E+00 | -1.0008E+00 | -3.8628E+00 | -1.0008E+00
F20 -3.3220E+00 | -3.3220E+00 | -3.3220E+00 | -3.3220E+00
F21 -1.0153E+01 | -5.0552E+00 | -1.0153E+01 | -5.0552E+00
F22 -1.0403E+01 | -5.0877E+00 | -5.0877E+00 | -5.0877E+00
F23 -5.1756E+00 | -5.1285E+00 | -5.0877E+00 | -5.1285E+00

Table 14. The best values of dimensions are equal to 300 and 500. The best of the comparison results are in
[bold].

and the eight grasshopper trajectories are employed from the first to the last iteration. Tracking the position
change of grasshoppers during optimization, we can observe how the LFGOA algorithm explores and exploits
the search space. Monitoring eight grasshopper trajectories during optimization, we can know in detail the
movements of eight grasshoppers respectively.

From the first column in Fig. 7, we can see that the search history of grasshoppers is mostly concentrated in
one region, which indicating that the LFGOA algorithm can quickly search for promising regions. In order to
see the changes of the grasshoppers’ positions during searching, the trajectories of eight grasshoppers are picked
in the second and third columns in Fig. 7, Fig. 8, and Fig. 9 as well. In the fourth and fifth columns of Fig. 7,
the Box plot is used to check affirmed of the LFGOA algorithm stability. In the fourth column of Fig. 7, the Box
plot is used to depict the fitness status by five groups (each group covering 20 iterations) at every stage. In the
fifth column of Fig. 7, the Box plot is used to depict the position change by five groups (each group covering 20
iterations) at every stage.

The unimodal test functions FI-F7. 1In the first columns in Fig. 7, for the unimodal test functions F1-F7, it
can be clearly seen that agents tend to exploration promising regions of the search space and exploitation very
accurately around the global optima over the course of iterations in the form of rough like adozens of agents
clustered together.

In the second and third columns in Fig. 7, the trajectory graphs of eight grasshoppers (as representative of all
grasshoppers) are selected to show the grasshopper’s dynamic position changes respectively during optimization.
From the second and the third columns in Fig. 7: we can see that the third in F2 and F7, the fifth and the seventh
in F1, the fifth in F5, all of these grasshoppers undergo slight fluctuations during the grasshoppers searching
respectively. From the second and third columns of Fig. 7: we also can see trajectory curves that the third in F1,
the fourth and the sixth in F3, the third in F4, the first, the third and the eighth in F6, all of the grasshoppers
made abrupt largely fluctuations in the initial stages of optimization respectively. Exploration of search space
takes place due to high repulsive rate of the LFGOA algorithm. It is also seen that, as these grasshopper’s opti-
mization approaches further the fluctuation decreased gradually over the course of iterations. This is done due
to the attraction forces as well as comfort zone between grasshoppers. According to Berg et al.*, this behaviour
can guarantee that an algorithm eventually convergences to a point and search locally in a search space.

There are some mild autocorrelations and cross-linked between the trajectory graphs of grasshopper in the
first columns of Fig. 7 with the second and third columns of Fig. 7, and the search history of grasshoppers in
the first column of Fig. 7, the small fluctuation of the grasshoppers corresponding to the small scatter graph of
the grasshopper clustered together, the great fluctuation of the grasshoppers corresponding to the big scatter
graph of the grasshopper clustered together. It is meaningful on some extent, the inferences about the effectively
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Figure 7. The quantitative metrics about the unimodal test functions F1-F7.
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convergence of the LFGOA algorithm while avoiding most locally optimal from the trajectory graphs of grass-
hopper and search history of grasshoppers.

To analysis the LFGOA randomness nature, the Box plot is used to show the difference by comparisons the
fitness about the LFGOA algorithm. As the box contains 50% of the data, therefore, the height of the box can
directly reflect the fluctuation level of the fitness about the LFGOA algorithm. The box plot is relatively short for
the unimodal benchmark function F5 in the fourth column of Fig. 7 that reflects the fluctuation of the fitness
is slight, which corresponding little promising regions of the search space of F5 in the first column in Fig. 7.
There are more or little outliers among the entire unimodal benchmark functions F1-F7, which corresponding
there are separate scatter clustered regions, except the big promising regions of the search space. The box plot
is relatively tall for the unimodal benchmark function F4 in the fifth column of Fig. 7 that reflects the fluctua-
tion of the position changes are great at every search stage, which corresponding the grasshoppers made abrupt
largely fluctuations in the initial stage of optimization respectively in the second and third columns in Fig. 7.

The multimodal test functions F8-F13. From the first column in Fig. 8, for the multimodal benchmark func-
tions F8-F13, it can be clearly seen that agents tend to exploration promising regions of the search space and
exploitation very accurately around the global optima over the course of iterations in the form of rough like
adozens of agents clustered together.

From the second and third columns of Fig. 8: we can see that the F9, the sixth and the eighth in F10, the third
in F12, all of the grasshoppers undergo slight fluctuations during the grasshoppers searching respectively. From
the second and the third columns in Fig. 8: the first, the fifth, the sixth, the seventh, and the eighth in F8; the
first, the third, the fourth, the sixth, and the eighth in F11; the fifth, the sixth, and the eighth in F12; the third in
F13; all of these grasshoppers made abrupt largely fluctuations in the initial stages of optimization respectively
during the grasshoppers searching respectively.

There is not outlier in the box plot of the multimodal benchmark function F10 in the fourth column of Fig. 8
that reflects the fluctuation of the fitness is not large and the grasshoppers clustered around a relatively little
promising regions of the search space.

There are more or little outliers among the entire multimodal benchmark functions F8-F13 in the fifth column
of Fig. 8, which corresponding there are separate scatter clustered regions, except the big promising regions of
the search space.

The composite test functions F14-F23. From the first column in Fig. 9, for the composite benchmark functions
F14 and F15, it can be clearly seen that agents tend to exploration promising regions of the search space and
exploitation very accurately around the global optima over the course of iterations in the form of rough like
adozens of agents clustered together. From the first column in Fig. 9, for the composite benchmark functions
F21, F22 and F23, from a search history point of view, the agents tend to extensively exploration promising
regions of the search spaces and exploitation the best target in the form of the scatter shape is rough like a thin
stripe shape.

From the second and third columns of Fig. 9, we can see that the F21, F22, and F23, all of these grasshoppers
made abrupt largely fluctuations from positive to the zero with one direction in the initial stage of optimization
respectively during the grasshoppers extensively searching. There are more or little outliers among the composite
benchmark function in the fourth column of Fig. 9, which corresponding there are separate scatter clustered
regions, except the big promising regions of the search space. There are more or little outliers among the entire
composite benchmark functions in the fifth column of Fig. 9, which corresponding there are separate scatter
clustered regions, except the big promising regions of the search space.

Computational complexity of the LFGOA. In this section, the general computational complexity of
the LFGOA is presented. The computational complexity of the LFGOA typically relies on three rules: solutions
initialization, calculate the fitness functions, and updating of solutions. In the associated formulas, N indicates
the number of individuals in the population (the number of solutions), and T represents the maximum quantity
of iterations. During the initial stage, the computational complexity of fitness evaluation is O(N). The compu-
tational complexity of the solutions’ updating processes is O(T x N) + O(T x N x Dim), which consists of
exploring for the best positions and updating the solutions’ positions of all solutions, where the dimension size
of the given problem is called Dim. From the above analysis, we can acquire the total computational complexity
of the LFGOA is O(N x (T x Dim + 1)).

Results and discussion

As we can see in Section 4, the LFGOA algorithm significantly outperforms others in terms of numerical opti-
mization. There are several reasons why the LFGOA algorithm did perform well in most of the test cases. First,
Levy-flight strategy: Levy flight can increase the diversity of the population and make the algorithm jump out
of local optimum more effectively. This approach is helpful to make LFGOA faster and more robust than GOA.
Second, in GOA, it is assumed that the fittest grasshopper (the one with the best objective value) during optimi-
sation is the target. This will assist GOA to save the most promising target in the search space in each iteration
and requires grasshoppers to move towards it. This is done with the hope of finding a better and more accurate
target as the best approximation for the real global optimum in the search space.

Therefore, this approach promotes the exploration of promising feasible regions and is the main reason for
the superiority of the LFGOA algorithm. Third, the LFGOA algorithm has an explicit restart mechanism. These
are the reasons why LFGOA performs better than other algorithms at the end of the results section. Another
finding in the results is the performance of most of the AHA, AO, DA, DMOA, GBO, HGS, HHO, and MVO
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are not good enough. There is no restart mechanism for significant abrupt movements in the search space and
this is likely to be the reason the performance of most of the eight algorithms is not good enough. In summary,
the discussion and findings of this work clearly demonstrate the quality of the exploration, exploitation, local
optima avoidance, and convergence rate of the LFGOA algorithm.

Real application of LFGOA in constrained engineering problems. Engineering constrained opti-
mization problems are complex, sometimes even the optimal solutions of interest do not exist®. Engineering
constrained optimization problems have been utilized by many researchers to evaluate the performance of dif-
ferent algorithms*. Although the above-discussed results prove and verify the high performance of the LFGOA
algorithm, there is also to confidently confirm the performance of this algorithm in engineering constrained
optimization problems in real life. In this section, the effectiveness of the LFGOA algorithm is verified in terms
of its ability to solve constrained engineering optimization problems in practical application; seven well-studied
constrained engineering design examples are selected to verify the proposed LEFGOA algorithm, including: Him-
melblau’s nonlinear optimization problem, Cantilever beam design, Car Side Impact Design, Gear train Design,
Pressure vessel design, Speed Reducer Design, and tabular column design.

However, different real-world problems often have different constraints, so a suitable approach is demanded
to deal with such problems*!. The main idea is to transform the actual optimization problem into a mathematical
model, and then use the LFGOA algorithm to find the optimal solution. Normally, f(x) is the fitness function, x
represents the search space, x1, X2, . . . , X, represent different dimensions, there are several equality and inequal-
ity constraints in engineering constrained optimization problems. In order to be suitable for these engineering
constrained problems, the search agent of our proposed LFGOA algorithm does not only rely on fitness func-
tions to update the location. So, the simplest method of dealing with constraints (penalty functions) can be used
effectively to deal with constraints in algorithms*2. That is, if the search agent violates any constraints, it will be
assigned a large objective function value. This way, it is automatically replaced by a new search agent after the
next iteration. So, we use penalty functions in which the LFGOA algorithm has achieved good values if it violates
one of these constraints.

Himmelblau’s nonlinear optimization problem.. Before solving the engineering constrained prob-
lems, the LFGOA was benchmarked using a well-known problem, namely, Himmelblau’s problem, which is a
relatively complex constrained problem of minimization five positive design variables and six nonlinear inequal-
ity constraints, and ten boundary conditions. This problem has originally been proposed by Himmelblau* and
it has been widely used as a benchmark nonlinear constrained optimization problem and applied to many fields.
The problem can be outlined as follows:

Consider:
X = [x1>x2) X35 X4, XS],
Minimize:
(x) = 5.3578547x% + 0.8356891x; x5 + 37.293239x] — 40792.141,
3

Subject to:

0=<g,(x) <92

90 < g,(x) < 110,

20 < g5(x) <25,
Where:

g1(x) = 85.334407 + 0.0056858x,x5 + 0.0006262x; x4 — 0.0022053x3x5

£2(x) = 80.51249 + 0.0071317x,x5 + 0.0029955x x; — 0.0021813x2
£3(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x;x3 + 0.0019085x3x4
78 < x; < 102,

33 < x, < 45,

27 < x3, X4, X5 < 45

Table 15 demonstrates the comparison of the best solution among the different optimizers and the correspond-
ing design variables, while the statistical results for each considered strategy are detailed in Table 16. The results
obtained by LFGOA algorithm are compared with five state-of-the-art algorithms, such as Artificial Bee Colony
algorithm*, sparrow search algorithm**, Cuckoo search algorithm*, harmony search algorithm*, and Differ-
ential gradient evolution plus algorithm® respectively in the literatures. It can be clearly seen that the LFGOA
algorithm performed better without any violation and is feasible on this issue. The convergence curve in Fig. 10
shows the function values versus the iteration numbers for the constrained problem.

Cantilever beam design. Cantilever beam design is a type of concrete engineering problems. It works to
minimize the total weight of a cantilever beam by optimizing the hollow square cross-section parameters. There
are five squares of which the first block is fixed and the fifth one burdens a vertical load.
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Optimal values for variables

Algorithm x1 x2 x3 x4 x5 f(x)

LFGOA 78.00 |34.41 |27.76 |40.88 |44.56 |-30850.53
ABC 78.00 |33.00 |27.07 |45.00 |44.97 |-31025.58
SSA 78.00 |33.00 |30.00 |45.00 |36.78 |-30665.54
CS 78.00 |33.00 |30.00 |45.00 |36.78 |-30665.23
HS 78.00 |33.00 |30.00 |45.00 |36.78 |-30665.50
DGE+ 78.00 |33.00 |30.00 |45.00 |36.78 |-30665.54

Table 15. Reported results for constrained problems from different optimizers. The best of the comparison
results are in [bold].

Algorithm | Best Mean Std
LFGOA —-30850.5347 | —30859.2667 | 16.5467
ABC —-31025.5820 | —30665.5390 | 0.0000
SSA -30665.5387 | —30665.3808 | 0.5713
CS -30665.2327 | N/A 11.6231
HS -30665.5432 | N/A N/A
DGE+ —30665.5391 | —=30665.5391 | 0.0001

Table 16. Comparative results of LFGOA with other methods for Himmelblau’s (N/A stands for not
available). The best of the comparison results are in [bold].
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Figure 10. Convergence curve for Himmelblau’s constraint problem.
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Figure 11. Schematic of cantilever beam.
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Figure 12. Convergence of cantilever beam.

For this well-known case, Fig. 11 shows the shape of the cantilever beam, the beam is rigidly supported at
right side end, and a vertical force acts on the cantilever free node of the left side, which is supported at the
rightmost block and the other blocks are left free. The widths and heights of the five beams considered of the
problem are used as design parameters of the optimization. The beam consists of five hollow square blocks with
constant thickness, whose heights (or widths) are the decision variables. The cantilever weight optimization is
formulated in the following equation:

Consider:

X = [xl:x2>x3>x43 x5]>

Mathematically speaking, it is possible to write most optimization problems in the generic form:
Minimize:

f(x) =0.06224(x1 + x + x3 + X4 + X5),
Subject to:

@) 61+27+19+7+1 1<0
X)=—+—+—=+—=+—=5— s
VT8

Variable range:
0.01 < x1,x2, X3, %4, x5 < 100.

To evaluate the performance of the proposed LFGOA in solving this problem, some of the algorithms that are
chosen for comparison are Artificial hummingbird algorithm® and Gradient-Based Optimizer® in the literatures.
The results obtained by LFGOA and their comparison with the aforementioned state-of-the-art metaheuristics
are reported in Tables 17 and 18, while the statistical results for each considered strategy are detailed in Table 18.
From Tables 17 and 18, it can be seen that LFGOA achieves the high-quality solution for this case. The results
of LFGOA algorithm for this problem are consistent to those of other real problems, in which the LFGOA algo-
rithm outperforms the other two algorithms and is the first most efficient approach, and shows very competitive
results. The comparative results show that our method can effectively solve this case and reveal better design.

It is evident from Tables 17 and 18 that the proposed LFGOA algorithm performed better without any viola-
tion. The convergence curve shows the function values versus the Iteration numbers for the constrained problem
are given in Fig. 12.

Car side impact design.  On the foundation of the European Enhanced Vehicle-Safety Committee (EEVC)
procedures, a car is exposed to a side impact, and the aim of this benchmark problem is minimizing the weight
of the door. There are eleven influence parameters in this problem, which describe as follow:

the thicknesses of B-pillar inner (x;),
the B-pillar reinforcement (x3),

the floor side inner (x3),

the cross members (x4),

the door beam (xs),

the door beltline reinforcement (x¢),
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Optimal values for variables
Algorithm | x1 x2 x3 x4 x5 f(x)
LFGOA 6.008900 | 5.304900 | 4.502300 | 3.507700 |2.150400 | 1.336554
AHA 6.013830 | 5.302425 | 4.496347 | 3.508429 |2.152705 | 1.339965
GBO 6.012400 | 5.312900 | 4.494100 | 3.503600 | 2.150600 | 1.339957

Table 17. Results of the comparative algorithms for solving the cantilever beam design problem. The best of
the comparison results are in [bold].

Algorithm | Best Mean | Std

LFGOA 1.3366 | 1.3377 | 0.0016
AHA 1.3400 | 1.3401 | 0.0000
GBO 1.3400 | 1.3400 | 0.0000

Table 18. Comparative results of LFGOA with other methods for cantilever beam design. The best of the
comparison results are in [bold].

the roof rail (x7),

the materials of B-pillar inner (xg),
the floor side inner (xo),

the barrier height (x;),

the hitting position (x11).

Consider:
X = [x1, X2, X3, X4, X5, X5 X7, X8, X9, X10> X11 ],

Structural weight and response to impact can be approximated using global response surface methodology in
order to simplify the analytical formulation of the optimization problem and speed up computations. As an
optimization problem, mathematically speaking, it is possible to write simplified models optimization problems
in the generic form:
Minimize:
f(x) =1.98 + 4.90x; + 6.67x3 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7
Ten constraints are imposed on the design problem.
Subject to:
g1(x) = 1.16 — 0.3717x,x4 — 0.00931x,x19 — 0.484x3%0 + 0.01343x6x10 — 1 < 0,
£(x) = 46.36 — 9.9x; — 12.9x1x 4+ 0.1107x3x10 — 32 < 0,
g3(x) = 33.86 + 2.95x3 + 0.1792x1 — 5.057x1x2 — 11.0x2x3 — 0.0215x5x10 — 9.98x7x3 + 22.0x3x9 — 32 < 0,
g4(x) = 28.98 + 3.818x3 — 4.2x1x2 + 0.0207x5x10 + 6.63x6X9 — 7.7x7x8 + 0.32x9x190 — 32 < 0,
g5(x) = 0.261 — 0.0159x1x2 — 0.188x1x3 — 0.019x2x7 + 0.0144x3x5 4 0.0008757x5x10 + 0.08045x6x9
+0.00139xgx11 + 0.00001575x10x11 — 0.32 < 0,
g6(x) = 0.214 + 0.00817x5 — 0.131x7x3 — 0.0704x1x9 + 0.03099x2x5 — 0.018x2x7 + 0.0208x3x3
+ 0.121x3x9 — 0.00364x5x6 + 0.0007715x5x190 — 0.0005354x6x10 + 0.00121x8x1]
+ 0.00184x9x19 — 0.02x2 — 0.32 < 0,
g7(x) = 0.74 — 0.61xp — 0.163x3x8 + 0.001232x3x10 — 0.166x7x9 + 0.227x§ -032<0,
g8(x) = 4.72 — 0.5x4 — 0.19x2x3 — 0.0122x4x19 + 0.009325x6x10 + 0.000191x%1 —4 <0,
go(x) = 10.58 — 0.674x1x2 — 1.95x2x8 + 0.02054x3x10 — 0.0198x4x10 + 0.028x6x10 — 9.9 < 0,
gio(x) = 16.45 — 0.489x3x7 — 0.843x5x6 + 0.0432x9x19 — 0.0556x9%11 — 0.000786xf1 — 157 <0,
The simple bounds of this problem are:
0.5 < x1,x3,x4 < 1.5,
0.45< x, < 1.35,
0.875 < x5 < 2.625
04 < xg,x7 < 1.2
0.192 < xg,x9 < 0.345
— 30 < x10,x11 < +30.
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LFGOA | SNS EOBL-GOA | FA

x1 0.5082 0.5000 0.5000 0.5000
X2 0.8902 1.1159 1.1164 1.3600
x3 0.5000 0.5000 0.5000 0.5000
x4 1.2635 1.3029 1.3021 1.2020
x5 0.5000 0.5000 0.5000 0.5000
X6 1.0048 1.5000 1.5000 1.1200
x7 0.5000 0.5000 0.5000 0.5000
x8 0.3233 0.3450 0.3450 0.3450
x9 0.2810 0.1920 0.1920 0.1920
x10 5.2244 —19.6389 | —19.5494 8.8731
x11 12.0882 | 0.0000 -0.00431 —-18.9981
f(x) 21.2196 | 22.8430 22.8429 22.8430

Table 19. The optimum values of the car side impact design example.

Algorithm Best Mean Std

LFGOA 21.2196 |22.9125 |0.0417
SNS 22.8430 |22.8815 |0.1018
EOBL-GOA 22.8430 | 22.8351 |0.0243
FA 22.8430 |22.8938 | 0.1667

Table 20. Comparative results of LFGOA with other methods for car side impact design. The best of the
comparison results are in [bold].
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Figure 13. Convergence curve for car side impact design.

To evaluate the performance of the proposed LFGOA algorithm in solving this problem, some of the algorithms
that are chosen for comparison are Social Network Search*, Enhanced grasshopper optimization algorithm',
and Firefly Algorithm® respectively in the literatures.

The results obtained by LFGOA and their comparison with the aforementioned state-of-the-art metaheuris-
tics are reported in Table 19, while the statistical results for each considered strategy are detailed in Table 20.

It is evident from Tables 19 and 20 that the proposed LFGOA algorithm performed better without any viola-
tion. The convergence curve shows the function values versus the Iteration numbers for the constrained problem
are given in Fig. 13.

Discrete engineering problem-gear train design. The high-speed train drive wheel transmission sys-
tem mostly adopts a gear transmission structure. Due to the limited size of the structure, the pinion gear and the
motor drive shaft are connected by an interference fit. The vibration is caused by an unreasonable design, which
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10}

Figure 14. Schematic of gear train.
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Figure 15. Convergence of gear train.

causes a system failure. The objective of gear train design problem is to minimize the cost of the “Gear ratio” of
the gear train in field mechanical engineering problem. The “Gear ratio” defined as the ratio of the angular veloc-
ity of the output shaft to the angular velocity of the input shaft, the “Gear ratio” is calculated as follows:

angular velocity of output shaft

Gearratio =
angular velocity of input shaft

The parameters of this problem are discrete with the increment size of 1 since they define the teeth of the gears
(T4 Tp, T¢, T4). There constraints are only limited the variable ranges. The design of gear train is a kind of mixed
problems which have to determine various types of design variables such as continuous, discrete, and integer
variables. This problem simply stated is: given a fix input drive and a number of fixed output drive spindles, how
can the spindles be driven by the input using the minimum number of connecting gear in the train. To handle
discrete parameters, each search agent was rounded to the nearest integer number before the fitness evaluation.

The number of teeth of gears T (= x1), Tp (= x2), Tc (= x3), and T (= x4) are considered as the design vari-
ables, and illustrates at Fig. 14.

Consider:

[x1, %2, %3, X4] = [T, Tty Te, Tal,

The mathematical formulation is provided as follows:
Minimize:
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Optimal values for
variables
Algorithm | x1 |x2 |x3 |x4 | Optimal gear ratio
LFGOA 32 |12 |23 |59 |2.62E-16
SNS 43 |19 |16 |49 |2.70E-12
CSOAOA 22 |16 |48 |50 |2.10E-10
ALO 49 |19 |16 |43 |2.70E-12
MVO 43 |16 |19 |49 |2.70E-12

Table 21. Comparison results of the gear train design problem. The best of the comparison results are in
[bold].

Algorithm | Best Mean Std

LFGOA 2.62E-16 | 1.35E-16 | 1.30E-16
SNS 2.70E-12 | 1.68E-10 | 3.75E-10
CSOAOA 2.10E-10 | 2.10E-10 | 3.82E-10
ALO 2.70E-12 | 4.72E-09 | 6.08E-09
MVO 2.70E-12 | 7.59E-10 | 1.08E-09

Table 22. Comparative results of LFGOA with other methods for gear train design. The best of the
comparison results are in [bold].

1 X3X2 2
F0) = Cooan s’

The design engineering constraint is defined as the number of teeth on any gear that should only be in the range
of [12, 60], in other words, the constraints are only limited the variable ranges: 12 < xj,x2,x3,x4 < 60

This section uses the proposed LFGOA algorithm to solve the gear train design problem and compares the
results with other optimization algorithms, including Social Network Search*’, An enhanced hybrid arithmetic
optimization algorithm®', The Ant Lion Optimizer®?, and Multi-Verse-Optimizer® respectively in the literatures.
Table 21 compares the minimum cost and design variables obtained using the LFGOA algorithm and other
optimization algorithms, while the statistical results for each considered strategy are detailed in Table 22.

However, the optimal values for variables obtained are different. It is worth pointing out that any feasible
solution is an optimal solution, the values in Table 21 which gained by the five algorithms, only rough agreed
with each other. Therefore, this design can be considered as a new design with a similar optimal “Gear ratio”.
Table 21 shows that the LFGOA algorithm gives competitive results for numbers of function evaluations and
is suitable to solve discrete constrained problems. Once more, these results prove that the proposed LFGOA
algorithm can solve discrete real problems efficiently. As shown in the Fig. 15, the convergence curve is quickly
and the solutions were obtained instantly under satisfy all constraints.

Pressure vessel design. The pressure vessel design optimization task has also been popular among
researchers and optimized in various studies. Pressure vessel design is a mixed discrete-continuous constrained
optimization problem. Using rolled steel plate, the shell is made in two halves that are joined by two longitudi-
nal welds to forms a cylinder. The objective of this problem is to minimize the total cost consisting of material,
forming, and welding of a cylindrical vessel as in Fig. 16. Both ends of the vessel are capped, and the head has a
hemi-spherical shape. There are four variables in this problem:

Thickness of the shell (T5),

Thickness of the head (T},),

Inner radius (R),

Length of the cylindrical section without considering the head (L).

In pressure vessel, the thickness of the shell (T;) and head (T},), the internal radius (R), and the extent of the
section, minus the head (L), are variables to be optimized. This problem is subject to four constraints: T and T},
are the available thicknesses of rolled steel plates, which are integer multiples of 0.0625 inch, and R and L are
continuous variables. Many meta-heuristic methods that have been adopted to optimize this problem includes
Social Network Search*’, Composite Differential Evolution with Modified Oracle Penalty Method™®, Artificial
hummingbird algorithm?’, Manta ray foraging optimization®, a Hybrid Co-evolutionary Particle Swarm Opti-
mization Algorithm®’, the Automatic Dynamic Penalisation method (ADP) for handling constraints with genetic
algorithms®®, and a Hybrid Generalized Reduced Gradient-Based Particle Swarm Optimizer®’ respectively in
the literatures.
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Figure 16. Schematic of pressure vessel.
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Figure 17. Convergence of pressure vessel.

These constraints and the problem are formulated as follows:

Consider:

Minimize:

Subject to:

Variable range:

x = (x1,%2,%3,x4) = (Ts, Ty, R, L),

(x) = 0.6224x1x3x4 + 1.7781x2x2 + 3.1661x2x4 + 19.84x7x3,
3 1 1

g1(x) = —x1 +0.0193x3 < 0,
£(x) = —x3 + 0.00954x3 < 0,

4
& (%) = —mx3xy — 5mcg + 1296000 < 0,

ga(x) = x4 — 240 <0,
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Optimal values for variables

Algorithm | x1 x2 x3 x4 f(x)

LFGOA 0.7840 | 0.3875 |40.6220 | 195.8397 | 5895.5481
SNS 0.8125 | 0.4375 | 42.0985 |176.6366 |6059.7143
MOCoDE 0.8125 | 0.4375 |42.0984 | 176.6366 | 6059.7143
AHA 0.7782 | 0.3847 |40.3197 |199.9993 | 5885.3537
MRFO 0.7787 | 0.3849 | 40.3447 | 199.6516 | 5987.8131
ABC 0.7782 | 0.3847 |40.3211 | 199.9802 | 5885.4033
CPSOSA 0.8125 | 0.4375 |42.0984 |176.6366 |6059.7143
ADP_GA 0.8125 | 0.4375 |42.0968 |176.6580 |6059.9384
PSO_GRG 0.8125 | 0.4375 |42.0984 |176.6366 |6059.7144
SO 0.7819 |0.3857 |40.5752 |196.5499 | 5887.5298

Table 23. Comparison of the best solution for pressure vessel design found by different methods.

Algorithm | Best Mean Std
LFGOA 5895.5481 | 5990.7402 | 65.6885
SNS 6059.7143 | 6097.1003 | 92.8000
MOCoDE 6059.7143 | 6059.7143 | 0.0000
AHA 5885.3537 | 5885.5382 | 0.1378
MRFO 5987.8131 | 6167.4900 | 12.6209

CPSOSA 6059.7143 | 6059.7143 | 0.0000

ADP_GA 6059.9384 | 6182.0022 | 122.3256
PSO_GRG 6059.7144 | 6369.4767 | 454.8344
SO 5887.5298 | 5989.8092 | 104.0000

Table 24. Comparative results of LFGOA with other methods for gear train design. The best of the
comparison results are in [bold].

0=<x <99,
0=<x <99,
10 < x3 < 200,
10 < x4 < 200,

From Tables 23 and 24, it is evident that LFGOA obtain the better solution among these compared approaches.
From Table 24, once more, the statistical results of different methods also demonstrate that the proposed LFGOA
method can solve this constrained optimization problems with discrete-continuous variables effectively and
provide competitive statistical results. It should be noted the results of LFGOA do not denote that it can find
better solutions due to the accuracy.

As shown in the Fig. 17, the convergence curve quickly converge towards the global optimum and the solu-
tions was obtained instantly under satisfy all constraints.

Speed reducer design. In mechanical systems, one of the essential parts of the gearbox is the speed
reducer, and it can be considered as a challenging benchmark engineering problem and can be employed for
several applications. In this optimization problem, the weight of the speed reducer is to be minimized with sub-
ject to 11 constraints, as shown in Fig. 18. The goal of the speed reducer design problem is to minimize the total
weight of the reducer by optimizing the seven variables, which describe as follow:

the width of the gear surface (cm) (x; = b),

the module of teeth (cm) (x, = m),

the number of teeth in the pinion (x3 = p),

the length of the first shaft between bearings (cm) (x4 = ),
the length of the second shaft between bearings (cm) (x5 = k),
the diameter of first shafts (cm) (xg = dy),

the diameter of second shafts (cm) (x; = d,).

The mathematical model of the gear train design problem is:
Consider variable:
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Figure 18. Schematic of speed reducer.
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Figure 19. Convergence of speed reducer.

Minimize:

X = (x1, X2, X3, X4, X5, X6, x7) = (b, m, p, Iy, b, d1, d).

f(x) =0.7854x,x3 (3.3333xF + 14.9334x3 — 43.0934) — 1.508x; (xZ -+ x3) + 7.4777 (x + x3)
+ 0.7854 (x4 + x5%7),

Subject to:

Scientific Reports |

(2023) 13:124 |

https://doi.org/10.1038/s41598-022-27144-4

nature portfolio



www.nature.com/scientificreports/

27
gl(x) = 2 -1 =< 0>
X1X5X3
397.5
LX) =—735-1=0
X1X5X5
1.93x3
HBx)=—73—-1=0,
X2XgX3
1.93x3
gax) =——1> —1<0,
X2X7X3
® \/(%)2+16.9x 106 .
x) = —_1<
& 110x3 =
\/(%)2 +157.5 x 109
&x) = 552 —-1<0
XX
gl =""—1<0,
5XZ
gs(x)=x -1=<0,
1
() =b —1<0
X) = — R
& 12x; -
1.5x¢ + 1.9
gox) =———-1=0,
X4
1.1x; +1.9
gux)=——-1<0,
X5
Variable range:
2.6 <x; < 3.6,
0.7 <x <0.8,
x3 € {17,18,19, ..., 28},
7.3 < x4,
x5 < 8.3,
2.9 < x5 < 3.9,

5<x7 <55.

This case was previously tackled by many scholars using various heuristic methods, including Social Network
Search®, Information-Decision Searching Algorithm®®, An enhanced hybrid arithmetic optimization algorithm®!,
Artificial hummingbird algorithm?®, Manta ray foraging optimization®, sparrow search algorithm*, A simpli-
fied non-equidistant grey prediction evolution algorithm®, Gradient-based optimizer*, and Snake Optimizer®.

The statistical results of LFGOA and nine optimization methods are compared in Tables 25 and 26. Among
the compared optimization algorithms, the LFGOA ranks first as superior to other approaches in optimizing
the reducer design, our method can find better geometric variables for this case. Hence, our result is feasible and
verifies the effectiveness of the proposed LFGOA algorithm. The results demonstrate that the proposed LFGOA
can provide reliable and very comprising solutions compared with the other algorithms.

As shown in the Fig. 19, the convergence curve quickly converge towards the global optimum and the solu-
tions was obtained instantly under satisfy all constraints.

Tubular column design.  Tubular column design is an example of designing a uniform column of the tubu-
lar section to carry a compressive load at minimum cost as described in Fig. 20. There are two design variables
in this problem, which describe as follow:

® the mean diameter of the column d(= x1)(cm),
o the thickness of tube t (= x;)(cm).

The five characteristic parameters in the constituent materials of the column are set as:

P is a compressive load(= 2500kgf ),
oy represents the yield stress(= 500kgf /cm?),
E is the modulus of elasticity(= 0.85 x 10%kgf /cm?),

0 is the density(= O.OOZSkgf/cm3),
L denotes the length of the designed column (= 250cm).
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Optimal values for variables f(x)

Algorithm | x1 x2 x3 x4 x5 x6 x7

LFGOA 3.5000 |0.7000 |17.0000 |7.4147 |7.6669 |2.9087 |5.0000 |2743.1379
SNS 3.5000 |0.7000 |17.0000 |7.3000 |7.7153 |3.3502 |5.2867 |2994.4711
IDSE 3.6000 |0.7000 |17.0000 |7.3000 |8.3000 |3.3846 |5.5000 |3197.8394
CSOAOA 3.5000 |0.7000 |17.0000 |7.3000 |7.8000 |3.3500 |5.2900 |2996.3017
AHA 3.5000 |0.7000 |17.0000 |7.3000 |7.7153 |3.3502 |5.2867 |2994.4712
MRFO 3.5000 |0.7000 |17.0000 |7.3000 |7.7153 |3.3502 |5.2867 |2994.4711
SSA 3.5001 |0.7000 |17.0000 |7.3000 |7.8000 |3.3512 |5.2868 |2996.0217
NeGPE-s 3.5000 |0.7000 |17.0000 |7.3000 |7.7153 |3.3502 |5.2867 |2990.0000
GBO 3.4999 |0.7000 |17.0000 |7.3000 |7.8000 |3.3502 |5.2866 |2996.3481
SO 3.4976 |0.7000 |17.0000 |7.3000 |7.8000 |3.3501 |5.2857 |2995.5424

Table 25. Results of LFGOA and competitive algorithms in solving the speed reducer design. The best of the
comparison results are in [bold].

Algorithm | Best Mean Std
LFGOA 2743.1379 | 2744.1172 | 2.3762
SNS 29944711 | 2994.4711 | 0.0000
IDSE 3197.8394 | 3372.4083 | 101.3525
CSOAOA 2996.3017 | 2997.7746 | 3.5937
AHA 2994.4712 | 2994.4717 | 42512.0000
MRFO 2994.4711 | 2994.4711 | 0.0146
SSA 2996.0217 | 3005.5744 | 4.6300
NeGPE-s 2990.0000 | 2990.0000 | 0.0014
GBO 2996.3481 | 2996.3481 | 0.0000
SO 2995.5424 | 2995.5424 | 0.0000

Table 26. Comparative results of LFGOA with other methods for speed reducer design. The best of the
comparison results are in [bold].

The optimization model of this problem is given as follows:
Consider: x = [x1,x2] = [d, tl,

Minimize:
f(x) =9.8x1x2 + 2x3
Subject to:
P
g(x)=—-1=<0,
X1 %20y
8PL?
L£(x) = \

73Ex1 20 (62 + x3) a
L
X) =— — \
J&} X =
W="t-1<0
X) =— — ,
84 14 =
) 0.2 1 <0
X) =— — \
&5 X =
X2
g6(x) =3 = 1=<0,

Variable range:
2=<x <14,

0.2 <x; <038.

The stress included in the column should be less than the buckling stress (constraint g;) and the yield stress
(constraint g»). The mean diameter of the column is restricted between 2 and 14cm (constraint g3 and g4), and
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Figure 20. Schematic of tubular column.
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Figure 21. Convergence of tabular column.

Optimal values

for variables
Algorithm | x1 x2 f(x)
LFGOA 2.5465 | 0.8000 |25.0574
SNS 54512 | 0.2920 |26.4995
HFBOA 5.4514 | 0.2920 |26.5322
CS 5.4514 | 0.2920 |26.5322
KH 5.4513 |0.2920 |26.5314
CSA 54512 | 0.2920 |26.5314

Table 27. Results of LFGOA and competitive algorithms in solving the tubular column design. The best of the
comparison results are in [bold].

columns with thickness outside the range 0.2 — 0.8¢m are not commercially available (constraint g5 and gs). The
mean diameter d(x) and the thickness ¢(x;) vary in the range of [2,14] and [0.2,0.8].

This case was previously tackled by many scholars using various heuristic methods, including Social Network
Search*’, Cuckoo search algorithm*, krill herd algorithm®’, Cooperation search algorithm®', and a Hybrid Gen-
eralized Reduced Gradient-Based Particle Swarm Optimizer™” respectively in the literatures.

The statistical results of LFGOA and other optimization methods are compared in Tables 27 and 28. Among
the compared optimization algorithms, the LFGOA ranks first as superior to other approaches in optimizing the
tubular column design, our method can find better geometric variables for this case. Hence, our result is feasible
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Algorithm | Best Mean Std

LFGOA 25.0574 | 25.4412 | 0.2068
SNS 26.4995 | 26.4864 | 0.0000
CS 26.5322 | 26.5350 | 0.0019
KH 26.5314 | 26.5430 | 0.0180
CSA 26.5314 | 26.5316 | 0.0002
PSO_GRG 26.5313 | 26.5313 | 0.0000

Table 28. Comparative results of LFGOA with other methods for tubular column. The best of the comparison
results are in [bold].

and verifies the effectiveness of the LFGOA algorithm. The results demonstrate that the LFGOA algorithm can
provide reliable and very comprising solutions compared with the other algorithms.

As shown in the Fig. 21, the convergence curve quickly converge towards the global optimum and the solu-
tions was obtained instantly under satisfy all constraints.

Results and discussion

As we can see in Section 5, seven real-world constrained engineering design examples including Himmelblau’s
nonlinear optimization problem, Cantilever beam design, Car Side Impact Design, Gear train Design, Pressure
vessel design, Speed Reducer Design, and tabular column design are selected to verify the proposed LFGOA
algorithm. The LFGOA has been demonstrated to perform better than or be highly competitive with the other
algorithms in the literature on the seven constrained engineering optimization problems, and can solve differ-
ent real-world constrained engineering optimization problems. The advantages of LFGOA involve performing
simply and having few parameters to regulate. The work here proves the LFGOA to be robust, powerful, and
effective over all types of the other algorithms in the literature. Constrained engineering optimization evaluation
is a good way for testing the performance of the metaheuristic algorithms, but it also has some limitations. For
example, different tuning parameter values in the optimization methods might lead to significant differences in
their performance. Also, constrained engineering optimization tests may arrive at fully different conclusions if
the termination criterion changes. If we change the population size or the number of iterations, we might draw
a different conclusion.

Conclusion

This paper presented a novel enhancing Grasshopper Optimization Algorithm with Levy Flight algorithm, call
LFGOA algorithm. Five metrics (i.e., search history, average fitness function, the best fitness history, the trajectory
of the first dimension, and convergence curve) are implemented to investigate the LFGOA qualitatively. Next,
23 benchmark test functions to investigate the exploration, exploitation, local optima escape, and convergence
performance of the LFGOA. The results demonstrated the effectiveness of LFGOA towards achieving optimal
global solutions having more reliable convergence compared to other eight well-known optimization algorithms
published in the literature. Freidman ranking test is applied to evaluate the efficacy of the LFGOA scientifically.
The statistical results demonstrated that the LFGOA can guarantee the effectiveness of explorations while pro-
ducing excellent exploitation, hence maintaining an equilibrium between exploitation and exploration strategies,
which reveals the superior performance of the LFGOA in a statistical sense against other comparative algorithms.
Moreover, seven real-world engineering problems are used to investigate the effectiveness of the LFGOA further.
The results of the engineering design problems proved that the LFGOA achieved extremely better results against
the other well-known optimization algorithms, and it can handle various constraints problems.

Of course, there are still many applications of the LFGOA algorithm worthy of further study because of the
tremendous potential of the LFGOA algorithm. Moreover, the LFGOA algorithm can be used to solve con-
strained engineering optimization problems such as industry and engineering applications, and other application
domains. There are several possible future directions and possible ideas worth investigating regarding the new
variants of the LFGOA algorithm and its widespread applications, for example, features selection, job scheduling,
and parameter optimization are still need to be resolved and can be suggested as future work.

Data availibility
The datasets generated during or analysed during the current study are available from the corresponding author
on reasonable request.
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