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Enhancing grasshopper 
optimization algorithm (GOA) 
with levy flight for engineering 
applications
Lei Wu 1*, Jiawei Wu 2 & Tengbin Wang 1

The grasshopper optimization algorithm (GOA) is a meta-heuristic algorithm proposed in 2017 mimics 
the biological behavior of grasshopper swarms seeking food sources in nature for solving optimization 
problems. Nonetheless, some shortcomings exist in the origin GOA, and GOA global search ability 
is more or less insufficient and precision also needs to be further improved. Although there are 
many different GOA variants in the literature, the problem of inefficient and rough precision has still 
emerged in GOA variants. Aiming at these deficiencies, this paper develops an improved version of 
GOA with Levy Flight mechanism called LFGOA to alleviate the shortcomings of the origin GOA. The 
LFGOA algorithm achieved a more suitable balance between exploitation and exploration during 
searching for the most promising region. The performance of LFGOA is tested using 23 mathematical 
benchmark functions in comparison with the eight well-known meta-heuristic algorithms and seven 
real-world engineering problems. The statistical analysis and experimental results show the efficiency 
of LFGOA. According to obtained results, it is possible to say that the LFGOA algorithm can be a 
potential alternative in the solution of meta-heuristic optimization problems as it has high exploration 
and exploitation capabilities.

Till date, researchers and practitioners have presented and experimented with various nature-inspired 
metaheuristic algorithms to handle various search problems. O. N. Oyelade et al.1 (2022) proposed an appeal-
ing Ebola Optimization Search Algorithm, they achieved some attractive results, especially when the EOSA 
algorithm was applied to address the complex problem of selecting the best combination of convolutional neural 
network (CNN) hyperparameters in the image classification of digital mammography. But the mathematical 
model of EOSA is a little complicated. Laith Abualigah et al.2 (2022) proposed a unique Reptile Search Algo-
rithm (RSA) and achieved better results than the other competitive optimization algorithms when applied their 
RSA algorithm to solve seven real-world engineering problems. Since the RSA algorithm introduction, many 
RSA variants have been proposed. It will be better; if they gave the statistical numerical results (such as mean 
and standard deviation) of the RSA algorithm and other comparative algorithms in solving seven engineering 
problems. Abualigah, Laith Mohammad et al.3 (2021) proposed a novel mathematically modelled: Arithmetic 
Optimization Algorithm (AOA), that utilizes the main arithmetic operators: Multiplication (M), Division (D), 
Subtraction (S), and Addition (A). Although, the better performance of the AOA is evaluated using twenty-nine 
benchmark functions and several real-world engineering design problems. But the parameter Math Optimizer 
Accelerated (MOA) is increased linearly from 0.2 to 0.9 still needs extensively discussed. Hussien, A.G et al.4 
(2022) comprehensively reviewed the recent widespread applications and variants of Harris hawk optimizer 
(HHO) in-depth. The authors thoughtfully investigated several possible future directions and possible ideas of the 
recent applications and variants of well-established HHO. As soon as Snake Optimizer (SO) is proposed (2022) 
by Fatma A. Hashim et al.5, the SO algorithm attracted researchers and practitioners and the SO algorithm was 
applied to many dominions, as the SO optimization algorithm is simple and efficient. Since the SO algorithm 
introduction, many SO variants have been proposed to tackle optimization problems. Zheng, Rong et al.6 (2022) 
proposed an improved wild horse optimizer (IWHO) integrated three improvements: random running strategy 
(RRS), dynamic inertia weight strategy (DIWS), and competition for waterhole mechanism (CWHM). The 
IWHO algorithm has successfully overcome the crucial drawbacks of the origin WHO may be stuck in local 
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optimal regions or has a slow convergence. The IWHO algorithm is evaluated by classical benchmark functions 
and five real-world optimization problems and compared with nine well-known algorithms. Huangjing Yu 
et al.7 (2022) proposed an improved Aquila optimizer (mAO), the highlight of the mAO algorithm is the restart 
strategy, which is simple but effective. Their mAO algorithm has solved five engineering optimization problems; 
but has not been compared with other algorithms by numerical statistics such as mean and standard deviation. 
Feature selection problem is one of the main difficulties in machine learning domain to find the smaller number 
of informative features among a huge amount of feature space which guides the maximum classification ratio. 
Hussien, A.G., Amin, M.8 (2022) proposed an improved version of HHO called IHHO, which not only solves 
5 constrained engineering problems but also has been applied to solve feature selection problems using 7 UCI 
datasets.

Pengchuan Wang et al.9 (2020) comprehensively and extensively overviewed the recent widespread appli-
cations and variants of Complex-valued encoding algorithm in-depth. The authors successfully tested eight 
complex-valued encoding algorithms by standard benchmark functions and solved five engineering optimization 
design problems. But the mathematical model of Complex-valued encoding algorithm is a little complicated. 
Chen et al10 (2020) proposed an improved arithmetic optimization algorithm (IAOA) based on the population 
control strategy to solve numerical optimization problems, which successfully solved optimization problems to 
consume less energy during robotic arm movement.

Grasshopper optimisation algorithm, variants, and applications.  According to the behavior of 
grasshopper swarms in nature, Shahrzad Saremia. et al. in 2017 proposed a unique and novel swarm intelli-
gence algorithm called the grasshopper optimization algorithm (GOA)11, making utilization of the swarm intel-
ligence to solve optimization problems. This algorithm is proven to be efficient in solving global unconstrained 
and constrained optimization problems. Since 2017, GOA has attracted increasing interest from academics and 
researchers, most researchers and practitioners have achieved success with the GOA algorithm to solve vari-
ous complex and real-world problems in many different domains12–14. On the other hand, to fully extend the 
performances of the GOA, most researchers and practitioners constructed a variety of hybrid variants15 based 
on GOA and other metaheuristics; and embedded different key parameters into the GOA, to solve their practi-
cal fields’ complex real-world problems. Arora, S et al.16 (2019) introduced the chaotic method with GOA for 
solving global optimization. Zhao, S et al.17 (2021) embedded trigonometric substitution into GOA to enhance 
Cauchy mutation. Ahmed A et al.18 (2022) merged Crossover Operators with GOA for feature selection and solv-
ing engineering problems. Yildiz et al.19 (2021) proposed using elite opposition-based learning to enhance GOA 
for solving real-world engineering problems. Yi Feng et al.20 (2020) introduced Dynamic Opposite Learning 
assisted GOA for the Flexible Job Scheduling Problem. Qin, P et al.21 (2021) have successfully applied improved 
GOA to optimise the parameters of the BP neural network for predicting the closing prices of the Shanghai Stock 
Exchange Index and the air quality index (AQI) of Taiyuan, Shanxi Province.

The nature‑inspired meta‑heuristic algorithm with levy flight.  Wang, Shuang et al.22 (2022) pro-
posed an improved version of ROA called Enhanced ROA (EROA) using three different techniques: adaptive 
dynamic probability, SFO with Levy flight, and restart strategy; and have successfully overcome slow conver-
gence and stagnation in local optima of the origin ROA. As soon as the Levy flight trajectory-based WOA 
(LWOA) algorithm is proposed by Zhou, Y., Ling, Y. and Luo, Q.23 (2018), which attracted researchers and prac-
titioners and applied the LWOA algorithm to many dominions, because the LWOA algorithm effectively adapta-
tion, few control parameters, and simplicity of structure. Xuan Chen et al.24 (2021) employments of Opposition-
based learning and the Genetic algorithm with Levy’s flight to improve the Wolf Pack Algorithm and achieved 
maintain the diversity of the initial population during the global search. Their experimental results show that 
their proposed algorithm has a better global and local search capability, especially in the presence of multi-peak 
and high-dimensional functions.

Above mentioned cases are only a few typical models, but they show the nature-inspired meta-heuristic algo-
rithm gets the best global value largely dependent on together with levy flight. On the other hand, these studies 
affirm that levy flight can considerably enhance the performance of meta-heuristic optimizers.

Our main contribution is to use the grasshopper optimization algorithm with Levy Flight distribution strat-
egy (LFGOA) to seven real-world problems, which cover hybrids (continuous, discrete, and integer variables) 
nonlinear constrained optimization, such as Himmelblau’s nonlinear optimization problem, Cantilever beam 
design, Car Side Impact Design, Gear train Design, Pressure vessel design, Speed Reducer Design, and tabular 
column design.

Another contribution is that the levy flight strategy is properly embedded with GOA to help explore the 
search space. The comprehensive effect of levy flight mechanisms strengthens the exploration-exploitation bal-
ance during the search process.

The third contribution is that performance of the LFGOA algorithm was validated by 23 mathematical bench-
mark functions in comparison with the eight well-known meta-heuristic algorithms (AHA, AO, DA, DMOA, 
GBO, HGS, HHO, and MVO) and the comprehensive performance of the LFGOA algorithm is superior to the 
eight algorithms and the origin GOA algorithm.

The fourth contribution is that the extensibility test with different scales of dimensions 50, 100, 300, and 500, 
is undertaken by comparing LFGOA with the original GOA to assess the dimensional influence on problem 
consistency and optimization quality. The comparisons show that the proposed LFGOA algorithm still holds a 
simple and efficient structure that significantly improves the performance of the origin GOA algorithm.

In the rest of this paper, Section 2 provides the key idea and structure of the Grasshopper Optimization Algo-
rithm (GOA). Section 3 provides Grasshopper Optimization Algorithm with Levy Flight (LFGOA), improvement 
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steps in in-depth and LFGOA pseudo-code. Section 4 extensively introduces the experimental design and simu-
lation results. Section 5 presents seven real applications of LFGOA in nonlinearly-constrained engineering 
optimization problems. Finally, section 6 concludes the paper and future directions.

The grasshopper optimization algorithm (GOA)
GOA algorithm is inspired by the foraging and swarming behavior of grasshoppers in nature for solving numeri-
cal optimization issues. The life cycle of the grasshopper includes two stages called nymph and adulthood. The 
nymph stage is characterized by small steps and slow movements, while the adulthood stage is characterized by 
long-range and abrupt movements. The movements of nymphs and adulthood constitute the intensification and 
diversification phases of GOA. Intuitively speaking, the GOA search process splits into two stages: exploration 
and exploitation are shown in Fig. 1.

In the exploration stage, we update all the positions’ values and compute the fitness value of all grasshopper 
swarms (search for food sources). In the exploitation stage, we find the best solution among all solutions (search 
for better food sources).

Principal of the grasshopper optimization algorithm.  In the GOA algorithm, each grasshopper rep-
resents a solution in the population. The grasshopper swarms behavior is mathematically modelled and used to 
calculate the position Xi of each solution as follows:

where Xi indicates the ith grasshopper’s position, Si denotes the grasshopper interaction between the solution and 
the other grasshoppers’ swarms, Gi is the gravity force on the ith solution, and Ai represents the wind advection, 
which can be represented by the below equations:

where N denotes the number of grasshoppers, dij = |xj − xi| defines the Euclidean distance between the ith and 
the jth grasshoppers swarm, d̂ij =

|xj−xi |

dij
 represents the unit vector from the ith to the jth grasshopper swarm. 

(1)Xi = Si + Gi + Ai

(2)Si =

N∑

j=1

s
(
dij
)
d̂ij , where i �= j

(3)s =fe
−r
l − e−r

Figure 1.   The grasshopper swarm searches with two stages.
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In addition, s represents the strength of two social forces (repulsion and attraction between grasshopper swarms), 
where l is the attractive length scale and f is the intensity of attraction.

When the distance between two grasshoppers swarm in the range [0, 2.079], repulsion occurs, and when the 
distance between two grasshoppers swarm is exactly 2.079, neither attraction nor repulsion occurs, which forms 
a comfort zone. When the distance exceeds 2.079, the attraction force increases, then progressively decreases 
until it reaches 4. The function s fails to apply forces between grasshoppers’ swarms when the distance between 
them is larger than 10. To solve this problem, we map the distance of grasshoppers’ swarms in the interval [1, 4].

The equation below shows how to calculate the force of gravity Gi:

where g denotes the gravitational constant and êg is unit vector toward center of earth.
The equation below shows how to compute Ai:

where u represents the drift constant and êw is the unit vector in the wind direction.
After replacing the values of Si , Gi , and Ai , equation (1) can be reconstructed as follows by Equations 2, 3, 4 

and 5:

However, the mathematical model of equation (6) cannot be used directly to solve the optimization problems, as 
mainly the grasshoppers quickly reach their comfort zone and the grasshopper’s swarms from failing to converge 
to the location target or a specified point (global optimum). To solve optimization issues and prevent grasshop-
per swarms from quickly reaching their comfort zone, the equation truly actuarily applied to solve optimization 
problems is proposed by the author as follows:

where UBd and LBd are the upper and lower bounds in the dth dimension respectively, T̂d denotes the best solu-
tion found so far in the dth dimension space. In Eq. (7), the gravity force is not considered, that is, there is no Gi 
component. And assume that the wind direction ( Ai component) is always towards a target Td . The second term 
T̂d , simulates the tendency of grasshoppers to move towards the food source.

The key parameter c in mathematical model.  In the grasshopper swarm algorithm, parameter c in Eq. 
(7) is very important for local and global search. The inner c in Eq. (7) is used to reduce the repulsion, attraction 
and comfort zone between grasshoppers correspondingly to the number of iterations; is also responsible for the 
reduction of repulsion/attraction forces between grasshoppers’ swarms, which is proportional to the number of 
iterations. The outer c in Eq. (7) is responsible to reduce the grasshopper’s movements around the target (food) 
and helps reduce the search coverage around the target as the iteration goes on increasing. The coefficient c is 
proposed as follows:

where cmax and cmin are the maximum and minimum values of c respectively, cmax and cmin can be set as 1 and 
0.00001 respectively, where t is the current iteration, and tmax is the maximum iteration value. The position 
of a grasshopper is updated based on its current position, the global best position, and the positions of other 
grasshoppers within the swarm.

The grasshopper optimization algorithm with levy flight
Mantegna’s algorithm from levy flights random walks.  The study shows that the distribution prob-
ability density function of the variation of the Levy’s flight step can be approximated as follows:

Where s is the random step length of Levy’s flight behavior, and θ is bounded as [0, 2] as a power-law index 
and is set to be 1.5, which controls the peak sharpness of the levy distribution graph. The different values of the 
parameter θ cause different distributions, it makes longer jumps for smaller values, whereas it makes shorter 
jumps for bigger values. True Levy distribution is hard to implement in computer code, but the approximate 
form. Mantegna algorithm is one of the fast and accurate algorithms which generate a stochastic variable whose 

(4)Gi = −gêg

(5)Ai = uêw

(6)

Xi =

N∑

j=1

s
(
dij
)
d̂ij − gêg + uêw

=

N∑

j=1

s
(
|xj − xi|

) ̂|xj − xi|

dij
− gêg + uêw where i �= j

(7)Xd
i = c




N�

j=1

c
UBd − LBd

2
s(|xdj − xdi |)

|xj − xi|

dij



+ �Td

(8)c = cmax − t
cmax − cmin

tmax

(9)L(s) ∼ |s|−1−θ .
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probability density is close to the Levy stable distribution characterized. Mantegna’s algorithm can be split into 
three steps. For random walks, Mantegna’s algorithm determines the step length S as follows:

where S is the random step length variable, while U and V are two normal stochastic variables with standard 
deviation σU and σV , U and V should be attained based on normal distributions:

The symbol ∼ in Eq. (11) denotes the random variable obeys the distribution on the right-hand side; that is, 
samples should be drawn from the distribution. As the standard deviation σU and σV cannot be chosen inde-
pendently for an arbitrary value of θ , for simplicity we usually set

After this setting, the standard deviation σU can be obtained by:

The step size of Levy flight has been achieved by the Eqs. (9) – (13), which simulates the search of short walking 
distance and occasionally longer walking distance. Then the step size is calculated by

Where, the factor value f (f = 0.01) derived from L/100 determines the levy walks and the factor is dependent 
on the dimension of the desired problem, where L is the wide-scale; unless Levy flights become too aggres-
sive, it helps the new solution move away from the search space. The process of Levy flight can be exhibited in 
Algorithm 1.

The step size value will be added to update the equations of the LFGOA algorithm for finding the best posi-
tion. From theoretical perspectives, this random walk is based on a long tail distribution which can be used to 
help an algorithm escape from getting stuck at a local optimum25–27. In other words, the Levy flight distribution 
is an effective mathematical operator for producing varied solutions in the searching space and increasing the 
exploration capability of the LFGOA algorithm.

From Algorithm 1, it is worth noting the formula:
NewPosition = currentPosition ∗ LFGOA_Levy(dim)′;

Firstly, LFGOA_Levy(dim) represents the Levy flight function, and dim is the dimension size of the prob-
lem. the Levy flight Strategy is integrated into the GOA by the above formula. The Levy flight has a relatively 
high probability of large strides in random walking, which can effectively improve the randomness of the GOA 
algorithm. This way, the risk that the algorithm gets stuck in a local optimum is drastically reduced, while it is 

(10)S =
U

|V |
1
θ

,

(11)U ∼ N
(
0, σ 2

U

)
, V ∼

(
0, σ 2

V

)

(12)σV = 1

(13)σU =

{
Ŵ(1+ θ)× sin(0.5πθ)

Ŵ[0.5(1+ θ)]× θ × 20.5(θ−1)

} 1
θ

(14)step size = f × S
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still possible to perform sufficient local refinements. In other words, the algorithm presents a natural balance 
between exploration and exploitation.

Secondly, in the case of stagnation, Levy-triggered searching (hunting) patterns can help LFGOA to jump out 
of them toward new better positions. By this mechanism, the LFGOA algorithm can overcome the deficiencies 
of the little diversity of the origin GOA algorithm and greatly increase the probability of getting the best position 
(solution), which is also the highlight and unique feature of the LFGOA algorithm.

Despite being a simple change in the LFGOA algorithm, this new distribution induces drastic changes in 
the optimization process, LFGOA-based jumps can redistribute grasshoppers around the fitness landscape to 
prevent the population from the loss of diversity and to put more emphasis on the global searching tendency.

Enhancing grasshopper optimization algorithm (GOA) with levy flight.  How and where place 
Levy Flight in the GOA algorithm will directly produce totally different results, in some cases even give worse 
results. Based on the above facts, through an in-depth comprehensive study and trial-and-error experiments, 
we successfully embedded Levy flight into the GOA algorithm by the following simple but effetely mechanisms.

Firstly, except for the first grasshopper initialled with rand values (since the first iteration was dedicated to 
calculating the fitness of the grasshopper), the other grasshoppers were assigned Levy flight distribution values, 
not rand values, which directly produced a better start for most of the grasshoppers with wide diversity in the 
initialization stage. Secondly, the target is achieved by the Levy flight mechanism during executing iteration, 
which overcomes the deficiencies and can be escaped from a local optimum and restarted in a different region 
of the search space for the LFGOA. The flow chart of the Levy flight mechanism embedded in the GOA is shown 
in Fig. 2. The pseudo-code of the LFGOA algorithm is presented in Algorithm 2.

Figure 2.   The flow chart of the LFGOA algorithm.
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In sharp contrast: although the existing method has greatly improved GOA, there is still a large probability 
of falling into local optimum by the reason of immature convergence, and the truth reason derived from the 
diversity is underdeveloped for the GOA algorithm. On the other hand, initializes the position of agents in the 
search space by Levy flight as the below formula:

The above formula, LFGOA_Levy(dim) represents the Levy flight function, and dim is the dimension size of the 
problem, which provides a large-scale deployment schema for the LFGOA algorithm, all grasshoppers assigned 
Levy flight value not random numbers between [0, 1] from the uniform distribution at the initialization stage, 
which directly increase the wide diversity of the LFGOA algorithm. Secondly, randomization is more efficient as 
the step length is heavy-tailed random redistribution, and any large step is possible, which effectively increases 
the probability of LFGOA’s global search ability and precision.

From Fig. 2, it is worth noting the following three formulas:

Where Tp is assigned logical ‘0’. when the value of the grasshoppers’ position is less than the upper boundary, 
otherwise Tp is assigned logical ‘1’.

Where Tm is assigned logical ‘0’. when the value of the grasshoppers’ position is more than the lower bound-
ary, otherwise Tm is assigned logical ‘1’.

Where (∼ (Tp+ Tm)) is assigned to value 1 when the grasshoppers’ position is not at the boundary, otherwise 
is assigned to value 0.

When the grasshoppers go outside the search space, the grasshoppers will be drawn back by the above for-
mula. After that, the positions of the grasshoppers are directly replaced (similar restarted)28 by the below formula:

Based on the above formula, the positions of all the grasshoppers random redistribution around the fitness 
landscape to prevent the population from the loss of diversity and to put more emphasis on the global searching 
tendency. The balance between exploration and exploitation can be achieved according to the Levy flight based 

Xi = LFGOA_Levy(dim)′. ∗ (high− low)+ low.

Tp = GrassHopperPositions(i, :) > ub′;

Tm = GrassHopperPositions(i, :) < lb′;

GrassHopperPositions(i, :) = (GrassHopperPositions(i, :). ∗ (∼ (Tp+ Tm)))+ ub′. ∗ Tp+ lb′. ∗ Tm.

GrassHopperPositions(i, :) = GrassHopperPositions(i, :). ∗ LFGOA_Levy(dim).
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jumps, which allows grasshoppers to escape from local minima and explore different search areas. However, it 
cannot ensure the new update position is better than the current position.

The proposed approach.  As a newly proposed algorithm, GOA has achieved good results on some test 
functions. However, experiment results show that it still has the defects of insufficient global exploration and 
local optimum stagnation. The lack of global exploration capacity can be attributed to the deficient searches with 
two stages. Thus, GOA properly integrated with Levy Flight is utilized to improve the global search ability in this 
work. Meanwhile, a restart strategy of Levy Flight is added to GOA that helps the GOA algorithm escape from 
local optima.

To the best of our knowledge, the main reason behind the effectiveness of LFGOA is that the Levy flight based 
jumps can effectively redistribute the search agents to enhance their diversity and to emphasize more explora-
tive steps in case of immature convergence to local optima. It is a successful GOA variant of combining GOA 
with Levy Flight and gained better results of applying LFGOA in seven real-world engineering problems. The 
statistical analysis and experimental results show the efficiency of LFGOA.

In section 4, the strict experiments will exhibit that LFGOA is superior to the GOA algorithm in most per-
formance metrics, especially at the parts of correct getting the best solutions with quick convergence speed. In 
fact, LFGOA still holds the advantages of simple structure and few-parameter-turnings even added extra Levy 
flight mechanism.

Experimental results and analysis
In this section, all experiments were carried out under the Windows 10 OSx64 using MATLAB R2019a software, 
and the hardware platform used was configured with Intel(R) Core (TM) i7-8700 CPU @ 3.20GHz and 8 GB 
RAM.

The performance of the suggested LFGOA is assessed in this section by using five experiments. Accordingly, 
the first one evaluates AHA, AO, DA, DMOA, GBO, HGS, HHO, LFGOA, and MVO about the average value, 
the standard deviation, and the best value using twenty-three mathematical benchmark functions presented in 
Table 1. These benchmark functions are categorized into three groups: unimodal, multi-modal, and composite.

Here, the LFGOA performance is tested using twenty-three benchmark functions. This benchmark contains 
seven unimodal, six multimodal, and ten fixed-dimension multimodal functions. The mathematical description 
of each type is given in Table 1 where N denotes the number of grasshoppers, T refers to the maximum itera-
tion value, dim refers to the number of dimensions, Range shows the interval of search space, Fmin refers to the 
optimal value that the corresponding functions can achieve.

The second one strictly tests the convergence performance of the LFGOA with AHA, AO, DA, DMOA, GBO, 
HGS, HHO, and MVO respectively. The third experiment aims to test the LFGOA by a non-parametric Wilcoxon, 
Friedman, and Nemenyi statistical test. The fourth tests the scalability performance of the LFGOA compared 
with the GOA comprehensively and thoroughly under conditions of 50, 100, 300, and 500 Dimensions. The fifth 
part presents some quantitative metrics of LFGOA.

Comparing LFGOA with AHA, AO, DA, DMOA, GBO, HGS, HHO, and MVO.  To comparing and 
evaluating the performance of the LFGOA on the well-known 23 mathematical benchmark functions, we select 
below the eight advanced well-known and the latest meta-heuristic algorithms respectively. 

1)	 Artificial hummingbird algorithm (AHA)29,
2)	 Aquila Optimizer (AO)30,
3)	 Dragonfly algorithm (DA)31,
4)	 Dwarf Mongoose Optimization Algorithm (DMOA)32,
5)	 Gradient-based optimizer (GBO)33,
6)	 Hunger Games Search (HGS)34,
7)	 Harris hawks optimization (HHO)35,
8)	 Multi-Verse Optimizer (MVO)36.

In order to provide a fair comparison, the main controlling parameters of these algorithms all run 30 times on 
each of the benchmark function, number of search agents and maximum iteration are all equal to 100 respectively. 
In the experiments, the key parameters of these nine algorithms are set up as shown in Table 2.

In the following Tables, where best results are all marked in bold.
In addition, to check the differences and rankings between nine algorithms, another non parametric mul-

tiple comparison method is used to calculate the average ranking value by the Friedman test. When applying 
Friedman’s test, the best algorithm is the one that receives the lowest rank while the worst algorithm receives the 
highest rank. In order to assess the statistical performance of LFGOA and each other method on the 23 test suites, 
the average (or mean) and standard deviation values of the rank of each method were taken into account. The 
average and Std rankings of LFGOA in conjunction with other methods using Friedman’s test are summarized 
in Tables 3 and 4, respectively.

In Table 3, there are 17 out of 23 average values obtained by LFGOA algorithm, which are all less than those 
obtained by the other eight algorithms. From Table 3, it can be seen that the average searching quality of LFGOA 
is better than those of other methods.
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Function

Dimensions

Range Fmin(N, T, dim)

Univariate test functions

F1:sphere function
100,100,30 [−100, 100] 0

F1(x) =
∑dim

i=1 x
2
i

F2: Schwefel’s problem 2.22
100,100,30 [−100, 100] 0

F2(x) =
∑dim

i=1 |xi | +
∏dim

i=1 |xi |

F3: Shifted schwefel’s problem 1.2
100,100,30 [−10, 10] 0

F3(x) =
∑dim

i=1

∑i
j=1 x

2
j

F4: Schwefel’s problem 2.21
100,100,30 [−100, 100] 0

F4(x) = maxi |xi |, 1 ≤ i ≤ dim

F5: Generalized rosenbrock’s function
100,100,30 [−100, 100] 0

F5(x) =
∑dim−1

i=1 [100
(
xi−1 − x2i

)
+ (xi − 1)2

F6: Step function
100,100,30 [−30, 30] 0

F6(x) =
∑dim

i=1 (|xi + 0.5|)2

F7:Quartic function i.e. noise
100,100,30 [−1.28, 1.28] 0

F7(x) =
∑dim

i=1 iXi
4 + random[0, 1]

Multidimensional test functions

F8: Generalized schwefel’s problem 2.26
100,100,30 [−500, 500] −418.9829 ∗ dim

F8(x) =
∑dim

i=1 |xi | − xi sin(
√
|xi |)

F9: Generalized rastrigin’s function
100,100,30 [−5.12, 5.12] 0

F9(x) =
∑dim

i=1

[
x2i − 10 cos (2πxi)+ 10

]

F10: Ackley’s function

100,100,30 [−32, 32] 0
F10(x) = −20 exp

(
−0.2

√
1

dim

∑dim
i=1 x

2
i

)
− exp

(
1

dim

∑dim
i=1 cos(2πxi)

)
+ 20+ e

F11: Generalized griewank’s function
100,100,30 [−600, 600] 0

F11(x) =
1

4000

∑dim
i=1 x

2
i −

∏dim
i=1 cos

(
xi√
i

)
+ 1

F12: Generalized penalized function 1
100,100,30 [−50, 50] 0

F12(x) =
π
dim 10sin2(πy1)+

∑n−1
i=1 (yi − 1)2[1+ sin2(πyi+1)] + (ydim − 1)2 +

∑n
i=1 Ufun(xi, 10, 100, 4)

F13: Generalized penalized function 2

100,100,30 [−50, 50] 0

F13(x) = 0.1
{
sin2(3πx1)+

∑dim
i=1 (xi − 1)2[1+ sin2(3πxi+1)] + (xdim − 1)2[1+ sin2(2πxdim)] +

∑dim
i=1 Ufun(xi , 5, 100, 4)

}

where 
Ufun(xi , 5, 100, 4) =

{
k(xi − a)m xi > a
0− a − a < xi < a
k(−xi − a)m xi < −a

yi = 1+ xi+1
4

Composite multidimensional (or fixed multidimensional ) test functions

Function

Dimensions

Range Fmin(N, T, dim)

F14: Shekel’s foxholes function

100,100,2 [−65.5360, 
65.5360] 0.9980

F14(x1, x2) = ( 1
500 +

∑25
j=1

1

j+
∑2

i=1 (xi−aij)
6 )

−1

a1j = {−32;−16; 0; 16; 32;−32;−16; 0; 16; 32;−32;−16; 0; 16; 32;−32;−16; 0; 16; 32;−32;−16; 0; 16; 32}

a2j = {−32;−32;−32;−32;−32;−16;−16;−16;−16;−16; 0; 0; 0; 0; 0; 16; 16; 16; 16; 16; 32; 32; 32; 32; 32}

F15: Kowalik’s function

100,100,4 [−5, 5] 0.0003075

F15(x) =
∑11

k=1[ak −
x1(b

2
k+bkx2)

b2k+bkx3+x4
]2

i ai b−1
i

1 0.1957 0.25
2 0.1947 0.5
3 0.1735 1
4 0.16 2
5 0.0844 4
6 0.0627 6
7 0.0456 8
8 0.0342 10
9 0.0323 12
10 0.0235 14
11 0.0246 16

Continued
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From the statistical results of Table 3, it is clear that the LFGOA with the complete improvement strategies 
performs best with a Friedman test ranking value of 2.4783. All in all, there are 18 out of 23 average ranking 
first obtained by LFGOA, which are all more than those obtained by the other eight optimization algorithms. 
However, LFGOA gives unsatisfactory results in F14, F15, F17, and F18. The results show that LFGOA achieves 
the average ranking third in F12. The LFGOA performs the best among the nine algorithms, proving that the 
utilization of Levy Flight can effectively enhance the performance of the GOA algorithm.

In Table 4, only the composite functions F14–F18, the standard deviation value obtained by LFGOA algorithm 
are 5.90E+01, 4.91E−03, 7.49E−03, 8.58E−01, and 6.66E+00, which are not less than the other eight algorithms. 
All in all, there are 18 out of 23 standard deviation values obtained by LFGO algorithm, which are all less than 

Table 1.   Twenty-three benchmark functions.

Function

Dimensions

Range Fmin(N, T, dim)

F16: Six-hump camel-back function
100,100,2 [−5, 5] −1.0316285

F16(x1, x2) = 4x21 − 2.1x41 +
1
3 x

6
1 + x1x2 − 4x22 + 4x42

F17: Branin function
100,100,2 [−5, 0, 10, 15] 0.397887

F17(x1, x2) = (x2 −
5.1
4π2 x

2
1 +

5
π
x1 − 6)2 + 10

(
1− 1

8π

)
cosx1 + 10

F18: Goldstein-price functionn

100,100,2 [−5, 5] 3
F18(x1, x2) = [1+ (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2+

6x1x2 + 3x22)] × [30+ (2x1 − 3x2)
2 − 3x2)

2

×
(
18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22

)
]

F19 and F20:Hartman’s Family

F19: Hartman’s family
100,100,3 [0,1] -3.863

F19(x) = −
∑4

i=1 ci exp(−
∑3

j=1 aij(xj − pij)
2)

F20: Hartman’s family

100,100,6 [0,1] −3.322

F20(x) = −
∑4

i=1 ci exp(−
∑6

j=1 aij(xj − pij)
2)

Where, in this exercise: 

i aij ci pij
1 3.0 10.0 30.0 1.0 0.689 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547
4 0.1 10.0 35.0 3.2 0.0381 0.5743 0.8828

Function

Dimensions

Range Fmin(N, T, dim)

F21 and F22 and F23:Shekel’s Familyl

Fij(x) = −
∑5

i=1

∑dim
j=1[(xj − aij)

2 + cj] − 1

F21:Shekel’s 5 family

100,100,4 [0,10] −5.0551

F21(x) = −
∑5

i=1 [(x − ai)(x − ai)
T + ci] − 1

Where, in this exercise: 

a =




4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7



 

c =




0.1
0.2
0.2
0.4
0.6




F22: Shekel’s 7 family

100,100,4 [0,10] −5.088

F22(x) = −
∑7

i=1 [(x − ai)(x − ai)
T + ci] − 1

Where, in this exercise: 

a =




4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3



 

c =




0.1
0.2
0.2
0.4
0.4
0.6
0.3




F23:Shekel’s 10 family

100,100,4 [0,10] −5.128

F23(x) = −
∑10

i=1 [(x − ai)(x − ai)
T + ci] − 1

Where, in this exercise: 

a =




4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6



 

c =




0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.5



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those obtained by the other eight algorithms. The better values of the standard deviations prove that the LFGOA 
algorithm stable performs better than the other eight algorithms.

As shown in Table 4, we evaluate the performance of the algorithms using the Friedman test. All algorithms 
are ranked according to the Std value. LFGOA ranks first in all unimodal functions (F1–F7) and all multi-modal 
functions (F8–F13) and achieves a Std ranking value of 2.2609. However, LFGOA gives unsatisfactory results 
in F14, F17, and F18. In this regard, the results show that LFGOA achieves the Std ranking third in F16 and the 
fourth in F15. The statistical results show that LFGOA has the best performance compared to the eight algorithms 
mentioned above for solving the 23 classical test functions.

In Table 5, for the unimodal functions and the multimodal functions, the best values obtained by the LFGOA 
algorithm are not desired in comparison with other eight algorithms. For the composite functions, only the F15, 
the LFGOA algorithms get nearly accurate approximation values, for the other composite functions F14 and 
F16–F23, the LFGOA algorithm all get better accurate approximation values.

To further analyze the differences between the algorithms, a post-hoc Nemenyi test was employed. If the 
null-hypothesis is rejected, we can proceed with a post-hoc test. The Nemenyi test (Nemenyi, 1963) is similar to 
the Tukey test for ANOVA and is used when all classifiers are compared to each other. The performance of two 
classifiers is significantly different if the corresponding average ranks differ by at least the critical difference (CD).

where N is the number of datasets (23) and k (9) is the number of algorithms being compared.
At α = 0.05 , the critical value (Table 6) qα for 9 classifiers (algorithms) is 3.102 and the corresponding CD is 

3.102×

√
9×10
6×23

≈ 2.5051.
At α = 0.10 , qα = 2.855 , N = 23 , k = 9 ; corresponding CD is 2.855×

√
9×10
6×23

≈ 2.3056.
To find differences in nine algorithms, critical difference (CD) based on the Nemenyi test was used. The criti-

cal value qα is 3.102, so the CD is 2.5051. A post-hoc test concludes that if the difference in Friedman ranking 
values between the two algorithms is less than the CD value, there is no significant difference between the two 
algorithms; conversely, there is a significant difference between the two algorithms.

In Table 7, the “Diff with LFGOA” in the third column indicates the differences in average rank between 
LFGOA and other eight algorithms, and the “Diff with LFGOA” in the fifth column indicates the differences in 
Std rank between LFGOA and other eight algorithms respectively.

Critical Difference (CD) diagrams in Fig. 3 are simple and intuitive visualizations of the results of a Nemenyi 
post-hoc test that is designed to check the statistical significance between the differences in average rank of a set 
of nine algorithms respectively on a set of 23 benchmark test functions.

(15)CD = qα

√
k(k + 1)

6N

Table 2.   The setup of the parameters.  t Current iteration, T The maximal iteration.

Algorithm Parameters Value

AHA migration coefficient 2n

AO G1 = 2× rand − 1 G2 = 2× (1− t
T ) QF(t) = t

2×rand−1

(1−T)2
quality function used to equilibrium

the search strategies QF the slope from the

first location (1) to the last location (t)

DA

inertia weight w
w = max + t ×

(
max−min

T

)

min = 0.4, max = 0.9

separation weight s s = 2× rand × [0.1− t( 0.1
T/2 )]

alignment weight a a = 2× rand × [0.1− t( 0.1
T/2 )]

the cohesion weight c c = 2× rand × [0.1− t( 0.1
T/2 )]

food factor f f = 2× rand

enemy factor e e = 0.1− t( 0.1
T/2 )

DMOA convergence constant a a = (1− t
T )

2× t
T

GBO

β the most significant parameter β = βmin + (βmax − βmin)× (1− ( t
T )

3
)
2

in the GBO to balance the exploration

and exploitation searching processes βmin = 0.2,βmax = 1.2, pr = 0.5

HGS convergence constant a a = 2× (1− t
T )

HHO E0 is the initial state of its energy, E indicates the escaping energy 
of the prey. E = 2E0 × (1− t

T )

LFGOA C = Cmax − t × Cmax−Cmin
T

convergence constant C Cmax = 1,Cmin = 0.00001

MVO travelling distance rate (TDR) ∈ [0.61] TDR = 1− t1/p

T1/p , p = 6
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Fig. 3 shows the analysis results of the data from Table 7. In each line segments, we plot the average ranks 
about mean (left side in the Fig. 3) and Std (right side in the Fig. 3) of nine algorithms. The length of the line 
segment indicates the CD value, and the center of each line segment labeled “circle mark” represents the value of 
the average rank position about mean (left side) and Std (right side) of the respective each algorithm across all 
23 benchmark test functions. If the value of the center between two line-segments (intervals) is greater than the 
CD, it means that the two algorithms do not overlap each other, which indicate there is a statistically significant 
difference between them.

Table 3.   The values of average and average Rank on nine algorithms. The best of the comparison results are in 
[bold].

F Index AHA AO DA DMOA GBO HGS HHO LFGOA MVO

F1
Average 2.65E+00 1.46E+02 1.36E+03 6.97E+02 7.83E+07 6.45E+02 9.34E+02 3.06E-09 7.17E+02

Rank 2 3 8 5 9 4 7 1 6

F2
Average 3.93E−02 5.57E-01 9.15E+00 4.21E+00 3.43E+35 9.42E+07 1.88E+08 9.21E-29 6.37E+00

Rank 2 3 6 4 9 7 8 1 5

F3
Average 2.38E+02 1.02E+02 3.76E+03 2.28E+03 9.40E+01 2.30E+03 1.51E+03 7.95E-10 9.03E+02

Rank 4 3 9 7 2 8 6 1 5

F4
Average 1.41E−01 7.46E-01 2.77E+01 1.63E+01 4.17E+06 1.57E+00 1.61E+00 6.59E-06 8.98E+00

Rank 2 3 8 7 9 4 5 1 6

F5
Average 7.12E+01 8.44E+04 1.61E+06 4.63E+05 2.57E+03 2.14E+06 2.02E+06 4.00E+00 8.94E+05

Rank 2 4 7 5 3 9 8 1 6

F6
Average 1.13E+02 1.41E+02 2.45E+03 8.13E+02 6.81E+05 2.11E+03 8.03E+02 1.25E+00 5.66E+02

Rank 2 3 8 6 9 7 5 1 4

F7
Average 6.74E−02 5.60E-02 7.09E-01 1.53E-01 1.03E+01 3.38E+00 1.48E+00 5.55E-01 2.46E-01

Rank 2 3 8 6 9 7 5 1 4

F8
Average -5.94E+03 -2.39E+03 -2.26E+03 -7.12E+12 5.11E+01 -1.20E+04 -1.20E+04 -1.34E+00 -2.20E+03

Rank 6 5 4 9 2 7 8 1 3

F9
Average 4.13E+00 1.60E+00 5.73E+01 5.01E+01 1.56E+01 1.11E+01 9.63E+00 0.00E+00 4.75E+01

Rank 3 2 9 8 6 5 4 1 7

F10
Average 2.90E−01 2.77E-01 1.09E+01 6.54E+00 3.24E-01 1.15E+00 6.42E-01 9.81E-09 6.25E+00

Rank 3 2 9 8 4 6 5 1 7

F11
Average 2.86E−01 1.37E+00 2.48E+01 7.30E+00 4.95E-03 5.31E+00 5.76E+00 1.51E-07 7.25E+00

Rank 3 4 9 8 2 5 6 1 7

F12
Average 8.05E−01 3.27E+05 4.29E+06 6.53E+05 2.31E+00 4.66E+06 4.26E+06 4.11E+00 1.63E+06

Rank 1 4 8 5 2 9 7 3 6

F13
Average 4.41E+00 3.38E+05 3.73E+06 2.33E+06 6.65E+01 1.21E+07 1.00E+07 5.02E-01 3.40E+06

Rank 2 4 7 5 3 9 8 1 6

F14
Average 1.97E+00 3.50E+00 1.22E+00 1.63E+00 4.54E-01 1.57E+00 2.16E+00 2.11E+01 1.62E+00

Rank 6 8 2 5 1 3 7 9 4

F15
Average 2.92E−03 2.42E-03 6.09E-03 1.58E-03 7.85E-04 1.71E-03 4.71E-03 1.48E-01 2.91E-03

Rank 6 4 8 2 1 3 7 9 5

F16
Average -1.03E+00 -1.01E+00 -1.00E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.02E+00 -9.94E-04 -1.01E+00

Rank 6 3 2 7 8 9 5 1 4

F17
Average 4.10E−01 5.22E-01 4.17E-01 4.13E-01 4.04E-01 4.16E-01 4.09E-01 5.55E+01 4.37E-01

Rank 3 8 6 4 1 5 2 9 1

F18
Average 3.11E+00 3.55E+00 4.09E+00 3.16E+00 3.59E+00 3.13E+00 3.20E+00 6.00E+02 3.71E+00

Rank 1 5 8 3 6 2 4 9 7

F19
Average -3.86E+00 -3.75E+00 -3.85E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.83E+00 -6.81E-02 -3.84E+00

Rank 6 2 5 7 8 9 3 1 4

F20
Average -3.26E+00 -2.67E+00 -3.06E+00 -3.25E+00 -3.29E+00 -3.26E+00 -2.98E+00 -5.15E-03 -3.09E+00

Rank 7 2 4 6 9 8 3 1 5

F21
Average -7.79E+00 -9.99E+00 -6.84E+00 -9.09E+00 -4.98E+00 -7.51E+00 -4.87E+00 -2.74E-01 -6.15E+00

Rank 7 9 5 8 3 6 2 1 4

F22
Average -7.96E+00 -1.03E+01 -7.43E+00 -9.24E+00 -9.94E+00 -9.18E+00 -4.93E+00 -2.94E-01 -2.42E+00

Rank 5 9 4 7 8 6 3 1 2

F23
Average -8.32E+00 -1.04E+01 -7.14E+00 -8.72E+00 -4.85E+00 -9.98E+00 -4.94E+00 -3.23E-01 -6.08E+00

Rank 6 9 5 7 2 8 3 1 4

Friedmans test 3.7826 4.4348 6.4783 6.0435 5.0435 6.3478 5.2609 2.4783 4.8696
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As shown in Fig. 3, LFGOA ranks first (The best average ranks are to the left side) in Mean and Std respec-
tively. From the Fig. 3 and Table 7, we can clear see that LFGOA versus AO and LFGOA versus AHA have similar 
performance in terms of average ranks of Mean and Std.

Comparing the performance of LFGOA with AHA, AO, DA, DMOA, GBO, HGS, HHO, and MVO 
algorithm.  The performance of the AHA, AO, DA, DMOA, GBO, HGS, HHO, LFGOA, and MVO algo-
rithms are respectively benchmarked in the following figures. In the first column in Fig. 4, Fig. 5, and Fig. 6, the 

Table 4.   The standard deviations and Std rank on nine algorithms. The best of the comparison results are in 
[bold].

Index AHA AO DA DMOA GBO HGS HHO LFGOA MVO

Std. 1.69E+01 1.43E+03 2.43E+03 1.78E+03 4.95E+08 5.02E+03 7.37E+03 1.25E-08 1.89E+03

F1 Rank 2 3 6 4 9 7 8 1 5

Std. 2.07E-01 5.17E+00 7.58E+00 8.06E+00 3.43E+36 9.42E+08 1.88E+09 1.99E-28 1.46E+01

F2 Rank 2 3 4 5 9 7 8 1 6

Std. 2.13E+03 9.34E+02 4.18E+03 2.20E+03 4.74E+02 1.33E+04 9.35E+03 4.05E-09 2.27E+03

F3 Rank 4 3 7 5 2 9 8 1 6

Std. 8.32E-01 6.23E+00 2.22E+01 1.18E+01 3.07E+07 1.08E+01 9.66E+00 1.36E-05 1.10E+01

F4 Rank 2 3 8 7 9 5 4 1 6

Std. 4.20E+02 8.44E+05 6.66E+06 2.51E+06 1.36E+04 2.13E+07 1.77E+07 1.64E-03 3.96E+06

F5 Rank 2 4 7 5 3 9 8 1 6

Std. 1.13E+02 1.41E+03 2.99E+03 2.23E+03 6.25E+06 1.05E+04 6.55E+03 2.04E-02 1.44E+03

F6 Rank 2 3 6 5 9 8 7 1 4

Std. 5.96E-01 5.37E-01 1.79E+00 3.36E-01 2.56E+00 1.65E+01 1.35E+01 2.87E-01 9.85E-01

F7 Rank 4 3 6 2 7 9 8 1 5

Std. 1.20E+03 4.22E+02 3.82E+02 2.53E+13 4.07E+02 1.17E+03 1.96E+03 2.05E+01 2.95E+02

F8 Rank 7 5 3 9 4 6 8 1 2

Std. 2.44E+01 1.11E+01 3.44E+01 1.78E+01 1.12E+02 4.78E+01 4.94E+01 0.00E+00 1.58E+01

F9 Rank 5 2 6 4 9 7 8 1 3

Std. 1.60E+00 1.93E+00 7.42E+00 5.05E+00 1.04E+00 3.53E+00 2.94E+00 1.47E-08 4.19E+00

F10 Rank 3 4 9 8 2 6 5 1 7

Std. 2.63E+00 1.33E+01 2.56E+01 1.71E+01 4.95E-02 5.15E+01 4.76E+01 1.20E-06 1.82E+01

F11 Rank 3 4 7 5 2 9 8 1 6

Std. 3.10E+00 3.27E+06 1.24E+07 4.82E+06 6.67E+00 4.66E+07 4.23E+07 8.73E-02 1.08E+07

F12 Rank 2 4 7 5 3 9 8 1 6

Std. 1.48E+01 3.38E+06 1.44E+07 1.10E+07 3.70E+02 1.21E+08 9.32E+07 9.20E-03 2.26E+07

F13 Rank 2 4 6 5 3 9 8 1 7

Std. 1.34E+00 1.59E+00 2.25E+00 1.46E+00 2.49E+00 1.92E+00 1.05E+00 5.90E+01 2.91E+00

F14 Rank 2 4 6 3 7 5 1 9 8

Std. 7.43E-03 7.37E-03 2.15E-02 1.77E-03 1.87E-03 4.16E-03 3.19E-02 4.91E-03 8.15E-03

F15 Rank 6 5 8 1 2 3 9 4 7

Std. 1.98E-03 2.72E-02 1.25E-01 7.10E-03 2.56E-02 2.63E-02 1.12E-01 7.49E-03 1.27E-01

F16 Rank 1 6 8 2 4 5 7 3 9

Std. 3.62E-02 1.72E-01 9.71E-02 9.61E-02 3.65E-02 1.32E-01 7.35E-02 8.58E-01 1.44E-01

F17 Rank 1 8 5 4 2 6 3 9 7

Std. 4.88E-01 5.43E-01 4.64E+00 1.08E+00 5.84E+00 9.35E-01 1.49E+00 6.66E+00 3.90E+00

F18 Rank 1 2 7 4 8 3 5 9 6

Std. 6.50E-03 3.48E-02 2.18E-02 2.95E-02 3.10E-02 1.72E-02 7.80E-02 1.50E-04 6.82E-02

F19 Rank 2 7 4 5 6 3 9 1 8

Std. 1.60E-01 1.32E-01 2.23E-01 2.09E-01 1.61E-01 2.20E-01 4.77E-02 1.43E-04 3.67E-01

F20 Rank 4 3 8 6 5 7 2 1 9

Std. 1.73E+00 1.12E+00 3.62E+00 2.27E+00 3.96E-01 2.64E+00 5.42E-01 1.44E-03 2.71E+00

F21 Rank 5 4 9 6 2 7 3 1 8

Std. 2.43E+00 1.02E+00 3.31E+00 2.28E+00 1.55E+00 2.71E+00 6.57E-01 1.32E-02 5.30E-01

F22 Rank 7 4 9 6 5 8 3 1 2

Std. 1.64E+00 9.47E-01 3.28E+00 2.82E+00 8.53E-01 1.72E+00 6.13E-01 2.45E-03 3.39E+00

F23 Rank 5 4 8 7 3 6 2 1 9

Friedmans test 3.2174 4.0000 6.6957 4.9130 5.0000 6.6522 6.0870 2.2609 6.1739
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graph is a three-dimensional drawing of the cost function. The second column of the Fig. 4, Fig. 5, and Fig. 6, 
the graph shows the independently convergence progress of the AHA, AO, DA, DMOA, GBO, HGS, HHO, 
LFGOA, and MVO algorithms respectively. The third column of the Fig. 4, Fig. 5, and Fig. 6, the graph focus 
on the convergence progress of the LFGOA algorithm on each of the F1–F23 benchmark functions respectively. 
The fourth column of the Fig. 4, Fig. 5, and Fig. 6, the graph focus on the average fitness history of the LFGOA 
algorithm on each of the F1–F23 benchmark functions respectively. The fifth column of the Fig. 4, Fig. 5, and 

Table 5.   The best values of AHA, AO, DA, DMOA, GBO, HGS, HHO, LFGOA, and MVO. The best of the 
comparison results are in [bold].

F AHA AO DA DMOA GBO HGS HHO LFGOA MVO

F1 5.27E-34 1.99E-39 4.47E-02 3.84E-02 7.49E-17 0.00E+00 6.22E-33 2.20E-11 1.20E-01

F2 4.34E-15 7.20E-20 5.21E-01 2.10E-02 1.20E-33 1.01E-26 2.72E-20 1.94E-31 8.16E-02

F3 3.32E-29 1.95E-39 1.20E+01 3.49E+02 1.61E-22 1.45E-38 4.74E-27 1.19E-12 2.91E-01

F4 2.48E-14 2.72E-20 3.99E+00 4.13E+00 2.63E+01 3.20E-28 2.25E-15 5.18E-07 1.64E-01

F5 2.87E+01 1.28E-04 1.01E+01 1.47E+02 1.05E-22 2.28E-02 4.26E-02 3.84E+00 5.99E+01

F6 0.00E+00 2.20E-06 1.52E+00 1.94E-02 2.02E-20 6.45E-06 3.88E-04 2.31E-01 1.19E-01

F7 3.63E-04 1.91E-04 7.03E-03 8.41E-03 2.18E+00 1.10E-04 7.29E-04 1.31E-04 3.82E-03

F8 −7.51E+03 −3.01E+03 −2.51E+03 −1.38E+14 2.25E-02 −1.26E+04 −1.26E+04 −1.58E+03 −2.57E+03

F9 0.00E+00 0.00E+00 1.64E+01 3.42E+01 3.82E-04 0.00E+00 0.00E+00 0.00E+00 3.79E+01

F10 4.44E-15 8.88E-16 2.35E+00 5.68E-01 7.90E-14 8.88E-16 4.44E-15 1.45E-09 1.86E-01

F11 0.00E+00 0.00E+00 7.60E-01 7.01E-01 2.42E-13 0.00E+00 0.00E+00 3.51E-10 7.12E-01

F12 6.31E-02 4.23E-08 3.75E-01 2.46E-01 5.73E-01 3.19E-06 8.01E-06 9.23E-05 3.79E-03

F13 2.71E+00 7.88E-07 1.55E-02 1.51E-01 4.81E-01 1.92E-06 3.46E-05 1.97E-05 3.54E-02

F14 9.98E-01 2.98E+00 9.98E-01 9.98E-01 1.01E-14 9.98E-01 1.99E+00 9.98E-01 9.98E-01

F15 4.17E-04 4.87E-04 1.66E-03 1.06E-03 3.07E-04 7.78E-04 3.25E-04 1.31E-03 7.55E-04

F16 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00

F17 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01

F18 3.00E+00 3.02E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00

F19 −3.86E+00 −3.85E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.59E+00 −3.86E+00

F20 −3.32E+00 −3.08E+00 −3.17E+00 −3.32E+00 −3.32E+00 −3.32E+00 −3.02E+00 −3.32E+00 −3.32E+00

F21 −9.61E+00 −1.02E+01 −1.02E+01 −1.02E+01 −5.06E+00 −1.02E+01 −5.05E+00 −5.06E+00 −1.02E+01

F22 −1.04E+01 −1.04E+01 −1.04E+01 −1.04E+01 −1.04E+01 −1.04E+01 −5.09E+00 −5.09E+00 −2.77E+00

F23 −1.04E+01 −1.05E+01 −1.05E+01 −1.05E+01 −5.13E+00 −1.05E+01 −5.11E+00 −5.13E+00 −1.05E+01

Table 6.   Critical values for post-hoc tests after the Friedman test.

#classifiers 2 3 4 5 6 7 8 9 10

q0.05 1.96 2.343 2.569 2.728 2.85 2.949 3.031 3.102 3.164

q0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.78 2.855 2.92

Table 7.   The Average and Std ranks of nine algorithms using Friedman’s test based upon their results on the 
23 test functions.

Algorithm

Average Std

Mean rank Diff with LFGOA Std Rank Diff with LFGOA

AHA 3.782608696 1.3043 < 2.5051 3.217391304 0.9565 < 2.5051

AO 4.434782609 1.9565 < 2.5051 4.000000000 1.7391 < 2.5051

DA 6.478260870 4.0000 > 2.5051 6.695652174 4.4348 > 2.5051

DMOA 6.043478261 3.5652 > 2.5051 4.913043478 2.6522 > 2.5051

GBO 5.043478261 2.5652 > 2.5051 5.000000000 2.7391 > 2.5051

HGS 6.347826087 3.8696 > 2.5051 6.652173913 4.3913 > 2.5051

HHO 5.260869566 2.7826 > 2.5051 6.086956522 3.8261 > 2.5051

LFGOA 2.478260870 0 2.260869565 0

MVO 4.869565217 2.3913 < 2.5051 6.173913043 3.9130 > 2.5051
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Fig. 6, the graph focus on the best fitness history of the LFGOA algorithm on each of the F1–F23 benchmark 
functions respectively.

The unimodal test functions F1–F7.  Since there is only one extreme point in F1–F7 unimodal benchmark func-
tions, the unimodal benchmark functions are suitable for assessing the convergence rate and benchmarking the 
exploitation behavior of the algorithm. In the second column in Fig. 4, the LFGOA algorithm shows the best 
results in 6 out of 7, especially on F1–F4 respectively in unimodal benchmark, but for F5, the result unsatisfac-
tory for the LFGOA algorithm. In unimodal functions of F6–F7, the GBO algorithm shows better result that 
nearly reaches to zero.

The multimodal test functions F8–F13.  The F8–F13 multimodal benchmark functions are used to assess the 
exploration capability of the LFGOA algorithm to find global optima when the number of local optima increases 
exponentially with the problem dimension.

The second column of Fig. 5, for F8, as the GBO algorithm present a wrong value of positive (reference the 
Table 5) against the value of negative that gotten by the AHA, AO, DA, DMOA, HGS, HHO, LFGOA, and MVO 
algorithms respectively, the figure only shows the best convergence progress of the AHA, AO, DA, DMOA, 
HGS, HHO, LFGOA, and MVO algorithms respectively without GBO, because great difference values on two 
directions can’t be appropriately plotted in the same figure. For F9–F13, the convergence progress of the LFGOA 
algorithm is satisfactory especially for F9–F11; the convergence rate of the LFGOA algorithm is rapidly. Since the 
multimodal functions have an exponential number of local solutions, the results show that the LFGOA algorithm 
can explore the search space extensively and find promising regions of the search space.

For the third column of Fig. 5, the convergence progress of the LFGOA algorithm on each of the F8–F13 
benchmark functions all exhibit excellent convergence rate on each of the F8–F13 benchmark functions. It can 
also be seen in the third column of the Fig. 5, that the LFGOA algorithm does not provide uniform convergence 
behavior in all the benchmark functions. This shows that the LFGOA algorithm is good in handling of different 
problems.

The composite test functions F14–F23.  The second column of Fig. 6, for F14–F20, all of the algorithms reached 
the satisfactory convergence rate. For F21 and F23 (reference the Table 5), only the final results of the conver-
gence progress of the GBO and LFGOA algorithms respectively are satisfactory, the other seven algorithms 
unsatisfactory. For F22 (reference the Table 5), only the final results of the convergence progress of the HHO 
and LFGOA algorithms respectively are satisfactory, the other seven algorithms unsatisfactory. All in all, for 
the composite benchmark functions of F14–F23, the comprehensive result of the convergence progress of the 
LFGOA algorithm is superior to the other algorithms, which is very similar to the situation of the Table 5. From 
the third column of the Fig. 6, the convergence progress of the LFGOA on each of the F14–F23 benchmark func-
tions all exhibit better convergence rate. For the fourth column of the Fig. 6, even the average fitness of all grass-
hoppers on the F20–F23 with high fluctuation during the exploration phase (at nearly the early iteration stage) 
and low changes in the exploitation phase (at the end of iteration stage). This proves that the LFGOA algorithm 
is able to eventually improve the fitness of initial random solutions for a given optimization problem. For the 
fifth column of the Fig. 6, even the best fitness of all grasshoppers on the F14 and F20–F23 with high fluctuation 
during the exploration phase (at nearly the early iteration stage) and low changes in the exploitation phase (at 
the end of iteration stage), which guarantee that the LFGOA algorithm exploration extensively over the initial 
stage and exploitation locally at the end of optimization, and eventually convergences to optimization points.

Figure 3.   Average rank of Mean (left side) and Average rank of Std (right side) about LFGOA and the other 
algorithms using Friedman’s test based upon their results on the 23 test functions.
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LFGOA vs the other eight optimization algorithms on the p‑Values of the wilcoxon.  Due to the 
stochastic nature of the algorithms, the averages and standard deviation only compare the overall performance 
of the algorithms, while a statistical test considers each run’s results and proves that the results are statistically 
significant. Derrac et al37, recommended that to evaluate the performance of algorithms, statistical tests should 
be done. The non-parametric Wilcoxon statistical test is conducted and the p-values that are less than 0.05 could 
be considered as strong evidence against the null hypothesis. To assess the overall performance of the LFGOA 
algorithm, and to confirm the significance and robustness of the results, we apply Wilcoxon’s statistical test with 
a 5% significance level to the obtained average accuracy results.

At Table 8, the P-values are more than 0.05 appeared in the following cases:

•	 LFGOA/AO in F2, F9, and F14 in the third column of Table 8.
•	 LFGOA/DA, the F4, F14, and F17 in the fourth column of Table 8, as above depicted, both the DA and 

LFGOA algorithms all embedded Levy Flight mechanism, which means both of the two algorithms have 
some extent similarity properties.

•	 LFGOA/DMOA in F6 and F11 in the fiveth column of Table 8.
•	 LFGOA/GBO in the F2 in the sixth column of Table 8.
•	 LFGOA/HGS, which is consistent with the F2 and H9 in the seventh column of Table 8.
•	 LFGOA/MVO, in the F4, F11, and F17, as above depicted, both the exploration and exploitation swarming 

behaviors of MVO are very similar to LFGOA.

The results of the p-values in Table 8 show that the superiority of the LFGOA algorithm is statistically significant.

The scalability test for LFGOA.  Comparing comprehensive and thoroughly the property of the LFGOA 
algorithm with the GOA algorithm, we conducted the scalability test here. As we known, the scalability test can 
help us to some extent understand the impact of the dimension on the capability of the solution and the effec-
tively of the LFGOA algorithm. An in-depth exploration of the impacts on the solution functionality to catch 
what appears for the features of the LFGOA and GOA algorithms as the dimension of function experiences a 
growth respectively. Therefore, four dimensions of the functions F1–F23 are used here: 50, 100, 300, and 500. 
The whole circumstances have remained consistent; each algorithm uses 100 search agents and runs 30 times 
respectively. The mean values, the standard deviation values and the best optimal values were picked by the 
LFGOA and GOA algorithms under 50, 100, 300, and 500 dimensions, which are shown in the following tables.

In Table 9 (D = 50), there are 15 out of 23 average values obtained by the LFGOA algorithm, which are all 
less than those obtained by the GOA algorithm.

In Table 9 (D = 100), there are 14 out of 23 average values obtained by the LFGOA algorithm, which are all 
less than those obtained by the GOA algorithm. Table 9 also tell us the LFGOA algorithm consumed a little more 
time than the GOA algorithm under dimensions equal to 50 and 100 respectively.

In Table 10 (D = 300), there are 15 out of 23 average values obtained by the LFGOA algorithm, which are all 
less than those obtained by the GOA algorithm.

In Table 10 (D = 500), there are 14 out of 23 average values obtained by the LFGOA algorithm, which are all 
less than those obtained by the GOA algorithm. Table 10 also tell us the LFGOA algorithm consumed a little 
more time than GOA under dimensions equal to 300 and 500 respectively.

In Table 11 (D = 50), only for the unimodal functions F1 and F2, the Std values obtained by the LFGOA 
algorithm are 3.8798E-08 and 1.1745E-19, for the multimodal function F12, the Std values obtained by the 
LFGOA algorithm is 1.3597E-11, for the composite functions F17–F19 and F21–F22, the Std values obtained 
by the LFGOA algorithm are 1.4536E-12, 6.8103E-12, 1.7853E-15, 1.8687E-11, and 2.5783E-11, which are less 
than the GOA algorithm.

In Table 11 (D = 100), for the unimodal functions F1, F2 and F7, the Std values obtained by the LFGOA 
algorithm are 1.2465E-08, 1.9946E-28, and 2.8663E-01, for the multimodal functions F12 and F13, the Std values 
obtained by the LFGOA algorithm are 1.6469E-11 and 1.3907E-11, for the composite functions F16–F17 and 
F20–F23, the Std values obtained by the LFGOA algorithm are 1.7963E-13, 2.7986E-13, 5.9709E-14, 2.0967E-12, 
2.7518E-12, and 2.6440E-12, which are less than the GOA algorithm.

In Table 12 (D = 300), only for the unimodal functions F1 and F2, the Std values obtained by the LFGOA 
algorithm are 1.3549E-10 and 1.1144E-64, for the multimodal function F11 and F13, the Std values obtained by 
the LFGOA algorithm is 6.7423E-11 and 3.0608E-13, for the composite functions F14–F16 and F20–F22, the 
Std values obtained by the LFGOA algorithm are 1.2862E-15, 3.4063E-14, 6.5956E-15, 8.1218E-15, 1.3714E-12, 
and 6.8134E-13, which are less than the GOA algorithm.

In Table 12 (D = 300), for the unimodal functions F1, F2, F7, the Std values obtained by the LFGOA algorithm 
are 3.0527E-11, 1.4144E-82, and 2.8175E-01, for the multimodal function F10, F12, and F13, the Std values 
obtained by the LFGOA algorithm are 1.4097E-09, 7.3866E-14, and 2.6744E-13, for the composite functions 
F15, F17 and F19–F21, the Std values obtained by the LFGOA algorithm are 1.7152E-14, 8.7437E-14, 2.0085E-
15, 5.3160E-15, and 3.6452E-13, which are less than the GOA algorithm.

In Table 13 (D = 50, D = 100), there are 17 out of 23 best values obtained by the LFGOA algorithm, such that 
the number is far exceeded by the GOA algorithm.

In Table 14 (D = 300, D = 500), there are 17 out of 23 best values obtained by the LFGOA algorithm, such 
that the number is far exceeded by the GOA algorithm.

Some quantitative metrics of LFGOA algorithm.  In the first, second and third columns of Fig. 7, 
Fig. 8, and Fig. 9, the quantitative metrics about the dynamic change of grasshopper position (search history), 
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Table 8.   The p-Values of the Wilcoxon rank-sum test over 23 benchmark functions.

F AHA AO DA DMOA GBO HGS HHO MVO

F1 1.33E-29 1.12E-30 1.10E-03 1.36E-04 4.92E-04 1.66E-27 3.81E-29 1.07E-02

F2 9.55E-05 2.89E-01 1.72E-34 2.39E-31 3.18E-01 1.65E-01 5.83E-04 5.94E-34

F3 3.71E-26 2.20E-29 9.50E-09 1.83E-34 1.52E-14 1.24E-23 4.49E-19 3.11E-07

F4 2.00E-30 5.28E-31 9.68E-01 4.04E-11 2.07E-34 8.90E-30 8.74E-27 1.83E-01

F5 5.63E-15 1.06E-28 6.79E-29 2.17E-34 4.57E-09 8.19E-15 6.66E-21 5.05E-31

F6 3.07E-34 1.76E-32 3.17E-12 6.34E-01 3.17E-08 1.93E-26 1.01E-28 8.20E-03

F7 1.14E-02 1.30E-03 9.41E-35 8.51E-35 4.41E-23 3.21E-31 7.59E-30 2.60E-34

F8 7.48E-39 1.34E-36 7.30E-39 8.07E-39 8.08E-39 7.95E-39 8.06E-39 4.71E-39

F9 2.15E-05 9.75E-01 1.01E-36 2.79E-38 4.14E-31 4.55E-01 2.44E-05 1.15E-36

F10 2.62E-23 9.46E-27 6.68E-09 9.96E-18 3.73E-11 4.66E-23 7.46E-24 1.71E-28

F11 1.53E-29 7.68E-33 9.95E-04 1.68E-01 2.57E-34 7.94E-28 3.83E-27 2.63E-01

F12 1.85E-04 7.78E-35 3.61E-13 3.93E-16 3.70E-03 5.03E-32 5.03E-32 5.71E-16

F13 1.76E-34 2.18E-33 2.72E-13 2.11E-23 4.80E-09 3.18E-24 1.97E-27 9.16E-15

F14 1.56E-16 2.73E-01 1.34E-01 1.29E-05 5.18E-26 4.46E-32 8.75E-29 2.08E-28

F15 1.27E-24 2.31E-04 9.33E-10 7.59E-14 9.82E-04 2.00E-19 7.58E-29 7.45E-12

F16 3.80E-19 7.14E-33 4.09E-27 3.11E-29 2.82E-33 2.05E-30 5.70E-28 8.30E-08

F17 5.99E-12 6.12E-08 9.03E-01 1.05E-24 1.52E-20 9.27E-26 2.03E-21 7.26E-01

F18 3.38E-11 3.17E-41 3.94E-02 1.19E-25 7.84E-36 4.45E-26 1.09E-26 2.20E-03

F19 7.38E-39 1.21E-40 4.98E-39 7.74E-39 8.06E-39 8.09E-39 8.10E-39 7.54E-39

F20 1.77E-35 5.95E-37 1.26E-35 1.82E-35 1.88E-35 1.89E-35 1.89E-35 1.78E-35

F21 3.67E-22 3.59E-36 4.94E-06 3.29E-17 2.56E-31 1.25E-25 3.58E-20 6.52E-23

F22 6.72E-26 3.38E-38 6.45E-16 2.06E-29 9.21E-25 6.63E-34 6.22E-26 7.86E-16

F23 1.59E-22 2.73E-38 1.48E-12 8.93E-33 9.58E-25 6.51E-33 2.71E-28 4.35E-14

Table 9.   The average values and consumed time under dimensions are equal to 50 and 100. The best of the 
comparison results are in [bold].

Average (D=50) Average (D=100)

GOA Time LFGOA Time GOA Time LFGOA Time

F1 3.6191E+01 1.2050 2.4942E-08 1.2275 1.2055E+00 2.3869 3.0569E-09 2.9643

F2 1.3482E-03 1.0951 5.7176E-20 1.1334 2.4131E-05 2.2161 9.2086E-29 3.0393

F3 2.3206E-03 1.1223 6.7550E-09 1.1118 5.8872E-03 2.2003 7.9485E-10 2.4450

F4 6.5617E-02 1.1066 5.7340E-05 1.1322 1.5523E-02 2.2044 6.5922E-06 2.5821

F5 1.7916E+00 1.1356 3.9995E+00 1.1487 3.8084E+00 2.2154 3.9998E+00 2.6185

F6 3.9447E-03 1.1237 1.2511E+00 1.0964 3.5299E-04 2.1987 1.2513E+00 2.5916

F7 5.4859E-01 1.1118 5.1284E-01 1.1538 5.0714E-01 2.2203 5.5455E-01 2.5345

F8 -1.5817E+03 1.1047 8.8354E-01 1.1323 -1.7396E+03 2.2013 -1.3428E+00 2.5719

F9 9.9496E+00 1.0977 0.0000E+00 1.1305 2.0894E+01 2.1709 0.0000E+00 2.6047

F10 2.9110E-02 1.1078 1.6046E-08 1.1006 1.8809E-04 2.2013 9.8080E-09 2.5264

F11 2.8866E-01 1.1249 6.8659E-06 1.1194 2.1058E-01 2.2216 1.5094E-07 2.6239

F12 9.0110E-04 1.1309 4.1278E+00 1.1495 7.2328E-05 2.2531 4.1089E+00 2.6204

F13 2.8781E-04 1.1260 5.0433E-01 1.1367 2.0603E-04 2.2669 5.0215E-01 2.6213

F14 9.9800E-01 1.2246 1.6838E+01 1.1961 9.9800E-01 2.3730 2.1102E+01 2.7878

F15 1.6420E-03 1.0955 1.4814E-01 1.1130 1.6133E-03 2.1531 1.4768E-01 2.5356

F16 −1.0316E+00 1.1029 −2.1599E-04 1.0986 −1.0316E+00 2.1633 −9.9360E-04 2.5900

F17 3.9789E-01 1.0719 5.5426E+01 1.0845 3.9789E-01 2.1448 5.5550E+01 2.5279

F18 3.0000E+00 1.0768 6.0187E+02 1.0914 3.0000E+00 2.1536 6.0022E+02 2.5008

F19 -3.8556E+00 1.1103 −6.8414E-02 1.1153 −3.8628E+00 2.1828 −6.8054E-02 2.5666

F20 −3.3220E+00 1.1251 −5.1192E-03 1.1571 −3.2031E+00 2.1761 −5.1526E-03 2.5948

F21 −1.0153E+01 1.1073 −2.7445E-01 1.1072 −1.0153E+01 2.2019 −2.7443E-01 2.5493

F22 −1.0403E+01 1.1054 −2.9499E-01 1.1164 −1.0403E+01 2.1760 −2.9359E-01 2.5634

F23 −5.1756E+00 1.1077 −3.2385E-01 1.0913 −1.0536E+01 2.1356 −3.2322E-01 2.5238
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Table 10.   The average values and consumed time under dimensions are equal to 300 and 500. The best of the 
comparison results are in [bold].

Average (D=300) Average (D=500)

GOA Time LFGOA Time GOA Time LFGOA Time

F1 1.3993E-01 7.0597 3.2786E-11 7.1007 4.4886E-02 11.6255 6.3759E-12 11.6318

F2 1.0234E-04 6.4803 5.0309E-65 6.6171 3.8426E-05 10.7531 4.5746E-83 10.7092

F3 3.4992E-07 6.5596 2.1009E-11 6.5256 2.8104E-09 10.8761 1.6953E-12 10.8769

F4 6.1214E-05 6.5041 7.4812E-07 6.6153 2.2518E-05 10.6880 2.2156E-07 10.8303

F5 2.2175E+01 6.4526 4.0006E+00 6.6215 4.4415E-01 10.7493 4.0267E+00 10.8675

F6 9.6501E-08 6.4276 1.2483E+00 6.6123 6.1274E-09 10.7097 1.2499E+00 10.7890

F7 4.7933E-01 6.4718 4.7956E-01 6.7439 5.3289E-01 10.7331 4.8982E-01 10.7668

F8 −1.5422E+03 6.5236 1.4705E-01 6.6725 −1.8565E+03 10.8361 −6.3545E-01 10.8322

F9 1.1940E+01 6.5637 0.0000E+00 6.5827 3.9798E+00 10.6932 0.0000E+00 10.8322

F10 2.8382E-05 6.4535 1.4523E-08 6.6826 1.3150E-05 10.7786 2.0263E-09 10.8077

F11 1.0846E-01 6.5031 2.7470E-11 6.7343 2.9332E-01 10.8807 9.4160E-12 10.9145

F12 6.9024E-09 6.5605 4.1202E+00 6.7251 1.3700E-10 11.1410 4.1246E+00 11.0573

F13 5.2347E-09 6.5703 5.0618E-01 6.8489 2.7928E-09 11.1144 5.0520E-01 11.0723

F14 9.9800E-01 7.1762 2.7061E+01 7.1094 9.9800E-01 11.8381 1.4163E+01 11.9388

F15 2.0363E-02 6.3858 1.4785E-01 6.5066 1.2232E-03 10.5673 1.4900E-01 10.6402

F16 -1.0316E+00 6.3136 -1.5066E-04 6.5308 -1.0316E+00 10.4830 -5.5530E-04 10.6101

F17 3.9789E-01 6.3308 5.5468E+01 6.4903 3.9795E-01 10.5142 5.5418E+01 10.6483

F18 3.0000E+00 6.3583 6.0081E+02 6.4867 3.0000E+00 10.4125 2.8383E+03 10.7202

F19 −3.8628E+00 6.3754 −6.8537E-02 6.6820 −3.8628E+00 10.8593 −6.8651E-02 10.7968

F20 −3.3220E+00 6.3398 −5.1478E-03 6.5773 −3.3220E+00 10.5832 −5.1397E-03 10.7650

F21 −1.0153E+01 6.4471 −2.7419E-01 6.5988 −1.0153E+01 10.6039 −2.7433E-01 10.6293

F22 −1.0403E+01 6.3645 −2.9496E-01 6.6207 −5.0877E+00 10.5663 −2.9534E-01 10.6410

F23 −5.1756E+00 6.4597 −3.2337E-01 6.6613 −5.0877E+00 10.5663 −3.2345E-01 10.9356

Table 11.   The Std values of dimensions are equal to 50 and 100. The best of the comparison results are in 
[bold].

Std.(D=50) Std.(D=100)

GOA LFGOA GOA LFGOA

F1 6.0155E-08 3.8798E-08 1.4776E-08 1.2465E-08

F2 2.3807E-09 1.1745E-19 7.1900E-19 1.9946E-28

F3 9.3962E-10 2.6617E-08 1.5437E-09 4.0466E-09

F4 1.1334E-08 1.0041E-04 1.5319E-08 1.3578E-05

F5 1.1839E-09 5.4491E-03 1.9185E-09 1.6444E-03

F6 1.4169E-09 2.2225E-02 5.7538E-10 2.0425E-02

F7 2.5696E-01 2.7239E-01 3.0056E-01 2.8663E-01

F8 6.7393E-09 9.0843E+00 1.2751E-09 2.0548E+01

F9 4.0619E-11 0.0000E+00 2.1905E-13 0.0000E+00

F10 2.7113E-09 1.6339E-08 2.2388E-09 1.4696E-08

F11 4.4558E-09 5.0581E-05 6.4376E-10 1.2040E-06

F12 4.6808E-11 1.3597E-11 2.1111E-11 1.6469E-11

F13 1.9813E-11 3.0507E-10 3.1630E-11 1.3907E-11

F14 8.6804E-16 1.6792E-15 8.6517E-16 1.6865E-15

F15 3.2066E-13 1.8154E-12 3.8729E-13 5.5304E-13

F16 3.0710E-13 1.0826E-12 3.2260E-13 1.7963E-13

F17 6.1888E-12 1.4536E-12 9.7940E-13 2.7986E-13

F18 1.1610E-11 6.8103E-12 1.6063E-12 1.1737E-11

F19 8.9265E-15 1.7853E-15 3.5706E-15 8.0339E-15

F20 4.4562E-13 1.1664E-10 8.0186E-14 5.9709E-14

F21 3.4335E-11 1.8687E-11 2.3315E-11 2.0967E-12

F22 5.2950E-11 2.5783E-11 1.0470E-11 2.7518E-12

F23 1.6863E-11 2.4249E-11 1.2424E-11 2.6440E-12
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Table 12.   The Std values of dimensions are equal to 300 and 500. The best of the comparison results are in 
[bold].

Std.(D=300) Std.(D=500)

GOA LFGOA GOA LFGOA

F1 5.4447E-09 1.3549E-10 3.0741E-09 3.0527E-11

F2 1.1990E-12 1.1144E-64 5.4483E-20 1.4144E-82

F3 1.5002E-11 8.2788E-11 2.3827E-12 4.3344E-12

F4 1.7313E-08 1.0348E-06 1.5959E-08 2.7880E-07

F5 8.5595E-11 5.7502E-03 1.2438E-09 2.0807E-01

F6 1.0759E-11 2.4281E-02 2.7215E-12 1.4023E-02

F7 2.7826E-01 2.9240E-01 2.9060E-01 2.8175E-01

F8 6.8847E-11 1.2264E+01 3.5845E-12 1.3473E+01

F9 1.7825E-14 0.0000E+00 9.8192E-15 0.0000E+00

F10 2.5067E-09 1.6168E-08 2.3197E-09 1.4097E-09

F11 2.6284E-10 6.7423E-11 4.7477E-11 5.6309E-11

F12 2.5738E-13 5.2260E-13 9.7933E-14 7.3866E-14

F13 5.3530E-13 3.0608E-13 4.4706E-13 2.6744E-13

F14 1.4440E-15 1.2862E-15 1.4267E-15 1.7586E-15

F15 6.1666E-12 3.4063E-14 3.1147E-14 1.7152E-14

F16 1.5544E-14 6.5956E-15 6.1553E-15 6.6566E-15

F17 6.0061E-14 7.3601E-13 1.5832E-11 8.7437E-14

F18 1.5891E-13 1.0284E-12 6.3152E-14 1.6779E-09

F19 6.2486E-15 9.2926E-03 5.3559E-15 2.0085E-15

F20 8.2629E-15 8.1218E-15 5.6553E-15 5.3160E-15

F21 1.8562E-12 1.3714E-12 4.6740E-13 3.6452E-13

F22 7.9963E-13 6.8134E-13 9.2293E-14 3.1330E-13

F23 1.5963E-13 3.3840E-13 9.2293E-14 7.0228E-13

Table 13.   The best values of dimensions are equal to 50 and 100. The best of the comparison results are in 
[bold].

fbest (D = 50) fbest (D = 100)

GOA LFGOA GOA LFGOA

F1 3.6191E+01 1.3103E-09 1.2055E+00 2.1951E-11

F2 1.3482E-03 2.4163E-21 2.4131E-05 1.9438E-31

F3 2.3206E-03 9.8987E-12 5.8872E-03 1.1903E-12

F4 6.5617E-02 7.8056E-06 1.5523E-02 5.1792E-07

F5 1.7916E+00 3.7966E+00 3.8084E+00 3.8440E+00

F6 3.9447E-03 3.8284E-01 3.5299E-04 2.3066E-01

F7 2.1050E-02 9.9672E-05 1.4000E-02 1.3129E-04

F8 −1.5817E+03 −1.4125E+03 −1.7396E+03 −1.5779E+03

F9 9.9496E+00 0.0000E+00 2.0894E+01 0.0000E+00

F10 2.9110E-02 1.0108E-09 1.8809E-04 1.4488E-09

F11 2.8866E-01 6.6189E-09 2.1058E-01 3.5065E-10

F12 9.0110E-04 2.9048E-04 7.2328E-05 9.2275E-05

F13 2.8781E-04 3.5316E-03 2.0603E-04 1.9707E-05

F14 9.9800E-01 9.9800E-01 9.9800E-01 9.9800E-01

F15 1.6420E-03 2.0722E-03 1.6133E-03 1.3146E-03

F16 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00

F17 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01

F18 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00

F19 −3.8556E+00 −9.9789E-01 −3.8628E+00 −3.5906E+00

F20 −3.3220E+00 −3.2503E+00 −3.2031E+00 −3.3220E+00

F21 −1.0153E+01 −5.0552E+00 −1.0153E+01 −5.0552E+00

F22 −1.0403E+01 −5.0877E+00 −1.0403E+01 −5.0877E+00

F23 −5.1756E+00 −5.1285E+00 −1.0536E+01 −5.1285E+00
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and the eight grasshopper trajectories are employed from the first to the last iteration. Tracking the position 
change of grasshoppers during optimization, we can observe how the LFGOA algorithm explores and exploits 
the search space. Monitoring eight grasshopper trajectories during optimization, we can know in detail the 
movements of eight grasshoppers respectively.

From the first column in Fig. 7, we can see that the search history of grasshoppers is mostly concentrated in 
one region, which indicating that the LFGOA algorithm can quickly search for promising regions. In order to 
see the changes of the grasshoppers’ positions during searching, the trajectories of eight grasshoppers are picked 
in the second and third columns in Fig. 7, Fig. 8, and Fig. 9 as well. In the fourth and fifth columns of Fig. 7, 
the Box plot is used to check affirmed of the LFGOA algorithm stability. In the fourth column of Fig. 7, the Box 
plot is used to depict the fitness status by five groups (each group covering 20 iterations) at every stage. In the 
fifth column of Fig. 7, the Box plot is used to depict the position change by five groups (each group covering 20 
iterations) at every stage.

The unimodal test functions F1–F7.  In the first columns in Fig. 7, for the unimodal test functions F1–F7, it 
can be clearly seen that agents tend to exploration promising regions of the search space and exploitation very 
accurately around the global optima over the course of iterations in the form of rough like adozens of agents 
clustered together.

In the second and third columns in Fig. 7, the trajectory graphs of eight grasshoppers (as representative of all 
grasshoppers) are selected to show the grasshopper’s dynamic position changes respectively during optimization. 
From the second and the third columns in Fig. 7: we can see that the third in F2 and F7, the fifth and the seventh 
in F1, the fifth in F5, all of these grasshoppers undergo slight fluctuations during the grasshoppers searching 
respectively. From the second and third columns of Fig. 7: we also can see trajectory curves that the third in F1, 
the fourth and the sixth in F3, the third in F4, the first, the third and the eighth in F6, all of the grasshoppers 
made abrupt largely fluctuations in the initial stages of optimization respectively. Exploration of search space 
takes place due to high repulsive rate of the LFGOA algorithm. It is also seen that, as these grasshopper’s opti-
mization approaches further the fluctuation decreased gradually over the course of iterations. This is done due 
to the attraction forces as well as comfort zone between grasshoppers. According to Berg et al.38, this behaviour 
can guarantee that an algorithm eventually convergences to a point and search locally in a search space.

There are some mild autocorrelations and cross-linked between the trajectory graphs of grasshopper in the 
first columns of Fig. 7 with the second and third columns of Fig. 7, and the search history of grasshoppers in 
the first column of Fig. 7, the small fluctuation of the grasshoppers corresponding to the small scatter graph of 
the grasshopper clustered together, the great fluctuation of the grasshoppers corresponding to the big scatter 
graph of the grasshopper clustered together. It is meaningful on some extent, the inferences about the effectively 

Table 14.   The best values of dimensions are equal to 300 and 500. The best of the comparison results are in 
[bold].

fbest (D = 300) fbest (D = 500)

GOA LFGOA GOA LFGOA

F1 1.3993E-01 4.8395E-13 4.4886E-02 1.0601E-13

F2 1.0234E-04 1.7641E-67 3.8426E-05 2.0369E-93

F3 3.4992E-07 1.2297E-13 2.8058E-09 4.8504E-16

F4 6.1177E-05 5.2908E-08 2.2484E-05 2.5675E-08

F5 2.2175E+01 3.4648E+00 4.4415E-01 3.2320E+00

F6 9.6501E-08 1.5732E-01 6.1218E-09 1.2891E-01

F7 2.5094E-03 1.6588E-05 1.7812E-03 3.3404E-05

F8 -1.5422E+03 -1.3501E+03 -1.8565E+03 -1.2817E+03

F9 1.1940E+01 0.0000E+00 3.9798E+00 0.0000E+00

F10 2.8376E-05 2.1260E-09 1.3150E-05 2.3226E-10

F11 1.0846E-01 1.8996E-13 2.9332E-01 5.6066E-14

F12 6.9018E-09 2.4229E-08 1.3700E-10 -9.9993E-01

F13 5.2347E-09 1.1367E-08 2.7928E-09 2.5812E-09

F14 9.9800E-01 9.9800E-01 9.9800E-01 9.9800E-01

F15 2.0363E-02 1.2232E-03 1.2232E-03 1.2232E-03

F16 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00

F17 3.9789E-01 3.9789E-01 3.9795E-01 3.9789E-01

F18 3.0000E+00 3.0000E+00 3.0000E+00 1.9540E+03

F19 -3.8628E+00 -1.0008E+00 -3.8628E+00 -1.0008E+00

F20 -3.3220E+00 -3.3220E+00 -3.3220E+00 -3.3220E+00

F21 -1.0153E+01 -5.0552E+00 -1.0153E+01 -5.0552E+00

F22 -1.0403E+01 -5.0877E+00 -5.0877E+00 -5.0877E+00

F23 -5.1756E+00 -5.1285E+00 -5.0877E+00 -5.1285E+00
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convergence of the LFGOA algorithm while avoiding most locally optimal from the trajectory graphs of grass-
hopper and search history of grasshoppers.

To analysis the LFGOA randomness nature, the Box plot is used to show the difference by comparisons the 
fitness about the LFGOA algorithm. As the box contains 50% of the data, therefore, the height of the box can 
directly reflect the fluctuation level of the fitness about the LFGOA algorithm. The box plot is relatively short for 
the unimodal benchmark function F5 in the fourth column of Fig. 7 that reflects the fluctuation of the fitness 
is slight, which corresponding little promising regions of the search space of F5 in the first column in Fig. 7. 
There are more or little outliers among the entire unimodal benchmark functions F1–F7, which corresponding 
there are separate scatter clustered regions, except the big promising regions of the search space. The box plot 
is relatively tall for the unimodal benchmark function F4 in the fifth column of Fig. 7 that reflects the fluctua-
tion of the position changes are great at every search stage, which corresponding the grasshoppers made abrupt 
largely fluctuations in the initial stage of optimization respectively in the second and third columns in Fig. 7.

The multimodal test functions F8–F13.  From the first column in Fig. 8, for the multimodal benchmark func-
tions F8–F13, it can be clearly seen that agents tend to exploration promising regions of the search space and 
exploitation very accurately around the global optima over the course of iterations in the form of rough like 
adozens of agents clustered together.

From the second and third columns of Fig. 8: we can see that the F9, the sixth and the eighth in F10, the third 
in F12, all of the grasshoppers undergo slight fluctuations during the grasshoppers searching respectively. From 
the second and the third columns in Fig. 8: the first, the fifth, the sixth, the seventh, and the eighth in F8; the 
first, the third, the fourth, the sixth, and the eighth in F11; the fifth, the sixth, and the eighth in F12; the third in 
F13; all of these grasshoppers made abrupt largely fluctuations in the initial stages of optimization respectively 
during the grasshoppers searching respectively.

There is not outlier in the box plot of the multimodal benchmark function F10 in the fourth column of Fig. 8 
that reflects the fluctuation of the fitness is not large and the grasshoppers clustered around a relatively little 
promising regions of the search space.

There are more or little outliers among the entire multimodal benchmark functions F8–F13 in the fifth column 
of Fig. 8, which corresponding there are separate scatter clustered regions, except the big promising regions of 
the search space.

The composite test functions F14–F23.  From the first column in Fig. 9, for the composite benchmark functions 
F14 and F15, it can be clearly seen that agents tend to exploration promising regions of the search space and 
exploitation very accurately around the global optima over the course of iterations in the form of rough like 
adozens of agents clustered together. From the first column in Fig. 9, for the composite benchmark functions 
F21, F22 and F23, from a search history point of view, the agents tend to extensively exploration promising 
regions of the search spaces and exploitation the best target in the form of the scatter shape is rough like a thin 
stripe shape.

From the second and third columns of Fig. 9, we can see that the F21, F22, and F23, all of these grasshoppers 
made abrupt largely fluctuations from positive to the zero with one direction in the initial stage of optimization 
respectively during the grasshoppers extensively searching. There are more or little outliers among the composite 
benchmark function in the fourth column of Fig. 9, which corresponding there are separate scatter clustered 
regions, except the big promising regions of the search space. There are more or little outliers among the entire 
composite benchmark functions in the fifth column of Fig. 9, which corresponding there are separate scatter 
clustered regions, except the big promising regions of the search space.

Computational complexity of the LFGOA.  In this section, the general computational complexity of 
the LFGOA is presented. The computational complexity of the LFGOA typically relies on three rules: solutions 
initialization, calculate the fitness functions, and updating of solutions. In the associated formulas, N indicates 
the number of individuals in the population (the number of solutions), and T represents the maximum quantity 
of iterations. During the initial stage, the computational complexity of fitness evaluation is O(N). The compu-
tational complexity of the solutions’ updating processes is O(T × N)+ O(T × N × Dim) , which consists of 
exploring for the best positions and updating the solutions’ positions of all solutions, where the dimension size 
of the given problem is called Dim. From the above analysis, we can acquire the total computational complexity 
of the LFGOA is O(N × (T × Dim+ 1)).

Results and discussion
As we can see in Section 4, the LFGOA algorithm significantly outperforms others in terms of numerical opti-
mization. There are several reasons why the LFGOA algorithm did perform well in most of the test cases. First, 
Levy-flight strategy: Levy flight can increase the diversity of the population and make the algorithm jump out 
of local optimum more effectively. This approach is helpful to make LFGOA faster and more robust than GOA. 
Second, in GOA, it is assumed that the fittest grasshopper (the one with the best objective value) during optimi-
sation is the target. This will assist GOA to save the most promising target in the search space in each iteration 
and requires grasshoppers to move towards it. This is done with the hope of finding a better and more accurate 
target as the best approximation for the real global optimum in the search space.

Therefore, this approach promotes the exploration of promising feasible regions and is the main reason for 
the superiority of the LFGOA algorithm. Third, the LFGOA algorithm has an explicit restart mechanism. These 
are the reasons why LFGOA performs better than other algorithms at the end of the results section. Another 
finding in the results is the performance of most of the AHA, AO, DA, DMOA, GBO, HGS, HHO, and MVO 
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are not good enough. There is no restart mechanism for significant abrupt movements in the search space and 
this is likely to be the reason the performance of most of the eight algorithms is not good enough. In summary, 
the discussion and findings of this work clearly demonstrate the quality of the exploration, exploitation, local 
optima avoidance, and convergence rate of the LFGOA algorithm.

Real application of LFGOA in constrained engineering problems.  Engineering constrained opti-
mization problems are complex, sometimes even the optimal solutions of interest do not exist39. Engineering 
constrained optimization problems have been utilized by many researchers to evaluate the performance of dif-
ferent algorithms40. Although the above-discussed results prove and verify the high performance of the LFGOA 
algorithm, there is also to confidently confirm the performance of this algorithm in engineering constrained 
optimization problems in real life. In this section, the effectiveness of the LFGOA algorithm is verified in terms 
of its ability to solve constrained engineering optimization problems in practical application; seven well-studied 
constrained engineering design examples are selected to verify the proposed LFGOA algorithm, including: Him-
melblau’s nonlinear optimization problem, Cantilever beam design, Car Side Impact Design, Gear train Design, 
Pressure vessel design, Speed Reducer Design, and tabular column design.

However, different real-world problems often have different constraints, so a suitable approach is demanded 
to deal with such problems41. The main idea is to transform the actual optimization problem into a mathematical 
model, and then use the LFGOA algorithm to find the optimal solution. Normally, f(x) is the fitness function, x 
represents the search space, x1, x2, . . . , xn represent different dimensions, there are several equality and inequal-
ity constraints in engineering constrained optimization problems. In order to be suitable for these engineering 
constrained problems, the search agent of our proposed LFGOA algorithm does not only rely on fitness func-
tions to update the location. So, the simplest method of dealing with constraints (penalty functions) can be used 
effectively to deal with constraints in algorithms42. That is, if the search agent violates any constraints, it will be 
assigned a large objective function value. This way, it is automatically replaced by a new search agent after the 
next iteration. So, we use penalty functions in which the LFGOA algorithm has achieved good values if it violates 
one of these constraints.

Himmelblau’s nonlinear optimization problem..  Before solving the engineering constrained prob-
lems, the LFGOA was benchmarked using a well-known problem, namely, Himmelblau’s problem, which is a 
relatively complex constrained problem of minimization five positive design variables and six nonlinear inequal-
ity constraints, and ten boundary conditions. This problem has originally been proposed by Himmelblau43 and 
it has been widely used as a benchmark nonlinear constrained optimization problem and applied to many fields. 
The problem can be outlined as follows:

Consider:

Minimize:

Subject to:

Where:

Table 15 demonstrates the comparison of the best solution among the different optimizers and the correspond-
ing design variables, while the statistical results for each considered strategy are detailed in Table 16. The results 
obtained by LFGOA algorithm are compared with five state-of-the-art algorithms, such as Artificial Bee Colony 
algorithm44, sparrow search algorithm45, Cuckoo search algorithm46, harmony search algorithm47, and Differ-
ential gradient evolution plus algorithm48 respectively in the literatures. It can be clearly seen that the LFGOA 
algorithm performed better without any violation and is feasible on this issue. The convergence curve in Fig. 10 
shows the function values versus the iteration numbers for the constrained problem.

Cantilever beam design.  Cantilever beam design is a type of concrete engineering problems. It works to 
minimize the total weight of a cantilever beam by optimizing the hollow square cross-section parameters. There 
are five squares of which the first block is fixed and the fifth one burdens a vertical load.

x = [x1, x2, x3, x4, x5],

f (x) = 5.3578547x23 + 0.8356891x1x5 + 37.293239x1 − 40792.141,

0 ≤ g1(x) ≤ 92,

90 ≤ g2(x) ≤ 110,

20 ≤ g3(x) ≤ 25,

g1(x) = 85.334407+ 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5

g2(x) = 80.51249+ 0.0071317x2x5 + 0.0029955x1x2 − 0.0021813x23
g3(x) = 9.300961+ 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4

78 ≤ x1 ≤ 102,

33 ≤ x2 ≤ 45,

27 ≤ x3, x4, x5 ≤ 45
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Table 15.   Reported results for constrained problems from different optimizers. The best of the comparison 
results are in [bold].

Algorithm

Optimal values for variables

f(x)x1 x2 x3 x4 x5

LFGOA 78.00 34.41 27.76 40.88 44.56 −30850.53

ABC 78.00 33.00 27.07 45.00 44.97 −31025.58

SSA 78.00 33.00 30.00 45.00 36.78 −30665.54

CS 78.00 33.00 30.00 45.00 36.78 −30665.23

HS 78.00 33.00 30.00 45.00 36.78 −30665.50

DGE+ 78.00 33.00 30.00 45.00 36.78 −30665.54

Table 16.   Comparative results of LFGOA with other methods for Himmelblau’s (N/A stands for not 
available). The best of the comparison results are in [bold].

Algorithm Best Mean Std

LFGOA −30850.5347 −30859.2667 16.5467

ABC −31025.5820 −30665.5390 0.0000

SSA −30665.5387 −30665.3808 0.5713

CS −30665.2327 N/A 11.6231

HS −30665.5432 N/A N/A

DGE+ −30665.5391 −30665.5391 0.0001

Figure 10.   Convergence curve for Himmelblau’s constraint problem.

Figure 11.   Schematic of cantilever beam.
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For this well-known case, Fig. 11 shows the shape of the cantilever beam, the beam is rigidly supported at 
right side end, and a vertical force acts on the cantilever free node of the left side, which is supported at the 
rightmost block and the other blocks are left free. The widths and heights of the five beams considered of the 
problem are used as design parameters of the optimization. The beam consists of five hollow square blocks with 
constant thickness, whose heights (or widths) are the decision variables. The cantilever weight optimization is 
formulated in the following equation:

Consider:

Mathematically speaking, it is possible to write most optimization problems in the generic form:
Minimize:

Subject to:

Variable range:

To evaluate the performance of the proposed LFGOA in solving this problem, some of the algorithms that are 
chosen for comparison are Artificial hummingbird algorithm29 and Gradient-Based Optimizer33 in the literatures. 
The results obtained by LFGOA and their comparison with the aforementioned state-of-the-art metaheuristics 
are reported in Tables 17 and 18, while the statistical results for each considered strategy are detailed in Table 18. 
From Tables 17 and 18, it can be seen that LFGOA achieves the high-quality solution for this case. The results 
of LFGOA algorithm for this problem are consistent to those of other real problems, in which the LFGOA algo-
rithm outperforms the other two algorithms and is the first most efficient approach, and shows very competitive 
results. The comparative results show that our method can effectively solve this case and reveal better design.

It is evident from Tables 17 and 18 that the proposed LFGOA algorithm performed better without any viola-
tion. The convergence curve shows the function values versus the Iteration numbers for the constrained problem 
are given in Fig. 12.

Car side impact design.  On the foundation of the European Enhanced Vehicle-Safety Committee (EEVC) 
procedures, a car is exposed to a side impact, and the aim of this benchmark problem is minimizing the weight 
of the door. There are eleven influence parameters in this problem, which describe as follow:

•	 the thicknesses of B-pillar inner (x1),
•	 the B-pillar reinforcement (x2),
•	 the floor side inner (x3),
•	 the cross members (x4),
•	 the door beam (x5),
•	 the door beltline reinforcement (x6),

x = [x1, x2, x3, x4, x5],

f (x) = 0.06224(x1 + x2 + x3 + x4 + x5),

g(x) =
61

x31
+

27

x32
+

19

x33
+

7

x34
+

1

x35
− 1 ≤ 0,

0.01 ≤ x1, x2, x3, x4, x5 ≤ 100.

Figure 12.   Convergence of cantilever beam.
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•	 the roof rail (x7),
•	 the materials of B-pillar inner (x8),
•	 the floor side inner (x9),
•	 the barrier height (x10),
•	 the hitting position (x11).

Consider:

Structural weight and response to impact can be approximated using global response surface methodology in 
order to simplify the analytical formulation of the optimization problem and speed up computations. As an 
optimization problem, mathematically speaking, it is possible to write simplified models optimization problems 
in the generic form:

Minimize:

Ten constraints are imposed on the design problem.
Subject to:

The simple bounds of this problem are:

x = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11],

f (x) = 1.98+ 4.90x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7

g1(x) = 1.16− 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9 + 0.01343x6x10 − 1 ≤ 0,

g2(x) = 46.36− 9.9x2 − 12.9x1x2 + 0.1107x3x10 − 32 ≤ 0,

g3(x) = 33.86+ 2.95x3 + 0.1792x1 − 5.057x1x2 − 11.0x2x8 − 0.0215x5x10 − 9.98x7x8 + 22.0x8x9 − 32 ≤ 0,

g4(x) = 28.98+ 3.818x3 − 4.2x1x2 + 0.0207x5x10 + 6.63x6x9 − 7.7x7x8 + 0.32x9x10 − 32 ≤ 0,

g5(x) = 0.261− 0.0159x1x2 − 0.188x1x8 − 0.019x2x7 + 0.0144x3x5 + 0.0008757x5x10 + 0.08045x6x9

+ 0.00139x8x11 + 0.00001575x10x11 − 0.32 ≤ 0,

g6(x) = 0.214+ 0.00817x5 − 0.131x1x8 − 0.0704x1x9 + 0.03099x2x6 − 0.018x2x7 + 0.0208x3x8

+ 0.121x3x9 − 0.00364x5x6 + 0.0007715x5x10 − 0.0005354x6x10 + 0.00121x8x11

+ 0.00184x9x10 − 0.02x22 − 0.32 ≤ 0,

g7(x) = 0.74− 0.61x2 − 0.163x3x8 + 0.001232x3x10 − 0.166x7x9 + 0.227x22 − 0.32 ≤ 0,

g8(x) = 4.72− 0.5x4 − 0.19x2x3 − 0.0122x4x10 + 0.009325x6x10 + 0.000191x211 − 4 ≤ 0,

g9(x) = 10.58− 0.674x1x2 − 1.95x2x8 + 0.02054x3x10 − 0.0198x4x10 + 0.028x6x10 − 9.9 ≤ 0,

g10(x) = 16.45− 0.489x3x7 − 0.843x5x6 + 0.0432x9x10 − 0.0556x9x11 − 0.000786x211 − 15.7 ≤ 0,

0.5 ≤ x1, x3, x4 ≤ 1.5,

0.45≤ x2 ≤ 1.35,

0.875 ≤ x5 ≤ 2.625

0.4 ≤ x6, x7 ≤ 1.2

0.192 ≤ x8, x9 ≤ 0.345

− 30 ≤ x10, x11 ≤ +30.

Table 17.   Results of the comparative algorithms for solving the cantilever beam design problem. The best of 
the comparison results are in [bold].

Algorithm

Optimal values for variables

f(x)x1 x2 x3 x4 x5

LFGOA 6.008900 5.304900 4.502300 3.507700 2.150400 1.336554

AHA 6.013830 5.302425 4.496347 3.508429 2.152705 1.339965

GBO 6.012400 5.312900 4.494100 3.503600 2.150600 1.339957

Table 18.   Comparative results of LFGOA with other methods for cantilever beam design. The best of the 
comparison results are in [bold].

Algorithm Best Mean Std

LFGOA 1.3366 1.3377 0.0016

AHA 1.3400 1.3401 0.0000

GBO 1.3400 1.3400 0.0000
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To evaluate the performance of the proposed LFGOA algorithm in solving this problem, some of the algorithms 
that are chosen for comparison are Social Network Search49, Enhanced grasshopper optimization algorithm19, 
and Firefly Algorithm50 respectively in the literatures.

The results obtained by LFGOA and their comparison with the aforementioned state-of-the-art metaheuris-
tics are reported in Table 19, while the statistical results for each considered strategy are detailed in Table 20.

It is evident from Tables 19 and 20 that the proposed LFGOA algorithm performed better without any viola-
tion. The convergence curve shows the function values versus the Iteration numbers for the constrained problem 
are given in Fig. 13.

Discrete engineering problem‑gear train design.  The high-speed train drive wheel transmission sys-
tem mostly adopts a gear transmission structure. Due to the limited size of the structure, the pinion gear and the 
motor drive shaft are connected by an interference fit. The vibration is caused by an unreasonable design, which 

Table 19.   The optimum values of the car side impact design example.

LFGOA SNS EOBL-GOA FA

x1 0.5082 0.5000 0.5000 0.5000

x2 0.8902 1.1159 1.1164 1.3600

x3 0.5000 0.5000 0.5000 0.5000

x4 1.2635 1.3029 1.3021 1.2020

x5 0.5000 0.5000 0.5000 0.5000

x6 1.0048 1.5000 1.5000 1.1200

x7 0.5000 0.5000 0.5000 0.5000

x8 0.3233 0.3450 0.3450 0.3450

x9 0.2810 0.1920 0.1920 0.1920

x10 5.2244 −19.6389 −19.5494 8.8731

x11 12.0882 0.0000 −0.00431 −18.9981

f(x) 21.2196 22.8430 22.8429 22.8430

Table 20.   Comparative results of LFGOA with other methods for car side impact design. The best of the 
comparison results are in [bold].

Algorithm Best Mean Std

LFGOA 21.2196 22.9125 0.0417

SNS 22.8430 22.8815 0.1018

EOBL-GOA 22.8430 22.8351 0.0243

FA 22.8430 22.8938 0.1667
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Figure 13.   Convergence curve for car side impact design.
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causes a system failure. The objective of gear train design problem is to minimize the cost of the “Gear ratio” of 
the gear train in field mechanical engineering problem. The “Gear ratio” defined as the ratio of the angular veloc-
ity of the output shaft to the angular velocity of the input shaft, the “Gear ratio” is calculated as follows:

The parameters of this problem are discrete with the increment size of 1 since they define the teeth of the gears 
(Ta,Tb,Tc ,Td). There constraints are only limited the variable ranges. The design of gear train is a kind of mixed 
problems which have to determine various types of design variables such as continuous, discrete, and integer 
variables. This problem simply stated is: given a fix input drive and a number of fixed output drive spindles, how 
can the spindles be driven by the input using the minimum number of connecting gear in the train. To handle 
discrete parameters, each search agent was rounded to the nearest integer number before the fitness evaluation.

The number of teeth of gears Ta(= x1) , Tb(= x2) , Tc(= x3) , and Td(= x4) are considered as the design vari-
ables, and illustrates at Fig. 14.

Consider:

The mathematical formulation is provided as follows:
Minimize:

Gearratio =
angular velocity of output shaft

angular velocity of input shaft

[x1, x2, x3, x4] = [Ta,Tb,Tc ,Td],

Figure 14.   Schematic of gear train.
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Figure 15.   Convergence of gear train.



40

Vol:.(1234567890)

Scientific Reports |          (2023) 13:124  | https://doi.org/10.1038/s41598-022-27144-4

www.nature.com/scientificreports/

The design engineering constraint is defined as the number of teeth on any gear that should only be in the range 
of [12, 60], in other words, the constraints are only limited the variable ranges: 12 ≤ x1, x2, x3, x4 ≤ 60

This section uses the proposed LFGOA algorithm to solve the gear train design problem and compares the 
results with other optimization algorithms, including Social Network Search49, An enhanced hybrid arithmetic 
optimization algorithm51, The Ant Lion Optimizer52, and Multi-Verse-Optimizer36 respectively in the literatures. 
Table 21 compares the minimum cost and design variables obtained using the LFGOA algorithm and other 
optimization algorithms, while the statistical results for each considered strategy are detailed in Table 22.

However, the optimal values for variables obtained are different. It is worth pointing out that any feasible 
solution is an optimal solution, the values in Table 21 which gained by the five algorithms, only rough agreed 
with each other. Therefore, this design can be considered as a new design with a similar optimal “Gear ratio”. 
Table 21 shows that the LFGOA algorithm gives competitive results for numbers of function evaluations and 
is suitable to solve discrete constrained problems. Once more, these results prove that the proposed LFGOA 
algorithm can solve discrete real problems efficiently. As shown in the Fig. 15, the convergence curve is quickly 
and the solutions were obtained instantly under satisfy all constraints.

Pressure vessel design.  The pressure vessel design optimization task has also been popular among 
researchers and optimized in various studies. Pressure vessel design is a mixed discrete-continuous constrained 
optimization problem. Using rolled steel plate, the shell is made in two halves that are joined by two longitudi-
nal welds to forms a cylinder. The objective of this problem is to minimize the total cost consisting of material, 
forming, and welding of a cylindrical vessel as in Fig. 16. Both ends of the vessel are capped, and the head has a 
hemi-spherical shape. There are four variables in this problem:

•	 Thickness of the shell (Ts),
•	 Thickness of the head (Th),
•	 Inner radius (R),
•	 Length of the cylindrical section without considering the head (L).

In pressure vessel, the thickness of the shell (Ts) and head (Th) , the internal radius (R), and the extent of the 
section, minus the head (L), are variables to be optimized. This problem is subject to four constraints: Ts and Th 
are the available thicknesses of rolled steel plates, which are integer multiples of 0.0625 inch, and R and L are 
continuous variables. Many meta-heuristic methods that have been adopted to optimize this problem includes 
Social Network Search49, Composite Differential Evolution with Modified Oracle Penalty Method53, Artificial 
hummingbird algorithm29, Manta ray foraging optimization54, a Hybrid Co-evolutionary Particle Swarm Opti-
mization Algorithm55, the Automatic Dynamic Penalisation method (ADP) for handling constraints with genetic 
algorithms56, and a Hybrid Generalized Reduced Gradient-Based Particle Swarm Optimizer57 respectively in 
the literatures.

f (x) = (
1

6.931
−

x3x2

x1x4
)
2

Table 21.   Comparison results of the gear train design problem. The best of the comparison results are in 
[bold].

Algorithm

Optimal values for 
variables

Optimal gear ratiox1 x2 x3 x4

LFGOA 32 12 23 59 2.62E-16

SNS 43 19 16 49 2.70E-12

CSOAOA 22 16 48 50 2.10E-10

ALO 49 19 16 43 2.70E-12

MVO 43 16 19 49 2.70E-12

Table 22.   Comparative results of LFGOA with other methods for gear train design. The best of the 
comparison results are in [bold].

Algorithm Best Mean Std

LFGOA 2.62E-16 1.35E-16 1.30E-16

SNS 2.70E-12 1.68E-10 3.75E-10

CSOAOA 2.10E-10 2.10E-10 3.82E-10

ALO 2.70E-12 4.72E-09 6.08E-09

MVO 2.70E-12 7.59E-10 1.08E-09
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These constraints and the problem are formulated as follows:
Consider:

Minimize:

Subject to:

Variable range:

x = (x1, x2, x3, x4) = (Ts ,Th,R, L),

f (x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x21x4 + 19.84x21x3,

g1(x) = −x1 + 0.0193x3 ≤ 0,

g2(x) = −x3 + 0.00954x3 ≤ 0,

g3(x) = −πx23x4 −
4

3
πx33 + 1296000 ≤ 0,

g4(x) = x4 − 240 ≤ 0,

Figure 16.   Schematic of pressure vessel.
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Figure 17.   Convergence of pressure vessel.
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From Tables 23 and 24, it is evident that LFGOA obtain the better solution among these compared approaches. 
From Table 24, once more, the statistical results of different methods also demonstrate that the proposed LFGOA 
method can solve this constrained optimization problems with discrete-continuous variables effectively and 
provide competitive statistical results. It should be noted the results of LFGOA do not denote that it can find 
better solutions due to the accuracy.

As shown in the Fig. 17, the convergence curve quickly converge towards the global optimum and the solu-
tions was obtained instantly under satisfy all constraints.

Speed reducer design.  In mechanical systems, one of the essential parts of the gearbox is the speed 
reducer, and it can be considered as a challenging benchmark engineering problem and can be employed for 
several applications. In this optimization problem, the weight of the speed reducer is to be minimized with sub-
ject to 11 constraints, as shown in Fig. 18. The goal of the speed reducer design problem is to minimize the total 
weight of the reducer by optimizing the seven variables, which describe as follow:

•	 the width of the gear surface (cm) (x1 = b),
•	 the module of teeth (cm) (x2 = m),
•	 the number of teeth in the pinion (x3 = p),
•	 the length of the first shaft between bearings (cm) (x4 = l1),
•	 the length of the second shaft between bearings (cm) (x5 = l2),
•	 the diameter of first shafts (cm) (x6 = d1),
•	 the diameter of second shafts (cm) (x7 = d2).

The mathematical model of the gear train design problem is:
Consider variable:

0 ≤ x1 ≤ 99,

0 ≤ x2 ≤ 99,

10 ≤ x3 ≤ 200,

10 ≤ x4 ≤ 200,

Table 23.   Comparison of the best solution for pressure vessel design found by different methods.

Algorithm

Optimal values for variables

f(x)x1 x2 x3 x4

LFGOA 0.7840 0.3875 40.6220 195.8397 5895.5481

SNS 0.8125 0.4375 42.0985 176.6366 6059.7143

MOCoDE 0.8125 0.4375 42.0984 176.6366 6059.7143

AHA 0.7782 0.3847 40.3197 199.9993 5885.3537

MRFO 0.7787 0.3849 40.3447 199.6516 5987.8131

ABC 0.7782 0.3847 40.3211 199.9802 5885.4033

CPSOSA 0.8125 0.4375 42.0984 176.6366 6059.7143

ADP_GA 0.8125 0.4375 42.0968 176.6580 6059.9384

PSO_GRG​ 0.8125 0.4375 42.0984 176.6366 6059.7144

SO 0.7819 0.3857 40.5752 196.5499 5887.5298

Table 24.   Comparative results of LFGOA with other methods for gear train design. The best of the 
comparison results are in [bold].

Algorithm Best Mean Std

LFGOA 5895.5481 5990.7402 65.6885

SNS 6059.7143 6097.1003 92.8000

MOCoDE 6059.7143 6059.7143 0.0000

AHA 5885.3537 5885.5382 0.1378

MRFO 5987.8131 6167.4900 12.6209

CPSOSA 6059.7143 6059.7143 0.0000

ADP_GA 6059.9384 6182.0022 122.3256

PSO_GRG​ 6059.7144 6369.4767 454.8344

SO 5887.5298 5989.8092 104.0000
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Minimize:

Subject to:

x = (x1, x2, x3, x4, x5, x6, x7) = (b,m, p, l1, l2, d1, d2).

f (x) =0.7854x1x
2
2

(
3.3333x23 + 14.9334x3 − 43.0934

)
− 1.508x1

(
x26 + x27

)
+ 7.4777

(
x36 + x37

)

+ 0.7854
(
x4x

2
6 + x5x

2
7

)
,

Figure 18.   Schematic of speed reducer.
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Figure 19.   Convergence of speed reducer.
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Variable range:

This case was previously tackled by many scholars using various heuristic methods, including Social Network 
Search49, Information-Decision Searching Algorithm58, An enhanced hybrid arithmetic optimization algorithm51, 
Artificial hummingbird algorithm29, Manta ray foraging optimization54, sparrow search algorithm45, A simpli-
fied non-equidistant grey prediction evolution algorithm59, Gradient-based optimizer33, and Snake Optimizer5.

The statistical results of LFGOA and nine optimization methods are compared in Tables 25 and 26. Among 
the compared optimization algorithms, the LFGOA ranks first as superior to other approaches in optimizing 
the reducer design, our method can find better geometric variables for this case. Hence, our result is feasible and 
verifies the effectiveness of the proposed LFGOA algorithm. The results demonstrate that the proposed LFGOA 
can provide reliable and very comprising solutions compared with the other algorithms.

As shown in the Fig. 19, the convergence curve quickly converge towards the global optimum and the solu-
tions was obtained instantly under satisfy all constraints.

Tubular column design.  Tubular column design is an example of designing a uniform column of the tubu-
lar section to carry a compressive load at minimum cost as described in Fig. 20. There are two design variables 
in this problem, which describe as follow:

•	 the mean diameter of the column d(= x1)(cm),
•	 the thickness of tube t(= x2)(cm).

The five characteristic parameters in the constituent materials of the column are set as:

•	 P is a compressive load(= 2500kgf ),
•	 σy represents the yield stress(= 500kgf /cm2),
•	 E is the modulus of elasticity(= 0.85× 106kgf /cm2),
•	 ρ is the density(= 0.0025kgf /cm3),
•	 L denotes the length of the designed column (= 250cm).

g1(x) =
27

x1x
2
2x3

− 1 ≤ 0,

g2(x) =
397.5

x1x
2
2x

2
3

− 1 ≤ 0,

g3(x) =
1.93x34
x2x

4
6x3

− 1 ≤ 0,

g4(x) =
1.93x35
x2x

4
7x3

− 1 ≤ 0,

g5(x) =

√
( 745x4x2x3

)
2
+ 16.9× 106

110x36
− 1 ≤ 0

g5(x) =

√
( 745x4x2x3

)
2
+ 157.5× 106

85x37
− 1 ≤ 0

g7(x) =
x2x3

40
− 1 ≤ 0,

g8(x) =
5x2

x1
− 1 ≤ 0,

g9(x) =
x1

12x2
− 1 ≤ 0,

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0,

2.6 ≤ x1 ≤ 3.6,

0.7 ≤ x2 ≤ 0.8,

x3 ∈ {17, 18, 19, ..., 28},

7.3 ≤ x4,

x5 ≤ 8.3,

2.9 ≤ x6 ≤ 3.9,

5 ≤ x7 ≤ 5.5.
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The optimization model of this problem is given as follows:
Consider: x = [x1, x2] = [d, t],
Minimize:

Subject to:

Variable range:

The stress included in the column should be less than the buckling stress (constraint g1 ) and the yield stress 
(constraint g2 ). The mean diameter of the column is restricted between 2 and 14cm (constraint g3 and g4 ), and 

f (x) = 9.8x1x2 + 2x1

g1(x) =
P

πx1x2σy
− 1 ≤ 0,

g2(x) =
8PL2

π3Ex1x2(x
2
1 + x22)

− 1 ≤ 0,

g3(x) =
2.0

x1
− 1 ≤ 0,

g4(x) =
x1

14
− 1 ≤ 0,

g5(x) =
0.2

x2
− 1 ≤ 0,

g6(x) =
x2

8
− 1 ≤ 0,

2 ≤ x1 ≤ 14,

0.2 ≤ x2 ≤ 0.8.

Table 25.   Results of LFGOA and competitive algorithms in solving the speed reducer design. The best of the 
comparison results are in [bold].

Algorithm

Optimal values for variables f(x)

x1 x2 x3 x4 x5 x6 x7

LFGOA 3.5000 0.7000 17.0000 7.4147 7.6669 2.9087 5.0000 2743.1379

SNS 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2867 2994.4711

IDSE 3.6000 0.7000 17.0000 7.3000 8.3000 3.3846 5.5000 3197.8394

CSOAOA 3.5000 0.7000 17.0000 7.3000 7.8000 3.3500 5.2900 2996.3017

AHA 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2867 2994.4712

MRFO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2867 2994.4711

SSA 3.5001 0.7000 17.0000 7.3000 7.8000 3.3512 5.2868 2996.0217

NeGPE-s 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2867 2990.0000

GBO 3.4999 0.7000 17.0000 7.3000 7.8000 3.3502 5.2866 2996.3481

SO 3.4976 0.7000 17.0000 7.3000 7.8000 3.3501 5.2857 2995.5424

Table 26.   Comparative results of LFGOA with other methods for speed reducer design. The best of the 
comparison results are in [bold].

Algorithm Best Mean Std

LFGOA 2743.1379 2744.1172 2.3762

SNS 2994.4711 2994.4711 0.0000

IDSE 3197.8394 3372.4083 101.3525

CSOAOA 2996.3017 2997.7746 3.5937

AHA 2994.4712 2994.4717 42512.0000

MRFO 2994.4711 2994.4711 0.0146

SSA 2996.0217 3005.5744 4.6300

NeGPE-s 2990.0000 2990.0000 0.0014

GBO 2996.3481 2996.3481 0.0000

SO 2995.5424 2995.5424 0.0000
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columns with thickness outside the range 0.2− 0.8cm are not commercially available (constraint g5 and g6 ). The 
mean diameter d(x1) and the thickness t(x2) vary in the range of [2,14] and [0.2,0.8].

This case was previously tackled by many scholars using various heuristic methods, including Social Network 
Search49, Cuckoo search algorithm46, krill herd algorithm60, Cooperation search algorithm61, and a Hybrid Gen-
eralized Reduced Gradient-Based Particle Swarm Optimizer57 respectively in the literatures.

The statistical results of LFGOA and other optimization methods are compared in Tables 27 and 28. Among 
the compared optimization algorithms, the LFGOA ranks first as superior to other approaches in optimizing the 
tubular column design, our method can find better geometric variables for this case. Hence, our result is feasible 

Figure 20.   Schematic of tubular column.
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Figure 21.   Convergence of tabular column.

Table 27.   Results of LFGOA and competitive algorithms in solving the tubular column design. The best of the 
comparison results are in [bold].

Algorithm

Optimal values 
for variables

f(x)x1 x2

LFGOA 2.5465 0.8000 25.0574

SNS 5.4512 0.2920 26.4995

HFBOA 5.4514 0.2920 26.5322

CS 5.4514 0.2920 26.5322

KH 5.4513 0.2920 26.5314

CSA 5.4512 0.2920 26.5314
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and verifies the effectiveness of the LFGOA algorithm. The results demonstrate that the LFGOA algorithm can 
provide reliable and very comprising solutions compared with the other algorithms.

As shown in the Fig. 21, the convergence curve quickly converge towards the global optimum and the solu-
tions was obtained instantly under satisfy all constraints.

Results and discussion
As we can see in Section 5, seven real-world constrained engineering design examples including Himmelblau’s 
nonlinear optimization problem, Cantilever beam design, Car Side Impact Design, Gear train Design, Pressure 
vessel design, Speed Reducer Design, and tabular column design are selected to verify the proposed LFGOA 
algorithm. The LFGOA has been demonstrated to perform better than or be highly competitive with the other 
algorithms in the literature on the seven constrained engineering optimization problems, and can solve differ-
ent real-world constrained engineering optimization problems. The advantages of LFGOA involve performing 
simply and having few parameters to regulate. The work here proves the LFGOA to be robust, powerful, and 
effective over all types of the other algorithms in the literature. Constrained engineering optimization evaluation 
is a good way for testing the performance of the metaheuristic algorithms, but it also has some limitations. For 
example, different tuning parameter values in the optimization methods might lead to significant differences in 
their performance. Also, constrained engineering optimization tests may arrive at fully different conclusions if 
the termination criterion changes. If we change the population size or the number of iterations, we might draw 
a different conclusion.

Conclusion
This paper presented a novel enhancing Grasshopper Optimization Algorithm with Levy Flight algorithm, call 
LFGOA algorithm. Five metrics (i.e., search history, average fitness function, the best fitness history, the trajectory 
of the first dimension, and convergence curve) are implemented to investigate the LFGOA qualitatively. Next, 
23 benchmark test functions to investigate the exploration, exploitation, local optima escape, and convergence 
performance of the LFGOA. The results demonstrated the effectiveness of LFGOA towards achieving optimal 
global solutions having more reliable convergence compared to other eight well-known optimization algorithms 
published in the literature. Freidman ranking test is applied to evaluate the efficacy of the LFGOA scientifically. 
The statistical results demonstrated that the LFGOA can guarantee the effectiveness of explorations while pro-
ducing excellent exploitation, hence maintaining an equilibrium between exploitation and exploration strategies, 
which reveals the superior performance of the LFGOA in a statistical sense against other comparative algorithms. 
Moreover, seven real-world engineering problems are used to investigate the effectiveness of the LFGOA further. 
The results of the engineering design problems proved that the LFGOA achieved extremely better results against 
the other well-known optimization algorithms, and it can handle various constraints problems.

Of course, there are still many applications of the LFGOA algorithm worthy of further study because of the 
tremendous potential of the LFGOA algorithm. Moreover, the LFGOA algorithm can be used to solve con-
strained engineering optimization problems such as industry and engineering applications, and other application 
domains. There are several possible future directions and possible ideas worth investigating regarding the new 
variants of the LFGOA algorithm and its widespread applications, for example, features selection, job scheduling, 
and parameter optimization are still need to be resolved and can be suggested as future work.

Data availibility
The datasets generated during or analysed during the current study are available from the corresponding author 
on reasonable request.
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