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A novel neural network model 
of Earth’s topside ionosphere
Artem Smirnov 1,2*, Yuri Shprits 1,2,3, Fabricio Prol 4,5, Hermann Lühr 1, Max Berrendorf 6, 
Irina Zhelavskaya 1 & Chao Xiong 7

The Earth’s ionosphere affects the propagation of signals from the Global Navigation Satellite Systems 
(GNSS). Due to the non-uniform coverage of available observations and complicated dynamics of 
the region, developing accurate models of the ionosphere has been a long-standing challenge. Here, 
we present a Neural network-based model of Electron density in the Topside ionosphere (NET), 
which is constructed using 19 years of GNSS radio occultation data. The NET model is tested against 
in situ measurements from several missions and shows excellent agreement with the observations, 
outperforming the state-of-the-art International Reference Ionosphere (IRI) model by up to an order 
of magnitude, especially at 100-200 km above the F2-layer peak. This study provides a paradigm shift 
in ionospheric research, by demonstrating that ionospheric densities can be reconstructed with very 
high fidelity. The NET model depicts the effects of numerous physical processes governing the topside 
dynamics and can have wide applications in ionospheric research.

Earth’s ionosphere is a partially ionized region of the upper atmosphere, spanning from 60 to ∼1000 km in 
altitude1. The ionosphere is driven by a large number of competing processes and represents a highly dynamic 
medium that can change substantially in a matter of several minutes. A high number of free electrons in the 
ionosphere affects the propagation of radio signals, including those of the Global Navigation Satellite Systems 
(GNSS)2. Around 80% of the ionospheric total electron content (TEC) comes from the part located above the 
F-layer peak, known as the topside ionosphere3. Therefore, it is critically important to have accurate models of 
electron density in the topside ionosphere.

There are several approaches to model electron density in the ionosphere. The physics-based simulations, 
which obtain numerical solutions of the fundamental equations describing the ionospheric plasma, require 
sophisticated modeling codes that include coupling with the neutral atmosphere and magnetosphere4,5. Running 
such simulations is computationally expensive and thus problematic for operational purposes. An alternative 
approach to model electron density is through empirical modeling, where the relation between the input and 
output variables is described based on the statistical representation of observations6. Two of the most prominent 
empirical models of the ionosphere are the NeQuick model7,8 and the International Reference Ionosphere (IRI) 
model3,9,10. These models mainly describe the climatology of the ionosphere and reproduce regular variations 
of the ionospheric parameters. It is worth noting that recent versions of the ionospheric models, including the 
IRI-2016, are becoming increasingly oriented toward weather-like predictions, compared to earlier climatologi-
cal descriptions11. The empirical models of electron density typically use a layered structure of the ionosphere, 
with the layer-peak parameters serving as anchor points of the density profiles6. In particular, two of the most 
important parameters are the peak density of the F2 layer (NmF2) and the corresponding altitude of the peak 
(hmF2), which have received a lot of attention in literature and can be well reproduced by the existing empirical 
models. In the topside ionosphere however, the models exhibit notable discrepancies from observations due 
to the highly non-uniform data coverage both in terms of solar activity and, most importantly, in altitude12–14. 
Therefore, accurate topside modeling has remained a significant challenge.

Over the last 2 decades, the ionosphere has become a data-rich environment. One of the most efficient ways to 
make use of the vast amounts of data for empirical modeling is by applying machine learning (ML) techniques. In 
recent years, a number of ML-based electron density models in the Earth’s ionosphere have been developed15–20. 
Several models provide the F2-peak parameters15,18, while others reproduce three dimensional electron density 
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distributions16,17. However, most existing ML-based models binned the data into spatial cells in terms of geo-
graphic latitude and longitude and thus do not provide continuous output16,19,20. Habarulema et al.19 noted that 
these models exhibit discontinuities at the borders of spatial cells and require either 3D interpolation or filtering 
to produce physically meaningful output. Furthermore, it has been noted that one of the main limitations of the 
existing machine learning models is their lack of validation through independent data sources19.

In this study, we present an empirical model of electron density in the topside ionosphere based on Chapman 
functions with a linear dependence of scale height on altitude. Our model consists of 4 parameters, namely the 
electron density of the F2-peak (NmF2), the peak height (hmF2), and 2 parameters of the linear scale height 
decay (slope dHs/dh and intercept H0 ), derived from 19 years of GNSS radio occultation (RO) data (see Fig. 1(a)). 
We use neural networks to model these parameters and develop a continuous model that yields highly accurate 
reconstructions of the topside ionosphere. We perform an extensive validation of the model on in situ data from 
three independent missions not used for the model training. The developed Neural network-based model of 
Electron density in the Topside ionosphere (NET) model is in a remarkable agreement with in situ measure-
ments and outperforms the IRI-2016 model by up to an order of magnitude, especially at 100-200 km above the 
F2-layer peak and in local-winter hemispheres.

Results
Modeling 4 parameters of the linear alpha‑Chapman function using neural networks.  The 
developed NET model consists of 4 sub-models reproducing parameters of the linear alpha-Chapman equation 
based on location, season, magnetic local time, and solar and geomagnetic activity (Fig. 1). It is, firstly, necessary 
to evaluate the ability of the model to recreate these four parameters correctly. A comparison between the values 
predicted by the NET model and Constellation Observing System for Meteorology, Ionosphere and Climate 
(COSMIC) observations on the training, validation and test sets (Fig. S1 in the Supplementary Information) 
yields that the model reproduces all of the parameters well, with correlation coefficient ranging from 0.8 for 
the dHs/dh model up to 0.96 for the NmF2 model. Furthermore, the correlation coefficient values are nearly 
identical on the training, validation and test sets which indicates a very good generalization ability of the model 
and low degree of overfitting. We now move to analyzing whether the sub-models of each parameter preserve 
realistic structures of the ionosphere.

Figure 2 shows a comparison between the observed and predicted values of the four parameters based on 
3 months of COSMIC data sampled from test and validation sets. The values are binned by 1 hour magnetic 
local time (MLT) and 5 degrees Magnetic Latitude (MLat). The interval in question covers the times from late 
November 2013 until end of February 2014, which correspond to the December solstice (D-season) condi-
tions. NmF2 and hmF2 parameters describe the dynamic variability of the F2-peak, while the H0 and dHs/dh 
interpreted together can be indicative of the processes in the topside. In particular, Prol et al.21 showed that H0 
generally shows the electron content directly above the F2 peak, while changes in dHs/dh account for electron 
density decay at higher altitudes. Specifically, higher H0 values correspond to the “thicker” profiles around the 
peak, while the increased dHs/dh values indicate steepening of the profiles and slower decay at high altitudes.

Physical phenomena as seen in the NET model results.  Several known regions, corresponding to different pro-
cesses that govern the ionospheric dynamics around December solstices, can be identified in the results of NET 
(Fig. 2). NmF2 exhibits two crests of ionization around 15–25◦MLat in both hemispheres, separated by an elec-
tron density trough. This feature is known as the Equatorial Ionization Anomaly (EIA) (Fig. 2(a,b)); it usually 
develops after sunrise and shows a gradual decay after midnight1,22. The EIA formation can be explained as 
follows. The existence of zonal electric fields around the equator, where the magnetic field lines are nearly hori-
zontal, gives rise to the vertical E×B drift. During the daytime, the zonal electric fields are directed eastwards 
which leads to the upward transport of plasma by the E×B drift. During sunrise, an increase in solar illumina-
tion ionizes the neutral particles in the thermosphere. These newly ionized particles are transported to higher 
altitudes by the E×B drift, and an enhancement of hmF2 develops at ∼ 06 MLT around the equator. Higher 
altitudes have lower recombination rates, and therefore the ionized particles pertain there for longer times and 
start diffusing downward under the gravity and pressure gradient forces. This diffusion is constrained by the 
magnetic field lines and leads to the formation of the two crests of ionization, and this is known as the equatorial 
fountain effect22. A global maximum of hmF2 is manifested around the equator at ∼ 19 MLT (Fig. 2(d,e)). This 
corresponds to the sunset hours, when the eastward electric fields exhibit pre-reversal enhancements (PRE)23 
leading to large upward E×B velocities which lift the F2 peak to even higher altitudes ( > 460 km). During the 
nighttime (21-06 hours MLT), the zonal electric fields reverse their direction and move westwards creating the 
downward E×B transport. The F2-peak thus subsides to lower altitudes ( ∼ 280 km). Due to higher neutral den-
sities and stronger recombination rates there, NmF2 starts slowly decaying exhibiting minima around 05 MLT 
(Fig. 2(a,b)).

Figure 2 corresponds to the D-season conditions with the local summer in the southern hemisphere. NmF2 
exhibits a strong hemispheric asymmetry, with larger electron densities in the southern hemisphere, due to the 
Earth’s tilt and higher solar irradiation (Fig. 2(a,b)). Furthermore, hmF2 also shows a summer-winter asymmetry 
with values in the northern hemisphere lower by about 100 km compared to the southern hemisphere. Around 
the solstices, there are strong winds blowing from the summer into winter hemispheres at altitudes around 
the F2-peak22. In the D-season, the winds are directed from the southern into the northern hemisphere. These 
winds have a component parallel to the magnetic field and transport ionization upward in the local-summer 
hemisphere, while pushing the F2-peak downward in the local-winter hemisphere, resulting in the asymmetric 
structure of hmF2. Furthermore, one interesting feature in Fig. 2(g,h) is the increase in H0 at polar latitudes in 
the southern hemisphere, which indicates that electron density profiles are convex around the peak. This pattern 
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shows little diurnal variation and likely comes from the fact that during solstices, polar regions in the local-
summer hemispheres are sunlit at all MLTs due to absence of dark nights21. One also observes several regions of 
enhanced scale height gradient (Fig. 2(j,k)), namely two mid-latitude stripes ( ∼ 40◦ MLat in both hemispheres) 
which remain at all local times, and a sunrise peak ( ∼05–07 MLT) around the magnetic equator. The sunrise 
peak is likely connected with the so-called morning overshoot of electron temperature. It happens due to energy 
exchange between the newly ionized photoelectrons and ambient electrons, which is more efficient in regions 

Figure 1.   (a) Distribution of the P10.7 index and the data splitting; (b) An example of the COSMIC profile 
(orange) and the fitted data using the alpha-Chapman function with a linear decay of scale height with 
altitude (black); (c) Observed scale height and the linear fit; (d) Schematics of the model workflow.
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of low electron density. Once the ionization builds up, the resulting cooling decreases the temperature and the 
peak disappears at around 08 MLT24. As the temperature is related to scale height, this feature pertains in the 
scale height gradient. The dHs/dh peaks at middle and high latitudes are likely due to the downward fluxes of 
protons injected into the topside from the plasmasphere21, and become more evident at low solar activity (see 
Supplementary Figure S3).

All of the above-mentioned processes are very well depicted by the NET model, as the differences between 
the NET predictions and COSMIC observations of the 4 parameters are close to zero at all magnetic latitudes 
and local times. This means that the NET model is capable of reproducing ionospheric dynamics caused by a 
wide variety of drivers, including the electrodynamic processes, neutral winds, field-aligned transport from the 
magnetosphere, etc. Furthermore, the combined interpretation of the four model parameters can yield insights 
into the physical processes that control the dynamics of the topside ionosphere.

Model testing on COSMIC electron densities.  We now move to evaluating the model performance on 
COSMIC electron density values. Fig. 3 shows a comparison between electron density predictions by the IRI 
and NET models to the COSMIC data for the entire test set. In panel (a), we demonstrate the 2D histogram of 
electron densities observed by COSMIC and predicted by the IRI-2016 model with the topside specified by the 
NeQuick option. The IRI gives unbiased predictions for very low and very high electron densities, as these points 
generally lie close to the one-to-one correspondence line. However, for intermediate densities ( ∼ 105 el./cm3 ) 

Figure 2.   Maps of the four parameters observed by COSMIC and predicted using the NET model, binned by 
magnetic latitude and local time. The bins with <2 data points were removed. The data cover the time interval 
from 2013-11-11 until 2014-02-27, corresponding to D-season conditions, and are sampled from the validation 
and test sets.



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1303  | https://doi.org/10.1038/s41598-023-28034-z

www.nature.com/scientificreports/

there is an overestimation of electron densities by the IRI, which results in a curved shape of a 2D probability 
distribution. Furthermore, the IRI model produces a close-to-gaussian distribution of electron density values, 
while the distribution of the COSMIC data appears more flat-top and is skewed to the right. The comparison 
of the NET predictions to COSMIC data is shown in Fig. 3(b). The corresponding 2D probability distribution 
is centered around the one-to-one line, which means that the model gives unbiased predictions in the topside 
ionosphere when compared to COSMIC data. The overall bias of the NET model on the test set is approximately 
3 times smaller than for the IRI (–0.6·104el./cm3 compared to ∼ 1.8 · 104el./cm3 ). Furthermore, in Fig. 3 one 
can see that the 2D probability distribution appears narrower for the NET model. To quantify the degree of 
spread of the 2D distributions, we evaluate the standard deviation of the difference between the observed and 
predicted electron densities. The standard deviation for the NET model is 6.5 · 104el./cm3 , while for the IRI this 
value equals 11 · 104el./cm3 , which is approximately 1.6 times larger. This indicates that the dynamics of electron 
density is on average captured better by the NET model. Another useful metric, often employed when evaluating 
the model predictions, is the ratio between the model predictions and observations. Figure 3(c,d) shows cumula-
tive distributions of the ratios between the IRI and NET models to COSMIC data. We use the linear version of 
the ratio for values > 1 , while taking the inverted ratios if the values are < 1 . The cumulative distributions of the 
ratios, shown in Fig. 3(c,d), yield how often the model predictions lie within a given factor from the data. One 
can see that 96.5% of the time the NET electron densities lie within a factor of 2 from the observations, while the 
IRI predictions are within a factor of two 78.3% of the time. Moreover, most of the NET predictions (over 84.9%) 
are within a factor of 1.5 from the data, which is higher than for the IRI (54%).

Figure 3.   2D histograms of electron density observed by COSMIC on the test set versus those predicted by the 
IRI model (a), and the developed NET model (b). (c) Cumulative distribution of ratios between the IRI model 
and the COSMIC data on the test set; (d) Cumulative distribution of ratios between the developed NET model 
and the COSMIC data on the test set.
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The statistics shown in Fig. 3 combine all altitudes and locations corresponding to the test intervals of the 
COSMIC data. In order to investigate the performance of the developed NET model in more detail, we bin the 
data in several dimensions and evaluate the metrics locally, compared to the previous global comparisons. We, 
firstly, bin the model residuals by altitude relative to hmF2 (Fig. 4). It is of note that for this comparison we do 
not distinguish between different locations, and provide such binning separately in the Supplementary Figure S4. 
Figure 4(a) indicates that the IRI-2016 model with the NeQuick topside underestimates the F2-peak density, and 
overestimates electron densities in the topside. In particular, the strongest overestimation by the IRI, of up to 
40.000 el./cm3 , comes from the region around 100 km above the F2 peak height. Similarly, the developed NET 
model also underestimates the peak densities, although the bias is roughly 1.5 times smaller than for the IRI. In 
the topside ionosphere, however, the vertical residuals of the NET model are significantly lower than for the IRI. 
This is also illustrated in Fig. 4(b) that shows the vertical percentage biases. The largest percentage error for the 
IRI is located at around 150-200 km altitude from the peak. This overestimation reaches >40%, while at higher 
altitudes, the residuals are smaller and converge to become almost unbiased at 500 km above hmF2. In case of 
the NET model, the residuals are very small at all altitudes, and do not exceed 5-7%. It is worth noting that in the 
region where the IRI-2016 exhibits the largest error, the NET model becomes almost unbiased and only shows 
deviations from the data in the order of several percent. In Fig. 4, we also demonstrate the median bias by the 
IRI model when the topside is given by the IRI-2001corr shape function, which is based on the early formulation 
of Bent et al.25. In Fig. 4b, one can see that at altitudes ∼ 150 km above the peak, the bias is significantly higher 
for the IRI-2001corr topside option (>60%) than for the NeQuick ( ∼40%).

The seasonal behavior of the models is investigated in Fig. S4 in the Supplementary Information. The figure 
shows that the NET model gives largely unbiased predictions for all seasons, as the average ratios between the 
model predictions and COSMIC observations are very close to 1. In case of the IRI, the model overestimates 
densities in the local-winter hemispheres for December and June solstices, and overestimates the equatorial 
ionization anomaly crests during equinoxes. This overestimation corresponds to large values of skill score (up 
to 80%) and highlights the regions where the developed NET model most significantly outperforms the IRI 
(see the Supplementary Figure S4). Overall, these results demonstrate that the NET model gives unbiased and 
highly accurate predictions of electron density in the topside ionosphere, remains unbiased for all seasons, and 
consistently outperforms the IRI model by up to an order of magnitude, especially around 200 km above hmF2 
and during the local winters.

Model testing on independent observations.  In the previous subsection, the model performance was 
analyzed on electron densities from the COSMIC mission. Due to the fact that the NET model was trained on 
COSMIC data, it is crucial to perform an additional validation on the fully independent data sources. The pur-
pose of such validation is to ensure that the model not only reproduces the COSMIC line-of-sight profiles which 
may smear out some of the ionospheric structures but is also capable of resolving the finer morphology of the 
topside ionosphere. Therefore, in this section we test the model on 3 completely independent missions, namely, 
the Gravity Recovery And Climate Experiment (GRACE), Challenging Minisatellite Payload (CHAMP) and 
Communications/Navigation Outage Forecast System (C/NOFS). These missions provide data of the highest 
quality and have been used in a variety of ionospheric studies, both for empirical modeling and for case studies 
analyzing specific space weather events.

Figure 4.   Median bias (a) and median percentage bias (b) versus altitude relative to the F2-peak, calculated on 
the test set of the COSMIC data. Biases of the developed NET model are plotted in blue. Vertical residuals of 
the IRI-2016 model are shown in red for the NeQuick topside option, and in grey for the IRI-2001corr topside 
shape.
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An example of the model comparison to GRACE K-Band Ranging (KBR) data for one of the days correspond-
ing to equinoctial conditions is shown in Fig. 5. Note that this day was not used for model training and belongs 
to the test set. In panel (a), we show electron densities observed by GRACE and predicted by the NET model. 
The model values are in excellent agreement with the observations, as the NET model correctly captures both 
the high electron density values corresponding to equatorial latitudes and the low densities typically occurring 
at higher latitudes. Figure 5(b) gives a comparison between the IRI predictions and GRACE-KBR observations. 
It is evident that the IRI overestimates electron densities in the equatorial region. This is in good agreement with 
our previous comparison between the IRI model and COSMIC data (Supplementary Figure S4), which showed 
that the IRI overestimates the EIA crests by approximately a factor of 2. Furthermore, Fig. 5(b) also shows that 
the IRI strongly overestimates the regions of low densities, which correspond to higher latitudes. In fact, the 
density depletions shown in Fig. 5 are due to the midlatitude ionospheric trough, which is known to be chal-
lenging region for empirical modeling of the ionosphere. Figure 5(c) gives the percentage bias for both models. 
One can see that the IRI model overestimates electron densities by up to 400% in the polar regions, and that 
the model is in general biased towards overestimation. The NET model, on the other hand, shows much lower 
percentage bias which is centered at zero. It should be noted that throughout the period demonstrated in Fig. 5, 
GRACE altitude was about 450-480 km, which is approximately 100-150 km above the F2 peak. In Fig. 4, this 
region was highlighted as the most problematic for the IRI with an overestimation of the COSMIC densities 
by almost 50%. The percentage bias demonstrated in Fig. 5(c) agrees well with our findings in Fig. 4, as the IRI 
tends to overestimate the GRACE-KBR electron densities in the same way as COSMIC. The NET model shows 
mostly unbiased predictions along the GRACE altitude.

In the Supplementary information, we demonstrate additional examples of the model testing. Figure S5 gives 
an example of a 27 day period from the test set, showing the satellite passes of GRACE and predictions by the 
NET and IRI models. It can be seen that the NET model reproduces the ionospheric structures very well, and 
is even able to capture electron densities in the midlatitude ionospheric trough, which has been shown to be a 
traditional challenge for ionospheric modeling26. The metrics evaluated on the test set show that the NET model 
predictions are in very good agreement with observations (Table 1), as ∼90% of the NET electron densities lie 
within a factor of 2 from the measurements based on CHAMP, GRACE and C/NOFS missions. Furthermore, 

Figure 5.   GRACE/KBR densities (shown in blue), compared to the NET predictions (panel a), and IRI 
predictions (subplot b) on 19 September 2009 (an example from the test interval). The percentage differences 
between the models and observations are given in panel (c). The GRACE altitude is shown in panel (d).
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the NET model exhibits very low values of bias, e.g., ∼ −103el./cm3 for C/NOFS, which is approximately an 
order of magnitude smaller than for the IRI. This indicates that the developed NET model is not only capable of 
reproducing the COSMIC data which were used for model training but also yields highly accurate predictions 
on completely independent measurements by 3 instruments operating on different observational principles.

Discussion
The Earth’s ionosphere is a region of paramount importance for a variety of scientific and industrial applications. 
In particular, the ionospheric delays are one of the largest error sources for GNSS navigation. Since these delays 
are proportional to the total electron density along the ray path, it is crucial to have accurate and reliable models 
of ionospheric electron densities. The bottomside ionosphere accounts for around 20% of the total electron 
content, while the main contribution to the TEC magnitudes comes from the topside3. Modeling of the topside 
ionosphere has remained a significant challenge, due to data sparsity in both spatial and temporal domains. 
As a result, the existing ionospheric models show substantial differences from the observations, evident from 
comparisons to both in situ measurements and integrated TEC magnitudes13,14,27. In this study, we use radio 
occultation data, which constitute a large data set of electron densities with uniform coverage of the topside, and 
develop a continuous NN-based model of electron density in the topside ionosphere. The developed NET model 
yields highly accurate predictions at all altitudes, locations, seasons and solar activity levels and outperforms the 
international standard of the ionosphere – the IRI – by up to 80%.

The comparison of the IRI electron density predictions to COSMIC Electron Density Profiles (EDPs) revealed 
the typical structure of the vertical biases of the IRI in the topside ionosphere. In particular, our results show that 
the most significant deviations ( ∼ 40% ) of IRI-2016 with the NeQuick topside from the data are located around 
100–200 km above the F2-peak. At higher altitudes, the residuals decrease to the order of several percent. The 
vertical residuals of the IRI model, shown in Fig. 4, are likely due to the shape function used to parametrize the 
topside in the NeQuick model. The NeQuick treats the semi-Epstein scale height as a function of three empirical 
parameters, namely H0 , which shows the scale height around hmF2, g, representing the gradient of scale height 
near the peak, and r that controls the asymptotic behavior of the profiles at infinity (for details, see e.g. Nava 
et al.7). Recent studies have highlighted the rigidity of this parametrization, which is due to the fact that two of 
the parameters are kept constant ( r = 0.125 and g = 100 ) while H0 is modeled as a function of the bottomside 
profile thickness28–30. The processes that control the bottomside dynamics are different from those in the topside, 
and this can yield inaccuracies in the H0 parametrization. Themens et al.29 demonstrated that the NeQuick tends 
to overestimate H0 values during the solar minimum conditions and underestimate H0 during the solar maxi-
mum. These results go well with our comparison to COSMIC data shown in Fig. 4. When H0 is overestimated, 
the overall profile shape becomes too convex compared to the data, and the most significant deviations would be 
found at round 150-200 km above hmF2 (see Fig. 6 in Themens et al.29). Furthermore, Pignalberi et al.28 recently 
demonstrated that the topside gradient g, which has a fixed value in the NeQuick, also exhibits strong variations 
based on geophysical conditions. The study indicated that the NeQuick parametrization could by improved by 
creating additional sub-models of H0 , r and g. In the current study, we use a flexible parametrization of the topside 
scale height, allowing the scale height gradient to vary with location, local time, season, solar and geomagnetic 
activity, and therefore the NET model remains unbiased around 100–200 km above hmF2. Another possible 
reason for the vertical residuals seen in Fig. 4 is a potential overestimation of hmF2 by the IRI. Bilitza et al.31 
demonstrated that overestimated values of hmF2 would shift the profiles upward, which could also create the 
vertical residual shape seen in the current study in Fig. 4. We have also investigated the performance of the IRI-
2001corr topside parametrization. It was found that the vertical residuals also exhibited overestimation around 
100-200 km above the F2-peak, which was larger than for the NeQuick topside ( ∼60% compared to ∼40%). It is 
evident that the topside specification of the IRI has greatly improved over the years. At altitudes ∼ 150 km above 
the peak, the mistakes decreased from ∼60% to ∼40%, while the main improvement by using the NeQuick option 
is achieved in the upper topside, where the errors reduced from > 20 % to a few percent.

Table 1.   Metrics for comparisons between NET and IRI models and observations on 3 independent missions.

Metric CHAMP-PLP GRACE-KBR C/NOFS-CINDI

Median bias, NET, [el./cm3] 11.209 460 –988

Median bias, IRI, [el./cm3] 34.021 8.708 14.422

Standard deviation, NET, [el./cm3] 182.585 127.390 101.820

Standard deviation, IRI, [el./cm3] 218.160 165.048 161.739

Median log bias, NET 0.04 0.003 –0.01

Median log bias, IRI 0.1 0.05 0.12

% of values within a factor of 2, NET 88 89 91

% of values within a factor of 2, IRI 78 79 75

Correlation, NET, [%] 92 92 92

Correlation, IRI, [%] 87 85 86

Skill score of NET over IRI, [%] 30 40 60
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The NET model was found to give unbiased predictions of the topside ionosphere based on the COSMIC data. 
In particular, at altitudes around 150 km above the F2-peak, which correspond to the largest bias of the IRI-2016, 
the NET model only exhibits errors in the order of a few percent. Furthermore, we analyzed the seasonal behavior 
of the models for different local times and magnetic latitudes (Supplementary Figure S4). We calculated the skill 
score values, which highlighted the regions where the NET model outperformed the IRI. The strongest improve-
ment over the IRI (up to 80% ) was achieved in the local-winter hemispheres during solstices, and in both EIA 
crests during equinoxes. Furthermore, we performed model testing on 3 independent data sources, namely the 
GRACE-KBR, C/NOFS- Coupled Ion Neutral Dynamics Investigation (CINDI) and CHAMP- Planar Langmuir 
Probes (PLP) observations. The model was found to give highly accurate predictions on all of these independent 
data sources, reproducing even the fine structures of the ionosphere including the midlatitudinal ionospheric 
trough. In fact, over 90% of the NET predictions lie within a factor of 2 from the observations, both in compari-
sons with radio occultation and in situ measurements. It should be noted that several existing ML-based models 
had previously been tested on similar data sets. For instance, Gowtam et al.16 tested the ANNIM-3D model on 
the CHAMP-PLP data and observed correlation ranging from 60% to 79%, based on different locations, while 
for the NET model the correlations evaluated on the CHAMP data exceeded 90% (Table 1).

The NET model is based on observations from the COSMIC mission, which span at altitudes from hmF2 up 
to around 800-850 km altitude. The linear alpha-Chapman approximation can resolve electron density profiles 
up to around 1500 km in altitude32, and therefore our results can be used to reconstruct electron densities up 
to that altitude. Furthermore, it is possible to connect the model presented here to the plasmaspheric altitudes. 
Recently, Prol et al.33 demonstrated that the scale height in the plasmasphere exhibits a quadratic dependence 
on altitude, and found a functional dependence which allowed to connect the radio occultation profiles with 
in situ observations of electron density in the plasmasphere made by the Van Allen Probes mission. Using the 
methodology of Prol et al.33, it is possible to connect the model presented in this study to the plasmasphere, 
making it a full topside option valid up to the GNSS altitudes and beyond. Therefore, the model developed in 
this study combined with its plasmaspheric extension can be incorporated into the IRI as a novel option for 
specifying the topside ionosphere and plasmasphere.

Conclusions
In this study, we developed a new empirical model of electron density in the topside ionosphere (NET) based 
on neural networks. The model uses the geographic and geomagnetic coordinates, local time, day of year, and 
solar and geomagnetic indices to predict the 4 parameters of the linear alpha-Chapman equation, namely the 
F2-peak density and height, and 2 parameters of the linear decay of scale height with altitude. The model has 
been trained and tested on ∼ 19 years of radio occultation data and undergone additional validation on in situ 
observations by 3 independent missions. The NET model gives highly accurate and unbiased predictions for a 
variety of geophysical conditions, and outperforms the current topside options included into the International 
Reference Ionosphere model by up to 80%, especially at altitudes ∼ 100− 200 km above the F2-peak and in the 
local-winter hemispheres. In fact, the NET predictions are within a factor of 2 from the observations ∼90% of 
the time. The NET model can have wide applications in ionospheric research, for instance, in wave propagation 
studies, for calibrating the new electron density data sets with unknown baseline offsets, for tomographic recon-
structions in the form of a background model, as well as to analyze specific space weather events and perform 
long-term ionospheric reconstructions. Furthermore, the developed model can be connected to plasmaspheric 
altitudes and thus can become a novel topside option for the IRI. The developed framework allows the seamless 
incorporation of new data and new data sources. The retraining of the model can be done on a standard PC and 
can be performed on a regular basis. Another contribution of this work can be incorporation of measurement 
uncertainty into the training which will allow inclusion of a variety of data sources with various observational 
errors.

Methods
Data set.  Over the last two decades, the GNSS radio occultations proved to be an invaluable tool in the iono-
spheric research. The RO measurements are a remote sensing technique that allows retrieval of the high-resolu-
tion electron density profiles. Schreiner et al.34 estimated the precision of the RO observations to be ∼103el./cm3 . 
Currently, the electron density observations provided by the RO technique constitute a major three dimensional 
data source in the topside ionosphere. The EDPs are retrieved using an Abel inversion, which can lead to certain 
artifacts, for instance the underestimation of the EIA crests, arising from the underlying assumption of spherical 
symmetry35. However, the RO data have been extensively validated both in conjunctions with the ground-based 
ISRs and with satellite in situ observations. In particular, the high quality of the RO EDPs in the topside has 
recently been demonstrated by comparing the COSMIC measurements to electron density observations from 
the GRACE-KBR system36. The KBR data were calibrated by the ISRs37 and therefore were used as a reference 
data set for these comparisons. Smirnov et al.36 demonstrated that the radio occultation electron densities from 
the COSMIC mission were in very good agreement with GRACE data with bias of <2%. The study has shown 
that the RO observations can thus be an important data source for empirical modeling, especially in the topside 
ionosphere due to their 3D coverage and large volumes of provided data.

Several constellations have provided EDP data using the radio occultation technique, starting from the early 
days of the GPS/MET satellite. In this study, we use data from the COSMIC, CHAMP and GRACE missions. 
The details of spatial and temporal coverage of these missions can be found in Smirnov et al.36. In general, the 
COSMIC mission has provided an enormous data set of topside electron densities, exceeding 4.5 million profiles. 
However, the COSMIC mission operated during the declining phase of the solar cycle 23 and during the entire 
cycle 24 which corresponded to historically low levels of activity. The GRACE and CHAMP missions, on the 
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other hand, also covered more active conditions during solar cycle 23. Therefore, in order to ensure a better solar 
cycle coverage and provide more data corresponding to active conditions, we include data from the GRACE and 
CHAMP missions. It should also be noted that these missions operated at much lower altitudes than COSMIC 
and do not provide enough coverage of high altitudes to fit the topside EDPs. Therefore, the additional GRACE 
and CHAMP data were used for retrieving NmF2 and hmF2, while the topside shape parameters were fitted 
on COSMIC EDP observations. In this study, we use level 2 electron density profiles, provided through the 
“IonPrf ” product. The COSMIC EDP data were subject to quality control. We removed the topside profiles that 
extended over > 5◦ GLat and > 10◦ GLon, as well as EDPs that exhibited positive electron density gradients at 
higher altitudes. Furthermore, the profiles where the derivatives of electron density exceeded the magnitudes 
of electron density, and the profiles with deviations from the linear alpha-Chapman fit of more than 100% were 
removed, in order to exclude irregular EDPs.

The developed model needs to be validated not only on the data from the missions that were used for training, 
but also on independent data sources. Using independent missions for validation gives a good indication of the 
generalization ability of the model at different altitudes, locations and timescales. In this study, we employ the 
GRACE-KBR observations, which provide in situ electron density values with a spatial resolution around 200 km 
along the GRACE orbit. This dataset has been intercalibrated with incoherent scatter radars and can be consid-
ered as a “golden standard”37. Furthermore, we use in situ measurements of electron density by the CHAMP-PLP 
and the full ion densities measured by the C/NOFS-CINDI instrument, intercalibrated by Smirnov et al.36. The 
GRACE mission operated in 2002–2017 and covered altitudes from 400 to 500 km with global coverage. The 
CHAMP mission covered lower altitudes, from around 400 km at the beginning of the mission lifespan to 300 
km at the end of the mission. The C/NOFS mission represents an important source of data for model validation, 
because it covered equatorial latitudes and also provided a vast altitude coverage from 300 km up to 800 km.

Fitting the topside profiles with a linear alpha‑Chapman function.  The vertical structure of the 
ionosphere has been a topic of continuous interest since the early works of Appleton and Beynon38. The study by 
Bent et al.25 was one of the first papers that described the functional dependence of electron density in the top-
side as a combination of a parabolic and exponential terms. Since then, a variety of mathematical descriptions 
of the topside ionosphere has been developed. A systematic review of the possible functions to fit the topside 
profiles was presented by Fonda et al.39. In particular, they showed that the Chapman function gave the best 
agreement with observations based on the topside sounder data. The Chapman function is based on first princi-
ples and has been employed in numerous studies to approximate the topside ionosphere. One of the important 
parameters of the ionospheric plasma, included in the Chapman equation, is the effective scale height, which 
represents a vertical distance over which the electron density decreases by a factor of e1 and thus serves as a shape 
factor of the topside profiles.

The part of the topside ionosphere close to the F2 layer peak is dominated by atomic oxygen, while at higher 
altitudes the light ions become the dominant plasma constituents22. Different ion species have different scale 
heights, and this information needs to be incorporated into the empirical models. In the early works, these dif-
ferences were neglected and the scale height was often assumed constant for simplicity40. This approximation 
works well in the lower topside (around the F2-peak) but faces obvious problems at higher altitudes. There can be 
several approaches to account for the varying scale height. One reasonable approach is to use a multi-layer model, 
for example assuming a Chapman function with a constant scale height near hmF2 but adding an exponential 
term for higher altitudes41. Another method, first proposed by Rishbeth and Garriott1, is to use a single layer 
formulation which includes an empirical relation of scale height to altitude. One of the approximations which 
gained a significant popularity assumes a linear decay of scale height with altitude1,21,32,42–44, and in this study is 
referred to as the linear alpha-Chapman function. It has been demonstrated that this method produced results 
largely identical to the multi-layer model and could well approximate both the radio occultation data43 and the 
topside sounder observations up to the altitude of around 1500 km32.

In this study, we approximate the COSMIC radio occultation profiles using the linear alpha-Chapman func-
tion of the form:

where Ne is electron density as a function of altitude h; NmF2 and hmF2 represent the peak electron density of 
F2-layer and the altitude of the peak, respectively; Hs is an effective scale height, in our case depending linearly 
on altitude, dHs/dh and H0 show the slope and intercept of this linear trend, respectively. The F2-peak density 
and height were obtained from the data, while the dHs/dh and H0 values were retrieved by fitting the Eq. (1) to 
COSMIC EDPs using curve-fitting routines implemented in the Python scipy library.

Figure 1(b,c) shows an example of the COSMIC profile, fitted using the linear alpha-Chapman function. 
In panel (b), the COSMIC data are shown in orange, a large black dot denotes the peak of the F2-layer and is 
determined from the data, and the solid black line gives the topside profile fitted to Eq. (1). In panel (c), we 
demonstrate the scale height retrieved from the data using the method of Olivares-Pulido et al.43, and the corre-
sponding linear fit from Eq. (1). In Fig. 1(b) it can be seen that the linear approximation reproduces the COSMIC 
profile well. In fact, Olivares-Pulido et al.43 showed that this functional dependence can approximate the vast 
majority of RO profiles with a correlation of over 98%. We note that the topside profiles are usually fitted to the 

(1)




Ne(h) = NmF2 · exp
(
0.5(1− z − exp(−z))

)
,

z = h−hmF2
Hs(h) ,

Hs(h) = dHs
dh (h− hmF2)+H0,
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linear alpha-Chapman method at altitudes higher than 100 km above hmF2, since the scale height may exhibit 
a stronger nonlinear decrease when approaching the F2-peak21,43.

The linear alpha-Chapman approximation yields 4 parameters, namely the F2-peak density and height, and 
2 parameters of the linear scale height decay. In Fig. 1(d), we show the schematics of the model workflow. Each 
of the four parameters is modeled separately with a feedforward neural network, and the final values of electron 
density can be retrieved by substituting outputs of the 4 sub-models into the Eq. (1). It should be noted that NmF2 
is predicted in logarithmic scale, due to the fact that the peak electron densities can span over several orders of 
magnitude, while the other parameters are retrieved in linear scale.

Neural networks.  One of the most efficient ways to utilize large volumes of data for empirical modeling 
is by using machine learning. In particular, artificial neural networks (NNs) are one of the most popular tech-
niques to find complex non-linear relationships between the input and output variables, and have been used in 
many applications such as classification, regression, and image recognition. In this study, we employ multi-layer 
perceptrons (MLPs), which are a type of the fully connected feedforward neural networks. MLPs try to find 
nonlinear mappings between the input and output parameters by optimizing weights and biases of the neurons 
contained in the hidden layers. The neural network typically comprises an input layer, one or several hidden 
layers, and an output layer. Every link between a neuron in one layer to each of the neurons in the next layer has 
a corresponding trainable weight. It shows how strongly that particular neuron influences nodes it is connected 
with. When the network is initialized, the weights are selected randomly. Each connection also has an associated 
bias which allows to better adjust the model. At first, the values contained in the input layer nodes are sum-
marized, passed through an activation function which adds a non-linearity into the model, and used as inputs 
to the neurons of the first hidden layer. Activation functions are an essential part of MLPs, as only with them 
one can model non-linear functions. This procedure is the same for all hidden layers. Finally, the outputs of the 
last hidden layer are summed up and given to the output node, usually without a final activation function. The 
weights and biases of each layer and neuron are typically optimized by gradient-based methods, where stochastic 
gradient estimates can be efficiently computed using back-propagation schemes.

Due to the expressiveness introduced by the large number of trainable parameters, MLPs can easily overfit 
to training data without capturing the underlying phenomena. One way to mitigate this is via regularization 
techniques, for instance the Dropout method45, which randomly removes a subset of neurons in training of each 
minibatch and adds regularizing effect by increasing the stochasticity. Another frequently employed technique 
is an addition of gaussian noise between the layers during the network training. It has been shown that adding 
small amounts of noise during the training process helps a NN converge to a smooth function of the inputs 
and also imposes a regularization effect. Specifically, the networks trained with additional noise are less able to 
memorize the training set, as the model perceives the training samples infused with noise as constantly changing. 
This results in more robust networks with lower generalization errors. In this study, we employ both the gaussian 
noise and dropout techniques and treat the dropout rate and noise magnitude as hyperparameters.

In the present study, we develop a set of models to predict 4 parameters that can be represented as numerical 
variables and therefore address a regression problem. As inputs, we use the solar flux index P10.7, geomagnetic 
indices Kp and SYM-H, as well as satellite position in geographic and geomagnetic coordinates, MLT and day 
of year (DOY). It is of note that the COSMIC EDPs can span over several degrees in latitude and longitude, and 
therefore the geographic positions of the top points of the profiles were used to train the dHs/dh and H0 models, 
while during the model testing the profiles were assumed vertical. The P10.7 represents a smoother version of 
the 10.7 cm radio flux index (F10.7), and is derived as an average of the current F10.7 value and that over the 
previous 81 days46,47. This index has been used in a variety of ionospheric models, including the IRI model, and 
was found to give better performance than the raw F10.7 values48, which can exhibit spikes, especially during the 
strong solar storms. We also use the planetary Kp index that shows the averaged state of the geomagnetic field 
disturbances and serves as a good proxy of convection which is an important mechanism in producing several 
ionospheric phenomena, for instance, the polar patches. Furthermore, we use the SYM-H index, which shows 
the strength of the geomagnetic storms, to account for the storm-time events.

Several of the cyclic input features have artificial boundaries between the highest and lowest values. For 
instance, the local time has a discontinuity at 24-00 hours, which can create artifacts in the model output. In order 
to avoid this discontinuity, it is common practice in empirical modeling to replace values of these input features 
with their sine and cosine values49. Furthermore, it has been shown that using higher orders of the sine and cosine 
functions for the positional inputs can significantly increase the model accuracy. Tancik et al.50 demonstrated 
that these simple feature transformations allowed the MLP models to learn the high-frequency dependencies in 
low-dimensional regression tasks and greatly enhanced the model performance for image regression problems. 
This technique became known as the Fourier features method50. In this study, we also apply this method to several 
features, namely the LT, DOY, geomagnetic and geographic latitude and longitude (see Fig. 1d). Selecting the 
correct FFT order can have a non-negligible effect on model training. For each of the features, we select the FFT 
order that results in the best model performance (the corresponding selection of the FFT orders is described in 
the Supplementary information).

Data splitting.  This study uses a supervised learning algorithm, namely a multilayer perceptron, to model 
electron density in the topside ionosphere. In order to train the supervised model, it is necessary to split the data 
into the training, validation and test subsets. The training set is used to fit the model, the validation set helps 
select the neural network hyperparameters and gives a more unbiased estimate of the network performance 
during each training iteration. In particular, the error on the validation set can be used for early stopping regu-
larization, where the model training terminates as soon as the validation error does not decrease anymore. The 
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test set is withheld during the model training and validation, and is only used once the models have been created 
to evaluate their generalization ability on the unseen data.

There are several ways to split the data into the training, validation and test data sets. If no time-dependence 
is assumed in the data, it is possible to split data entries between the three sets randomly, e.g., by using 70-80% 
of the data for training, and 10% for both validation and testing. In case of time-series and physics problems, 
this splitting technique should be avoided as it can lead to what is referred to as the data leakage. For instance, 
when most of the points constitute the training set, one can linearly interpolate between those points to derive 
values that belong to the typically smaller validation and test sets. This would result in a biased estimate of the 
model performance51,52. Another potential technique is to use the K-fold cross validation (CV), where the data 
are split in the time-domain into K continuous parts, and the model is re-fitted K times each time withholding 
one of the parts and trained on K–1 intervals (for details, see e.g., Smirnov et al.52). At the same time, using 
the K-fold CV for hyperparameter tuning leads to an exponential increase in training time, as the models need 
to be re-trained numerous times for every hyperparameter trial. Therefore, another option is to split the data 
in the time domain into a number of intervals that are long enough to contain independent events of shorter 
timescales, therefore preventing the data leakage. This is described, for instance, in Chu et al.53. In this study, we 
split the data into continuous 27-day segments, and randomly choose 70% of those intervals for training, 15% 
for validation and 15% for testing. Such a splitting allows us to validate the model on a variety of solar activity 
and geomagnetic conditions, while at the same time avoiding the data leakage. The data splitting is illustrated in 
Fig. 1(a), where one colored stripe corresponds to a single 27-days segment.

Hyperparameter tuning/ model selection.  In this study, we use feedforward neural networks imple-
mented in the Keras Python library54. The parameters which define the network structure and training proce-
dures are typically referred to as the hyperparameters and include the number of the hidden layers, number of 
neurons in each of the layers, the activation function, optimizer, dropout rate and so on. They are not directly 
optimized by gradient descent. Instead, we use the tree-structured Parzen estimator algorithm55 implemented in 
the Optuna Python library to tune the number of hidden layers and neurons, dropout rate and the magnitude 
of gaussian noise. The preliminary hyperparameter trials indicated that a 3 layer neural network achieved a very 
good performance and the reduction of the MSE by adding the fourth and fifth layers was <1 %. Therefore, we 
later fixed a number of layers to 3 and optimized the other parameters. The summary of the parameters, their 
search domains and the optimized values based on the Optuna trials are given in the Supplementary Table S1.

Comparison with the International Reference Ionosphere (IRI) model.  First established as a joint 
project of the Committee on Space Research (COSPAR) and International Union of Radio Science (URSI) in 
196856, the International Reference Ionosphere is, perhaps, the most famous model of the ionosphere. The IRI 
has been continuously improved10 and in 2014 was accepted by the International Standards Organisation (ISO) 
as the international standard of ionospheric specification6. The IRI describes electron density and temperature, 
ion composition, ion temperature and drifts at altitudes from ∼ 50 up to around 2000 km. For electron density 
modeling, NmF2 and hmF2 can be considered the most important parameters. There are several options for the 
topside shape functions, including the IRI-2001 version and its correction57, as well as the topside parametriza-
tion based on the NeQuick model7,8. Since the 2007 version of the IRI, the NeQuick topside has been adopted as 
the default option for the topside ionosphere9. In this study, we use the IRI-2016 model with the foF2 specified 
by the URSI model, hmF2 given by AMTB-2013 model58, and the default NeQuick topside, to compare to the 
predictions by the developed NET model based on several in situ and radio occultation data sets. In particular, 
it is crucial to quantify the degree of improvement achieved by the NET model compared to the IRI, which can 
be done using the skill score (SS) metric. This metric can be written as follows:

where m denotes the NET model values, o stands for observations, and b represents the baseline (IRI) model 
output. This metric quantifies the improvement over a baseline model, and is also sometimes referred to as the 
prediction efficiency (PE)59,60. The skill score values are analyzed in detail in the Supplementary information for 
different seasons, magnetic latitudes and local times, and it is demonstrated that the NET model outperforms 
the IRI-2016 by up to 70–80%, with the most significant improvement achieved in the local-winter hemispheres 
(Supplementary Figure S4).

Data Availability
The data and model files and example codes are available at https://​doi.​org/​10.​5880/​GFZ.2.​7.​2023.​001, and 
the latest model updates are provided on https://​github.​com/​arsmi​rnov95/​NET_​topsi​de_​model. The CHAMP, 
GRACE and COSMIC radio occultation data were obtained from University Corporation for Atmospheric 
Research (UCAR) through the COSMIC Data Analysis and Archival Center (CDAAC) via the portal https://​
cdaac-​www.​cosmic.​ucar.​edu/.
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