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A generative adversarial network 
with “zero‑shot” learning 
for positron image denoising
Mingwei Zhu *, Min Zhao , Min Yao  & Ruipeng Guo 

Positron imaging technology has shown good practical value in industrial non-destructive testing, 
but the noise and artifacts generated during the imaging process of flow field images will directly 
affect the accuracy of industrial fault diagnosis. Therefore, how to obtain high-quality reconstructed 
images of the positron flow field is a challenging problem. In the existing image denoising methods, 
the denoising performance of positron images of industrial flow fields in special fields still needs to 
be strengthened. Considering the characteristics of few sample data and strong regularity of positron 
flow field image,in this work, we propose a new method for image denoising of positron flow field, 
which is based on a generative adversarial network with zero-shot learning. This method realizes 
image denoising under the condition of small sample data, and constrains image generation by 
constructing the extraction model of image internal features. The experimental results show that the 
proposed method can reduce the noise while retaining the key information of the image. It has also 
achieved good performance in the practical application of industrial flow field positron imaging.

Positron Emission Tomography (PET) can be used to detect the flow field in the cavity of complex industrial 
parts. The reconstructed flow field image can describe the internal state of the cavity and help experts to judge 
and eliminate faults. In practice, due to the inherent imaging characteristics of the technology, the existence of 
noise and artifacts is inevitable. The main reasons are as follows: (1) The limitation of imaging system hardware 
equipment: this type of noise cannot be avoided and eliminated, and the process is not subject to human inter-
vention; (2) There are a large number of response lines in the original PET sampling data with zero counts: this 
type of response line is in the Speckle background noise will be generated during the reconstruction process; (3) 
The reconstruction process includes the influence of other factors such as algorithm and parameter selection.

The noise in positron flow field image is unnecessary or redundant interference information, which will 
directly interfere with the judgment of industrial failures. Therefore, to obtain a clean positron flow field image, 
it is necessary to denoise the original image. technology.

In recent years, researchers have devoted themselves to studying the application of positron imaging tech-
nology in industrial non-destructive testing. Maximum Likelihood Expectation Maximization (MLEM) is the 
current general algorithm for positron image reconstruction1. The optimization of loss function2, improvement 
of statistical model3 and introduction of prior knowledge4 of the algorithm have improved the quality of recon-
structed images to varying degrees, but there are still loss of data details and artifacts.In addition, the existing 
iterative reconstruction algorithms have relatively high requirements for computing costs, which do not meet 
the actual industrial application scenarios.

On the other hand, to improve the image quality, many researches directly pre-filter the sinusoidal data in the 
original sampling, and model the sinusoidal data to obtain the noise characteristics for filtering5,6.

Therefore, in the image post-processing stage, it has higher research significance and practical application 
value to improve the image quality by denoising or artifact suppression of the reconstructed flow field image7. 
Realized the adaptive estimation of the image noise relationship by using the non-local mean algorithm to study 
the image redundancy information and optimize the non-local weights in the image8; used the knowledge of 
sparse learning, a method based on batch dictionary learning is proposed to suppress speckle noise and fringe 
artifacts in the reconstructed image9; realized the fast 3D matched filter, and removed the random noise to obtain 
a better signal-to-noise ratio effect in the reconstructed image.

Although some progress has been made in related researches, there is still a lack of targeted research on 
industrial reconstruction images. In practical applications, the sampling data of flow field positron images is low, 
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and the requirement for texture details is high, which makes the existing denoising methods unable to meet the 
processing of such industrial positron images.

Therefore, to address the above issues, we propose a denoising model of a generative adversarial network 
incorporating zero-shot learning knowledge for denoising reconstructed images of positron flow fields in closed 
cavities for higher quality Image. Specifically, the contributions of this paper are as follows: 

(1)	 To our best knowledge, this is the first domain generative network model for image denoising of industrial 
positron flow field.

(2)	 It realizes the image denoising under the condition of scarce data by adding feature input learning from 
the pixel information inside the images.

(3)	 It constructs a new loss function, which combines perceptual loss and edge loss to preserve image details 
as much as possible.

(4)	 It provides SOTA denoising results in the positron images in industrial flow field.

Related work
Image denoising based on neural network.  Deep convolutional neural network (CNN) is the most 
popular network in the current image processing task. With the proposal of the network10,11, the overall imple-
mentation of CNN tended to be mature in the depth and width, so it shows a good effect in the image denoising 
task12. Trained a set of fast and effective convolutional neural network fusion modules based on prior knowledge, 
which is not only effective in Gaussian noise but also suitable for low-level vision applications13. Used deep 
convolution networks to optimize the network and learn the end-to-end image mapping, to improve the image 
quality14. Proposed the denoising convolutional neural networks (DnCNNs), which used residual learning and 
batch normalized training networks for blind denoising, and realized the processing of Gaussian noise of differ-
ent levels using a single network model.

Generative adversarial networks.  Generative adversarial network15 consists of two parts, the generative 
model G and the discriminative model D. The input random noise generates realistic images through the gen-
erative network training, at the same time, the discriminative network distinguishes the true from the false. The 
mathematical model is shown in Eq. (1).

Here, E(•) represents the expectation operator; x represents the real data and z represents the input random 
noise. When D is trained as the optimal discriminator, which means the JS divergence is minimized, and the 
training for G is completed, the optimal data generation network can be obtained.

Generative adversarial model can supplement training data and have achieved good performance in few-
sample tasks. The proposal of papers16,17 further provided possibility for the specific implementation of the 
model, including the researches on network convergence, model collapse, and the optimization of the loss func-
tion. These researches all achieved good performances in many fields such as image super-resolution18, image 
transformation19, image style transfer20. The combination of the model and convolutional neural network also 
shows excellent performance in the task of image denoising21. Trained the two networks jointly, and the voxel 
loss function is constructed to realize image denoising and obtain a high peak signal-to-noise ratio22 highly 
under-sampled data to reduce the artifacts and contrast, which improved the image quality under the framework 
of the conditional generative network23. Used GAN to model the noise distribution to generate noise samples, 
and formed a clean image set as training data. The network had trained for blind denoising and achieved well 
results24. Rendered small pixel samples using the features of GAN and obtained the higher quality real images 
by training the noisy images.

“Zero‑shot” learning.  The limitation of deep neural network is that it needs enough sample data to train a 
good network model. Therefore, when dealing with small sample data, to obtain a good model through training, 
we consider learning the attributes of existing samples, and then using the knowledge of partial transfer learn-
ing to identify the type attributes of unknown data. “Zero-shot” learning25 is an unsupervised learning network 
based on zero samples, and the original core idea is to realize the transfer learning of unknown data by learn-
ing the attributes and labels of existing samples. In recent years, great progress has been made in the research 
of related networks26. Improved the original model and trained a labeling framework for model embedding 
directly, which realized the prediction of data categories27. Solved the problem of domain drift by adding new 
constraints in the network and it can ensure the original visual feature information while semantic embedding.

At the same time, due to the excellent performance of “zero-shot” learning in the unsupervised field, more 
and more researches on models that integrate “zero-shot” learning under the framework of generative adversarial 
network are also gradually carried out28. Proposed the loss function of gradient signal to solve the problem of 
zero-shot learning by generating data samples simulating unsupervised learning in a generative adversarial 
network29. Used the Coupled GANs extension as conditional GANs, which can capture the joint distribution 
of domain adaptation samples in different tasks, and complete the adaptive domain training. The above papers 
show that it is feasible to embed a zero-shot learning module in GAN framework, and some achievements have 
been achieved.

Therefore, we consider denoising the industrial positron flow field image by integrating the knowledge of 
“zero-shot” learning in the framework of generative adversarial network. The rest of this paper is organized as 

(1)minG maxD V(G,D) = minG maxD Ex∼P data

[
logD(x)

]
+ Ez∼Pz

[
log(1− D(G(Z)))

]
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follows. The proposed method is introduced in Section "Method". The experiments and results are presented in 
“Experiments" Section. Finally, relevant issues are discussed and conclusions are drawn in “Conclusions" Section.

Method
Image feature learning.  The data set of natural images is easy to obtain, and the performance of the neural 
network model can be improved through large-scale data training. However, the positron emission tomography 
image of industrial flow field belongs to the research object of scarce sample data. The research on the application 
of positron emission tomography imaging technology in the field of industrial flow field detection is still in the 
preliminary stage, with strong data field characteristics and high sampling difficulty, resulting in less sample data 
and difficult to obtain. Therefore, in the absence of a sufficient number of training samples, we plan to divide the 
image through the repeatability characteristics of the internal pixels of a single image, and extract the internal 
features of the image in a small enough scale. In the actual industrial application scenario, the positron flow field 
image is greatly affected by the environment generated by the flow field. Even for the same industrial part, dif-
ferent reconstruction images will be obtained due to different usage scenarios. In this case, a considerable part 
of the image information is not easy to obtain from the external image data. At the same time, considering the 
regularity and repeatability of the industrial flow field image itself, it is necessary to obtain more image features 
by learning the internal information of the image, so as to avoid the loss of details in the denoising process. The 
experiments in the paper30 show that the information entropy of the image is smaller than that of the image from 
the external data set. Furthermore, by observing the internal statistical information of the image, more accurate 
prediction results can be obtained compared with the external statistical information of the image.

Considering the above factors, we establish a feature extraction model of internal image information. The 
principle is based on “zero-shot” learning, and the purpose is to use a single small number of images for feature 
extraction in the case of small sample data. A prerequisite for the feasibility of this model is that the flow field 
image is different from the general image, and its own regularity is strong.The specific model construction process 
is as follows:first, a convolutional neural network needs to be trained, and small-scale image samples extracted 
from the flow field image are used as training samples. The image examples here are obtained by randomly slicing 
the flow field image. Then, by learning the mapping relationship between the area with high image noise and the 
position with low noise, a convolution network for learning the internal information of the flow field image is 
obtained. The network adopts a full convolution layer network structure, and each layer of the network is acti-
vated using the RELU (Rectified Linear Units) function. The corresponding relationship is shown in Fig. 1, and 
the aim is to obtain the feature space correspondence of the same category of images: fzsl : X → X ′ . Here, since 
the network is trained by a single image, it can greatly reduce the training time and complexity of the network, 
realize the internal feature extraction of the image, and its output is used as a conditional input of the generative 
countermeasure network to construct the denoising model of specific images.

Generative adversarial networks.  After extracting the internal features of the flow field image, a posi-
tron flow field image denoising model is built with the generative adversarial network as the model framework. 
The input of the network is the feature vector and random noise extracted in the convolutional network in 
the previous section and the overall network structure is constructed by the residual network (ResNet)31. The 
specific implementation is shown in Fig. 2: the generator is consist of convolution layers, residual blocks and 
deconvolutional layers. The kernel is 3× 3 , the output is a separate 3× 3 characteristic graph, the stride is 1, 
the padding is 1 and the activation function is Rectified Linear Units (Relu). The discriminator is consist of six 

Figure 1.   X represents the noisy image part of lower sampled data, X ′ represents a clearer part of the image; 
Y represents the test images. The proposed network model can learn a corresponding mapping relationship 
through the information extraction of pixels in the image, and applied to the test images on the right to obtain 
the output of clearer images.
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convolutional layers, which adopts the full convolutional networks, the kernel is 3× 3 , the activation function of 
the first five layers of convolutional network is Relu, and the last output layer is the sigmoid function.

Loss function.  Through the above steps, the positron flow field images with high noise are converted into 
clearer images. In addition to the basic adversarial loss function in the network, to obtain a better positron 
flow images denoising model, we consider constructing a new loss function to measure the performance of the 
denoising model. Firstly, to preserve the image information and detail features as much as possible in the denois-
ing process, we add a perception loss function as shown as Eq. (2).

Here � • � represents Frobenius norm, w, d, h respectively represent the width, height, and depth of the feature 
space.

Additionally, to avoid excessive smoothing of the edge of the denoised image as much as possible, we give an 
edge loss function, and the mathematical expression of the function is shown as Eq. (3). Here, x̂ represents the 
original images containing pixel feature information.

Therefore, combined with the above two loss functions and the original adversarial loss function of the generative 
adversarial network, the overall joint loss function constructed in this paper is shown as Eq. (4).

Here, �1 and �2 are weighted parameters, which weigh the weight between the three loss functions and the specific 
value is determined by the training effect of the network model in the actual process.

Network framework.  The generative adversarial model with zero-shot learning proposed in this paper is 
focused on positron flow field images in the industrial field and the overall framework is shown in Fig. 3. The 
model consists of three parts. The first part is the image feature learning network proposed in  "Image feature 
learning" Section, which is composed of fully convolutional neural network. The second part is the generative 
adversarial network constructed in  "Generative Adversarial Networks" Section. Here, the input of the generative 
network is the mapping relationship between the higher quality image and the noise image obtained in Fig. 1, 
which is the prior constraint. Then, we train the lower sampled noise image by the discriminative network and 

(2)L pre = E(x,z)

[
1

wdh
�G(z)− x�2F

]

(3)Lmar =
1

2

∑(
x̂ − G(z)

)2

(4)L = min
G

max
D

v1(D,G)+ �1Lpre + �2Lmar

(a) structure of generative network

(b) structure of discriminative network

Figure 2.   n and s mean the kernels and stride of the convolutional layer.
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use the loss function defined above to characterize the model. Finally, we can obtain a denoising model on neural 
network for positron flow field images.

Experiments
Experimental data.  The image data we used in the experiment is the positron flow field image in the 
industrial field. The data is obtained through GATE (Geant4 Application for Tomographic Emission) simulation. 
GATE is a special PET simulation software based on Monte Carlo. The specific simulation process is as follows: 
construct the geometric model of the detector; construct the geometric model of the scanned object; set particle 
transmission parameters; set the front-end electronic characteristics; set the data output format and obtain the 
data, and then the positron images are reconstructed by the algorithm. Here the reconstruction algorithm we 
used is MLEM.

We obtained twenty kinds of flow field images under different scenes, which contain different water medium 
equipment as much as possible, including water tunnels, tanks, and pipe flow devices of different specifications. 
At the same time, in the simulation process, we set two different standards of reagent dose and sampling time. 
In principle, the longer the sampling time, the higher the activity, and the better the quality of the reconstructed 
images.

Network training.  In our experiments, the model is shown in  “Method” Section. All the networks were opti-
mized using Adam algorithm32, and the hyper-parameters for Adam were set as α = 1e− 5, β1 = 0.2, β2 = 0.9 . 
The networks were implemented in Python with Tensorflow, and the GPU used in the training is NVIDIA 
2080Ti. We set the mini-batch is 64 in the process of the training. The loss function constructed above is shown 
in Fig. 4, and we can see the convergence of the model in the process of the denoising network for positron flow 
field images clearly.

At the same time, to show the effect of the denoising model, the two quantitative indicators are used to 
measure the performance of the model synchronously, namely peak signal to noise ratio (PSNR) and structure 
similarity image measure (SSIM). These two are currently more common indicators and the mathematical expres-
sion is shown in Eq. (5), and the changes of values during model training are shown in Fig. 5.

Figure 3.   Network framework diagram of denoising model.

Figure 4.   100 epochs are set in the training: (a) the loss function of the generative model; (b) the loss function 
of discriminative model. the whole model tends to converge around 80 epochs.
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Experimental results.  To show the denoising effect of the model on the positron flow field images pro-
posed in the paper, we selected two different flow field slice images: laminar flow and turbulent flow. The model 
simulates two different fluid states due to the change of velocity in the same space. When the velocity is very 
small, the fluid flows in layers and does not mix; When the velocity increases, vortices will be produced in the 
flow field. Compare the effects of two flow field images under different denoising models. The basic description 
of the models used as the comparison is shown in Table  1. The first three models are the current general denois-
ing models, and the last one is the ablation experimental model without changing the loss function.

The denoising results obtained under different network models are shown in Fig. 6 and Fig. 7 respectively. It is 
not difficult to find that all methods have a certain denoising effect on the positron flow field images. Compared 
with the original reconstructed images, the quality of the obtained images is improved to varying degrees, but 
obviously, the quality of the images obtained by the method proposed in this paper is the best after denoising.

Quantitative analysis.  Positron flow field images are the gray images obtained from the reconstructed 
sampling data. So the quality of the image cannot be accurately evaluated by human eyes alone, and there may 
be visual bias, especially in the details of the image. For quantitative analysis, we calculated the PSNR and SSIM, 
and the summary data are in Table  2.

From the values of the two indicators given in the table, it can be seen that the methods proposed in this 
paper have good performance. However, only using the generative countermeasure network to reduce the image 
noise is likely to generate beautiful positron images that do not conform to the characteristics of the industrial 

(5)

MSE =
1

HW

H∑

i=0

W∑

j=0

∥∥X(i, j)− Y(i, j)2
∥∥

PSNR = 10 · log10

(
MAX2

I

MSE

)

SSIM =
(2uXuY + C1)(2σXY + C2)(

u2X + u2Y + C1

)(
σ 2
X + σ 2

Y + C2

)

Figure 5.   The two line chart of PSNR and SSIM are changed with the training. The reference image is a 
randomly selected image in the data set, which can basically reflect the changes of the image in the training 
process.

Table 1.   Description of comparative network model.

Model Structure description

DnCNN14 CNN with MSE loss only

GAN24 GAN

CNN-GAN19,23 CNN with GAN

Zero-GAN GAN + Zero-learning with original loss
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field, which cannot achieve the practical application effect. Therefore, the results further prove the necessity of 
constructing a new loss function.

At the same time, due to the objective conditions of the existing industrial positron imaging technology, 
image blur (blocky or smooth artifacts) may occur, which will also affect the results of quantitative evaluation 
indicators. Therefore, different from natural images, the application of positron flow field images in industrial 
non-destructive testing needs more expert experience to judge.

Figure 6.   The positron flow field images are the laminar flow images obtained by simulation. The specific 
parameters are sampling time 1s and nuclide activity 800 bq.

Figure 7.   The positron flow field images are the vortex images obtained by simulation. The specific parameters 
are sampling time 1s and nuclide activity 800 bq.

Table 2.   Quantitative results associated with different network outputs for Figs. 6 and 7.

Fig. 6 Fig.7

PSNR SSIM PSNR SSIM

DnCNN 27.872 0.804 27.954 0.704

GAN 28.326 0.635 27.898 0.683

CNN-GAN 27.928 0.856 30.127 0.742

Zero-GAN 29.061 0.892 29.568 0.837

Our method 29.342 0.897 31.783 0.925
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Experimental verification.  To further verify the advanced nature of the model, we designed the experi-
ment as follows: it simulated the flow state of liquid in the engine pipe. The annular detector used is 64 detector 
rings with a radius of about 64 mm, and each detector ring is composed of 23 pairs of detector heads; the carrier 
solvent is water-soluble hydraulic oil containing F18 with radioactivity of about 1 mC. The sampling time last for 
60s, and we took the sampling data at equal time intervals for image reconstruction to obtain the fluid images in 
a more stable state. We denoised the images and the results are shown in Fig. 8.

In practical application, the fluid state (including whether there are cracks, irregular sections, etc.) can be 
observed through images to judge the internal conditions of the pipeline. In principle, the better the image qual-
ity, the higher the accuracy of the detection results.

From the different image effects under each model in the figure, we can see that the method proposed in 
this paper has a good denoising effect, and the image quality has been significantly improved. This method uses 
the extracted image internal information feature fusion generative adversarial network to denoise the image. 
Theoretically, the more complex the internal structure of the industrial part cavity and the more complex the 
flow field image, the better the denoising effect of this model.

Conclusions
The main goal of this paper is to denoise the reconstructed industrial positron flow field image, aiming at small 
sample data in special fields. It can be seen from the results of simulation experiments and field experiments 
that the proposed model has a good denoising effect, especially in the actual application scenario, the denoising 
process preserves the details of the image, and achieves the denoising task well.

The image resolution currently used is 128× 128.In the experiment, we tried to improve the pixels of the 
image during the reconstruction process and denoise the image with higher pixels. The model can also achieve 
the denoising effect, but the result is not satisfactory. The main reason is that there is too little sampling data, 
which leads to less pixel information in the reconstructed image with higher resolution. Information loss and 
image distortion will occur after de-noising. Therefore, how to obtain a higher resolution image is also a future 
research direction.

In conclusion, we have proposed a generative adversarial network for positron flow field images denoising 
based on “zero-shot” learning, Which is dedicated to solving the problem of poor image quality under the scarce 
samples in industrial positron detection, and making the denoised images more readable. The experimental 
results also prove the feasibility of the proposed method. In the future, we plan to segment the image, try to 
directly process the region of interest (ROI), or fuse different neural networks to directly process the recon-
structed original data, so as to further improve the image quality of industrial positron flow field.

Data availability
The data used in the study comes from two parts: the simulation data comes from GATE and it is a special 
simulation software for PET/SPECT equipment based on Mento Carlo; the real data comes from cooperative 

Figure 8.   Fluid diagram of intertnal fluid in engine pipeline.
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enterprises. The datasets used and/or analysed during the current study available from the corresponding author 
on reasonable request.
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