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Energy landscapes from cryo‑EM 
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Biomolecules undergo continuous conformational motions, a subset of which are functionally 
relevant. Understanding, and ultimately controlling biomolecular function are predicated on 
the ability to map continuous conformational motions, and identify the functionally relevant 
conformational trajectories. For equilibrium and near-equilibrium processes, function proceeds along 
minimum-energy pathways on one or more energy landscapes, because higher-energy conformations 
are only weakly occupied. With the growing interest in identifying functional trajectories, the need for 
reliable mapping of energy landscapes has become paramount. In response, various data-analytical 
tools for determining structural variability are emerging. A key question concerns the veracity with 
which each data-analytical tool can extract functionally relevant conformational trajectories from 
a collection of single-particle cryo-EM snapshots. Using synthetic data as an independently known 
ground truth, we benchmark the ability of four leading algorithms to determine biomolecular 
energy landscapes and identify the functionally relevant conformational paths on these landscapes. 
Such benchmarking is essential for systematic progress toward atomic-level movies of continuous 
biomolecular function.

Biomolecular machines have evolved to perform specific tasks through a concerted sequence of conformational 
motions. There is growing recognition that such motions involve continuous conformational changes, rather than 
jumps between a small number of discrete states1,2. Apart from disordered proteins, conformational continua 
span a spectrum of different energies. In thermal equilibrium, the probability of a conformational state being 
occupied is determined by the Boltzmann factor, which drops exponentially with increasing energy.

Conformational motions of proteins can thus be represented as low-lying (and thus strongly occupied) 
pathways on one or more energy landscapes (EL)3,4. In principle, an unlimited number of conformational paths 
connect a “start” conformation A to an “end” conformation B. However, most such paths include high-energy 
states, which are sparsely populated under biologically relevant conditions. Due to the exponential nature of 
the Boltzmann inverse relationship between energy and occupation probability5, lowest-energy conformational 
paths contribute maximally to function.

The growing recognition of the importance of energy landscapes for discerning function has spawned an 
increasing number of sophisticated algorithms capable of mapping continuous conformational motions. Using a 
synthetic dataset of cryo-EM snapshots with known ground truth energy landscape, we compare the performance 
of four leading algorithms, specifically Relion Multibody6, CryoSPARC 3DVA7, Manifold-EM8, and CryoDRGN 
VAE9, in faithfully extracting the energy landscape from snapshots. We benchmark the performance of each algo-
rithmic approach in terms of the accuracy with which the correct energy landscape is recovered from the data.

To date, no comparative benchmarking study of the strengths and weaknesses of different data-analytical 
approaches for analyzing continuous conformations has been reported. The lack of comparative benchmarks 
hampers the assessment of the usefulness and reliability of different algorithmic tools in extracting information 
from experimental data.

In this paper, we use a synthetic dataset generated with an a priori known “ground-truth” energy landscape to 
benchmark, in silico, the above leading algorithms for conformational analysis of cryo-EM data. Specifically, we 
quantify each method’s ability to: (a) Recover the correct energy landscape from synthetic cryo-EM datasets; (b) 
Reveal the functionally important conformational degrees of freedom; and (c) Identify the functionally relevant 
conformational paths on these landscapes. Although the nature and number of potentially useful algorithms are 
currently evolving, the four selected approaches represent the state of the art in mapping continuous conforma-
tional motions from ensembles of single-particle cryo-EM snapshots.

The primary goals of this paper are thus twofold:
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	 (i)	 Benchmark the performance of the four leading algorithms listed above in faithfully extracting confor-
mational energy landscapes from synthetic cryo-EM snapshots, and

	 (ii)	 Provide a well-characterized synthetic cryo-EM dataset suitable for comparative benchmarking, in order 
to facilitate the development of more effective data-analytical tools capable of identifying functionally 
relevant conformational landscapes and motions.

The synthetic dataset of three million cryo-EM snapshots (Signal-to-Noise Ratio SNR = 1) stems from a 
ribosome-like object with two conformational degrees of freedom, with an underlying energy landscape of 12 
energy minima of various depths arranged on a 3 × 4 grid (Fig. 1a). The distribution of points (each represent-
ing a single snapshot) is determined by the underlying energy landscape. The landscape is spanned by two 

Figure 1.   (a) The conformational landscape of the synthetic ribosome model along two conformational 
coordinates containing twelve wells (labelled 1 to 12) of uneven depths. The depths are reflected in the 
histogram along the two axes. (b) Real space representation of the cryo-EM density of the synthetic ribosome 
model indicating the two conformational directions.
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conformational degrees of freedom, specifically the rotations of the small subunit (SSU) about two axes named 
conformational coordinates 1 and 2. The SSU of the ribosome-like object is permitted to rotate in a ratchet-like 
manner about two mutually orthogonal axes, with the large subunit (LSU) fixed (Fig. 1b).

The performance of each of the four data-analytical approaches is quantified in terms of the fidelity of the 
energy landscape recovered from the synthetic snapshots. This fidelity is quantified in terms of “Recall” and 
“Accuracy”, defined in terms of intrinsic distances between snapshots calculated using the Euclidean distance 
metric. (For details see “Methods” section entitled Accuracy metric).

Results
Each of the four data-analytical software tools listed above was applied to the synthetic dataset described above. 
The ground-truth snapshot orientations were provided to each algorithm to focus the study on the ability of the 
four different algorithms to extract conformational information. In each case, the top two (i.e. the most “power-
ful”) conformational coordinates were examined. We assess the performance of each algorithm in terms of its 
ability to classify snapshots correctly into the 12 ground truth energy minima. As outlined below, this approach 
allows us to quantify algorithmic fidelity in terms of well-known metrics from classification.

Accuracy of extracted energy landscapes.  We use “Recall”10 defined as

where P(n) is the positive class (snapshots belonging to ground truth energy minimum ‘n’), and TP(n) the true 
positives i.e. snapshots correctly assigned by the algorithm to the energy minimum ‘n’. This allows us to compute 
a recall value for each of the twelve energy minima. (See SI Tables 3–6).

The average of Recall values, known as Balanced Accuracy11 or simply Accuracy, allows us to assign a quan-
titative score to each algorithm’s ability to accurately extract the energy landscape underlying the synthetic data. 
(See “Methods” section entitled Accuracy metric). Essentially, one tracks the region of snapshots around the 
energy minimum in the input landscape and asks, “To what extent is each energy minimum obtained by each 
algorithm deformed from its original ground-truth shape?” We quantify the extent of this distortion in terms 
of the Euclidean metric (L2-norm) to calculate a well-defined region of conformational similarity in both the 
input and output (Fig. 2a,b). The accuracy of each method is given in Table 1.

We now summarize the outcome of our benchmarking study. Accuracy is calculated by averaging the Recall 
values over the 12 energy minima. Relion Multibody on average assigns only 17.54 ± 14.4% of the points to the 
correct region in the ground-truth energy landscape (Fig. 2a,b). The cryoSPARC 3DVA algorithm achieves 
an accuracy score of 51.3 ± 18.6%. cryoDRGN variational autoencoder assigns snapshots with an accuracy of 
61.2 ± 9.6%. The Manifold-EM algorithm correctly assigns 77.6 ± 4.8% of the snapshots on average over the entire 
ground truth energy landscape.

Occupancy maps and energy landscapes.  The occupation probability of a conformational state is 
determined by the energy of the state via the Boltzmann factor. An occupancy map (defined in12) is simply an 
alternative representation of the conformational energy landscape of the ribosome-like object. Figure 3a shows 
the energy landscape for the continuous conformational landscape of the synthetic ribosome.

To date, Manifold-EM is the only method that can calculate the energy landscapes of the conformational 
occupancy. The corresponding energy landscape obtained from the Manifold-EM data analytical pipeline is 
shown in Fig. 3b. It is evident that the energy landscape obtained by Manifold-EM closely resembles the ground-
truth energy landscape. This includes the high occupancy regions or, equivalently, the twelve energy minima 
(Fig. 3b), while preserving the modulated features (i.e. the variation in depths of the individual energy minima) 
across the ground truth conformational coordinates (Fig. 3a). The other benchmarked algorithms have not yet 
developed a way to extract thermodynamic quantities like occupancy probability or free energy. It is evident that 
the energy landscape obtained by Manifold-EM. 

Visualizing the energy landscape.  The performance of the benchmarked algorithms can be validated 
by using methods from data-visualization. We segment the ground truth energy minima using a multi-color 
approach. This procedure is known as ‘data lineage’13. Each energy minimum has been assigned a unique color 
to identify each energy minimum. (Fig. 4a). Essentially, lineage uses the ground truth labels for each single-
particle snapshot in the energy landscape to identify its position in the output of each of the data-analytical tools 
(Fig. 4b–e). The region surrounding each of the 12-energy minima is rendered in a different color to elucidate 
the extent to which snapshots stemming from adjacent regions of the ground truth energy landscape are cor-
rectly assigned by each of the four data-analytical techniques.

As shown in Fig. 4b, the overall ground-truth topology is recovered by Manifold-EM. It is evident from 
Fig. 4c–e that the alternative approaches, viz. Relion, cryoSPARC, and cryoDRGN severely distort the energy 
landscape, intermixing points stemming from different energy minima.

Discussion
Inferring biological function from biomolecular structure is a paramount goal of structural biology. The results 
presented here highlight the importance of basing functional inference on energy landscapes and conformational 
coordinates derived from the data. To this end, we have developed and tested a rigorous approach to bench-
marking the performance of four leading data-analytical algorithms in faithfully extracting energy landscapes 

Recall (n) =
TP (n)

P (n)
,
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underlying a collection of synthetic snapshots. This assessment is based on the accuracy with which individual 
snapshots are placed on the output energy landscape as compared with the independently known ground-truth 
distribution. Using a complex synthetic model, Manifold-EM, accurately recovers the energy landscape.

In view of the importance of inferring function from structure, we anticipate an increasing spectrum of tech-
niques for mapping energy landscapes. The benchmarking data we have used will facilitates rigorous assessments 
of the efficacy and reliability of current and future tools for determining biomolecular structure and function. 
Our approach thus offers a rigorous means for measuring and improving the performance of data-analytical 
approaches capable of extracting energy landscapes from cryo-EM datasets.

The study design, including the synthetic ribosome-like object, was chosen to mimic conditions typically 
encountered in conformational motions in biological macromolecules. Of course, any benchmarking exercise 
pertains to a particular time point. Consistent with the rapid progress in cryo-EM single-particle imaging, data-
analytical software tools are evolving apace14–18. Our approach offers a quantitative method for assessing and 
guiding this rapidly progressing field.

The recall and accuracy metric are powerful tools for comparing the different algorithms, as it allows the 
study of energy regions without prior assumptions about the shape and distribution of the energy landscapes. 
Despite differences in the formulation of the different algorithms, the accuracy-based score can be consistently 

Figure 2.   (a) A pictorial description of the Accuracy metric calculation in context of energy landscape 
benchmarking. (b) Bar charts showing the accuracy values obtained for each of the four methods.

Table 1.   Statistics of the Recall metric for the benchmarked algorithms.

Software tools Accuracy (average recall) (%) Standard deviation of recall (%)

Relion multibody 17.54 14.35

CryoSPARC 3DVA 51.3 18.63

CryoDRGN 61.2 9.6

Manifold-EM 77.6 4.79
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applied to present and emerging algorithms. Currently, Manifold-EM represents the most reliable means for 
extracting energy landscapes and conformational coordinates from single-particle cryo-EM images. We offer 
the synthetic data used in the present study as a canonical test vehicle for developing powerful algorithms for 
extracting reliable structural and functional information from cryo-EM data.

Methods
Accuracy metric.  Finding an appropriate metric for extracting conformational landscapes from cryo-EM 
data is a challenging task, if only because the metric must quantify the distortion caused by the algorithmic 
approach. We tackle this problem by using the quantitative metrics Recall and Accuracy11, in order to quantify 
the ability of each of the four algorithms to correctly assign each snapshot to one of 12 classes. The Recall metric 
was implemented as follows:

1.	 The center of each energy minimum was obtained by calculating the ‘mean’ of all the particles corresponding 
to that minimum region (for all 12 regions).

2.	 Compute the distance matrix (squared Euclidean) using the 12 centers
3.	 Using the distance of each particle from the corresponding center (Fig. 4a), bin the particles into each mini-

mum based on the shortest distance to the center.
4.	 This procedure assigns particles to a label from 1 to 12.

The Accuracy11 of the benchmarked method is given by:

where n is the number of energy minima (in our case, 12) and the numerator is the sum of the Recall metric 
calculated for each energy minima.

Recall ranges from 0 to 1 (as evident from the definition), where a value of 0 implies no snapshot is correctly 
assigned to that energy minima and a value of 1 when all snapshots belonging to the energy minima are cor-
rectly allocated. The accuracy of each algorithm is the average recall metric for assignment into all 12 minima.

Accuracy =

∑
nRecall (n)

n
,

Figure 3.   (a) Ground-truth energy landscape. (b) Energy landscape obtained by the data-analytical pipeline 
implemented in Manifold-EM.
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Data availability
The datasets used and/or analyzed, and the code developed in the course of the current study are available from 
the corresponding author on reasonable request.

Received: 5 August 2022; Accepted: 18 January 2023

Figure 4.   Ground-truth and output conformational landscapes. (a) The lineage colored according to the 
ground-truth location. (b–e) The lineage obtained from Manifold-EM, CryoDRGN, CryoSPARC and Relion 
Multibody, respectively, using panel (a) as reference.
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