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Water deficit affects agricultural systems negatively globally. This research objective was to mitigate
drought’s detrimental effects on plants metabolite profiling by utilizing biofertilizers and mineral
nutrition. The carbohydrate content and fatty acid profile of Licorice (Glycyrrhiza glabra) were
assessed under Silicon (Si) nutrition, Claroiedoglomus etunicatum inoculation (F), and drought stress
(100, 80, 60, 40, and 20% of field capacity (FC)). Results showed that Si application increased total
sugar content under severe drought levels (20 and 40% FC) and made it reach 12.41 and 12.63 g/100 g
pws respectively. Sucrose, as the predominant sugar of licorice, was at its highest level (13.1 g/100 g
pw) in response to integrated values of F and Si (60% FC). Gas chromatography-mass spectrometry
showed that the majority of fatty acid components in plants were 9-Octadecenoic acid (8.72-71.27%),
9,12-Octadecadienoic acid (0.1-56.43%), Hexadecanoic acid (12.84-30.59%), Octadecanoic acid
(6.9-15.3%), Docosanoic acid (0.57-2.77%), Eicosanoic acid (1.07-2.64%), and 7-Hexadecenoic acid
(0.26-2.62%). Since a lower omega6/omega3 ratio represents a healthier product, the lowest ratio
(0.25%) was observed in well-watered inoculated plants. Also, severe drought-treated plants under
integrated Si and F applications showed a low omega6/omega3 ratio (1.88%). In conclusion, Siand F
improved synergistically the carbohydrate content and fatty acid profile in plants, despite the drought
stress.

Licorice (Glycyrrhiza glabra L. family: Fabaceae) is a valuable medicinal plant which is commonly processed in
the biopharmaceutical and nutraceutical industries’. It is also considered as a food additive because of its high
sweetness. Careless overexploitation of wild ecotypes of G. glabra has recently resulted in a rapid reduction of
its populations, if not extinction. Because of the plant’s high economic value and the risk of extinction owing
to overharvesting, it appears vital to grow and domesticate this valuable species® It has various physiologically-
active compounds, including terpenes, flavonoids, polysaccharides, sugars, amino acids, minerals, lipids, and
glycosides®. Recently, polysaccharides have been identified with distinctive biological functions, including anti-
microbial and immunomodulation effects*. Numerous studies have suggested that licorice polysaccharides can
regulate immunity, while having antiviral and antioxidant activities, with minimal cytotoxic effects. Since this
valuable medicinal-industrial plant has been harvested indiscriminately, it is endangered and needs to be culti-
vated. Since many cultivated areas are facing water deficits as a widespread abiotic stress, the deficit has negatively
affected plant productivity and disrupted normal metabolism®. Drough has many detrimental effects on quantity
and quality of plant production systems. As a result of prolonged drought, cell turgor maintenance happens via
the buildup of organic osmolytes including carbohydrates, sugars, and fatty acids®. Sugars, as one of the main
components of licorice roots, are osmotic adjustors and signaling molecules, capable of being produced by car-
bohydrate metabolism, as they activate a variety of protective reactions to help tolerate drought stress. Sugars are
also known to provide essential carbon content and energy for development, cell proliferation, differentiation,
and preservation’. Also, plant sucrose, which is high in licorice root extract, and its products that result from
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hydrolysis, as well as products such as fructose and glucose transporters, can regulate their redistribution under
abiotic stress between source and sink®. So, when water-deficit conditions exist, sugar transportation occurs
in the roots by upregulating the expression of some transporter genes. Furthermore, the composition of fatty
acids and biosynthesis are often altered. These various harmful impacts of water deficit on basic metabolites of
licorice, carbohydrates and fatty acids, affect their critical roles on licorice quality for food and pharmaceutical
industries. Wild licorice plants are well-suited to growing in challenging situations, including drought, and on
lands with nutrient deficiency’. These are the two main causes that usually limit licorice production. Glycyrrhiza
plants are grown to help restore ecosystems that have been degraded, especially in arid and semi-arid areas. In
this regard, plants have evolved a variety of stress-resistance strategies. Plant-microbe mutualism may influence
plant development, nutrient uptake, and resistance to water-deficit stress. So, there are several ways to mitigate
these negative impacts of drought stress on the quantity of carbohydrates and the profile of lipids'’. Since some
minerals can reduce the effects of stresses, including drought stress, Si was used in the present study. Mineral
elements such as exogenous Si can partly neutralize the negative impact of water-deficit on plant metabolites''.
Numerous mechanisms are described in improvements through Si-mediated growth, including the activation
of photosynthetic enzymes and enzymatic antioxidant defense systems, an enhanced water use efficiency, better
nutrient uptake, regulating stomatal behavior and hydraulic conductance, regulate aquaporins, and the accumu-
lation of organic osmolytes®. Although Si is often not regarded as an essential element, previous research have
shown that it helps mitigate abiotic stress in plant species such as Lens culinaris'?, G. glabra’®, and Glycyrrhiza
uralensis'®. Another strategy to reduce the effects of drought stress on the quantity and quality of plant metabolites
is to use biofertilizers such as mycorrhiza. Arbuscular mycorrhizal fungi (AMF) are the broadest genus capable
of symbiosis in the plant kingdom. They are another strategy to improve plant metabolomics under irrigation
regimes'®. AMF is considered as a key player in agronomic practices, as it has important components for sustain-
able management in agricultural ecosystems'>. AMF-colonization can improve the establishment of extensive
hyphal networks which assist in water absorption, and leading to better soil structures. AMF colonization of roots
can improve plant development by enhancing nutrient uptake, ion homeostasis, root development, accumulating
osmolytes, induction of drought-responsive genes, and activation of different metabolic pathways'®. Previous
cases of research on Ceratonia silique'” and G. glabra® have already explained the positive effects of AMF on plant
drought resistance and metabolite accumulation.

In the present study, a pot experiment was carried out to evaluate the impacts of AMF and Si, individually and
in combination, on licorice carbohydrate content and on fatty acid profile, under different levels of drought stress.

Materials and methods

Plant materials. This study was carried out in the College of Agriculture, Shiraz University. The seeds of
G. glabra (voucher number: MPH-2670-1) were collected from Eghlid area (Aspas village, 52° 23’ 58" E and 30°
38'31" N), aregion in the north of Fars province, Iran. The collection was done following national and scientific
guidelines as described by Esmaeili et al.! and based on the International Standard for Sustainable Wild Col-
lection of Medicinal and Aromatic Plants (ISSC-MAP) (Version 1.0) prepared by the Medicinal Plant Specialist
Group of the ITUCN Species Survival Commission (The World Conservation Union). Also the permission to col-
lect seeds was obtained from the (Iranian Government Organization) Natural Resources and Watershed Man-
agement Organization. The seeds were scarified by soaking in concentrated H,SO, (97%- Merck) for 10 min,
washed with running water several times, and immediately sown in transplant trays with Peat Moss and perlite
mix, 2:1'%. Two seeds were sown in each cell of the trays. They were placed in the greenhouse (Day: 27+1 °C,
night: 23+ 1 °C, humidity: 70+ 3%, light: 40,000 Lux) after sowing. A month after germination, the seedlings
were transplanted into small plastic pots containing 250 mL of field soil and sand mixture (2:1) (non-sterilized).
Bigger pots were used for transplanting 6-month-old seedlings in a sandy medium (soil and sand mixture (2:1)).

Mycorrhizal inoculation preparation. Claroiedoglomus etunicatum was provided by the soil biology lab
at Shiraz University. It was previously separated by Dr. Mehdi Zarei in the Department of Soil Sciences. The
inoculum (250 g) was added to the root zone as transplanting took place in the final pots. Each mycorrhizal pot
received soil containing fungal spores, mycorrhizal roots, and mycelia of C. etunicatum, and the non-mycorrhi-
zal pots received an equal amount of washed sand"’.

Growth situation and treatment application. After two weeks of adaptation and plant establishment
in the pots, irrigation treatments were carried out for two months. Irrigation was performed to make the soil
reach five different levels of moisture, either at or below field capacity (FC). These levels were either 20, 40, 60,
80, and 100% FC (control). Drought stress treatments are shown as “W”, as W5, W, W, W, and W, Silicon
application is represented by “Si” at two levels, with Si (Si;) and without (Sij). Fungi inoculation was also shown
by “F” at two levels, with (F;) and without (F,) fungi inoculation. Si was dissolved in the irrigation water as
SiO, at 300 mg/L concentration. As the plants consumed water and as evaporation occurred, the weight of pots
decreased gradually through the course of observations?. After eight weeks, and under the respective conditions
of growth, the plants were harvested for analysis.

Total sugar extraction and determination. The quantification of total sugar in the roots and rhizomes
of licorice was carried out according to a procedure in the available literature with little modifications*'. A
grinder was used for crushing the samples before extraction. In the extraction stage, 100 mg of dried-ground
sample was poured into a microtube and then 2 mL ethanol (80%) was added. The solution was kept at room
temperature a night. In being decanted into another 15-mL tube after centrifugation at 3000 rpm for 10 min, the
residue was stored in the centrifuge tube. This extraction was repeated two more times. After that, 80% ethanol
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was added to the supernatant in a 15-mL volumetric flask. The total soluble sugar content of this extract was
determined. Total soluble sugar was measured by adding 25 pL soluble sugar extract into a microplate cell. Then,
the procedure was followed by the addition of 25 uL phenol (5%) and 125 L sulfuric acid. The absorbance was
read at 490 nm by an Epoch microplate spectrophotometer (USA)*.

Starch extraction and determination. The residue from total sugar extraction, was used for starch
determination according to a procedure in the available literature with little modifications®. The residue in each
test tube, occurring from total sugar extraction, was dried at 80 °C for one h. Then, the tubes were filled with
200 pL cold distilled water and awaited complete absorption. Then, 260 pL of the tube was filled with perchloric
acid (52%), and the tube was occasionally swirled with a vortex's. Again, 400 pL cold distilled water was added
to the suspension and centrifuged at 3000 rpm (10 min). The supernatant was subsequently decanted into a2 mL
tube. This was followed by adding 100 pL cold distilled water and 130 pL perchloric acid (52%) to the residue of
the test tubes. A vortex was used for swirling this suspension for 15 min. Centrifuged and decanted supernatants
were mixed into the 2 mL tube. For starch analysis, 100 pL of starch extract were added into a microplate cell.
Then, 200 pL of anthrone reagent was gradually added to the cells. The microplate was relocated into an oven
(65 °C) where it remained for exactly 20 min. After cooling at ambient temperature, the absorbance was read at
630 nm by an Epoch microplate spectrophotometer (USA)?.

Glucose, sucrose, and fructose profiling by HPLC. HPLC-RID was used for determining the free
sugar contents individually. The isocratic Agilent 1100 HPLC method was used for identifying free sugars at
40 °C. The HPLC system was provided with an Agilent smart line RID detector and a carbohydrate column
(4.6 x250 mm, 5 mm, Agilent). At a flow rate of 1.5 mL/min, the mobile phase consisted of a deionized water/
acetonitrile (20:80 v/v) composition. The injection volume amounted to 20 pL. An internal normalization of the
chromatographic peak area was used for analyzing the data®.

Preparation of oil extracts from licorice. The roots were harvested, cleaned from the soil, and dried
at ambient temperature. Then, the dried roots were ground by an electric grinder. Licorice powder (500 mg)
was suspended in a hydrolysis buffer (5.0 mL) and included normal saline: methanol: hydrochloric acid (1:1:2)
which was mixed attentively and incubated at 70 °C for three days to allow the hydrolysis of the licorice biomass.
In these conditions, proteins, lipids, and carbohydrates were digested to amino acids, fatty acids, and monosac-
charides, respectively?®. Accordingly, 3.0 mL hexane was added to normal saline: methanol: hydrochloric acid
hydrolysate and vortexed for 10 min to allow the separation of fatty acids. The fatty acid that existed in the hydro-
lysate was separated from biomass overnight at ambient temperature. The fatty acid in the upper phase (hexane
phase) was isolated and characterized chemically using GC-MS?.

Fatty acids methyl esters (FAMEs) profiling by GC-MS. The GC-MS analysis was performed using
an Agilent gas chromatography (Agilent 7890B GC 7955A MSD) equipped with a fused silica capillary HP-5MS
column (30 m x 0.25 mm id; thickness 0.25 um), coupled with a single quadrupole mass spectrometer. At a flow
rate of 1.0 mL/min, helium was used as a carrier gas. The temperatures of the ion source and interface were
250 °C and 300 °C, respectively. The oven temperature program was set to increase from 80 to 240 °C as follows:
80 °C for 4 min, which rose to 140 °C at a rate of 20 °C/min. Thereafter, it reached 250 °C at 10 °C/min and was
held at 240 °C for 10 min. By comparing the retention times and fragmentation patterns of the linked peaks
with those described in the Wily 7n and NIST05a libraries, the GC-MS apparatus software rightly detected fatty
acids®.

Statistical analysis. The pot experiment was set up in a factorial arrangement with four replications in
a completely randomized design. It comprised three factors including drought levels, AMF inoculation, and
Si nutrition. The data were examined by the GLM test using Minitab software (Version 17; Available from:
http://www.minitab.com/en-US/products/minitab/). In the case of significant interactions, the slice method was
applied for mean comparisons. Tukey’s test at the 5% level operated to make mean comparisons. Then graphs
created by Microsoft Excel software (Version 2016; Microsoft Corporation. Retrieved from https://www.micro
soft.com/en-us/microsoft-365/excel). Minitab (Version 17; Available from: http://www.minitab.com/en-US/
products/minitab/) was also employed to perform the principal component analysis (PCA).

Results

Total sugar quantity of licorice under mentioned treatments. In the present study, the total sugar
content was significantly (p-value<0.05) affected by the interaction among Si, F, and drought levels (Fig. 1).
The results showed that exogenous Si assisted licorice plants significantly in maintaining soluble sugar con-
tent, despite severe drought stress levels (W,, and W), compared to non-Si-treated plants that faced the same
stress levels. In this regard, higher amounts of total soluble sugar were achieved (12.63 and 12.41 g/100 g ) in
response to W,,Si; and W,Si,, respectively. Furthermore, integrated Si and F inoculation ultimately increased
the total sugar content (12.26 g/100 g ) in the face of severe drought stress (W), whereas F inoculation per
se had a smaller effect (Fig. 1).

Soluble carbohydrate profiling of licorice. HPLC profiling of soluble carbohydrates in licorice roots
showed a high sucrose content (13.1 g/100 g ) in response to the W¢,SiF, treatment, compared to all other
inoculated plants and many other non-inoculated plants. High glucose contents were observed in plants of the
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Figure 1. Total sugar content of licorice root under drought stress integrated by silicon nutrition and
mycorrhiza inoculation. According to the analysis of variance that triple effects of fungi, drought levels and Si
showed significant difference, slice method used for mean comparisons. Mean values with the same letters are
not significantly different (p <0.05), Tukey test. W stands for water deficit treatment (5 levels including 100%
(W100), 80% (W80), 60% (W60), 40% (W40), and 20% (W20) of field capacity), Si stands for silicon application
(two levels including Si0 (no Si application) and Sil (Si application)) and F stands for mycorrhiza inoculation
(two levels including FO (no inoculation) and F1 (inoculated)).

WigoSigF; (2.5 g/100 g pw) and WySigF, (2.4 g/100 g py). High contents of fructose in the present study were
recorded in treatment groups of W 4,Si,F; (0.8 g/100 g ), WgoSi;F, (0.8 g/100 g ), and W,,Si,F, (0.7 g/100 g
pw)- Irrespective of F inoculation, Si-treated licorice plants showed high sucrose contents of 11.2, 13.1, and
13.7 g/ 100 g pyw when situated in 40, 60, and 80% FC irrigation, respectively (Fig. 2A-C).

Starch quantity of licorice under mentioned treatments. In using the exogenous Si, the starch con-
tent in licorice roots varied among fungi-inoculated and non-inoculated plants. It was observed that inocu-
lated treatments caused higher starch contents. Maximum starch content was observed in response to SigF;
(5.63 g/100 g py), while minimum quantities were observed in SiyF, (4.27 g/100 g pw) and Si;F, (4.4 g/100 g 1)
(Fig. 3A).

In well-irrigated treatments (80 and 100% FC), there was a significant (p-value <0.05) difference between the
effects of F and F,, although such a difference was not caused by other drought levels. Through the interaction
between W and F, a minimum starch value was observed in response to Wy F, (3.56 g/100 g ), while a maxi-
mum was achieved in Wy, F, (6.33 g/100 g py) (Fig. 3B). The results showed that the quantity of starch decreased
significantly (p-value <0.05) parallel to an increase in drought stress severity. Despite the effects of exogenous Si,
the W, and W, treatments caused the lowest starch contents (4.09 and 4.04 g/100 g py, respectively) (Fig. 3C).

Fatty acid content and composition of licorice roots. In general, the main fatty acid components
in licorice were 9-Octadecenoic acid (8.72-71.27%), 9,12-Octadecadienoic acid (0.1-56.43%), Hexadecanoic
acid (12.84-30.59%), Octadecanoic acid (6.9-15.3%), and Docosanoic acid (0.57-2.77%), Eicosanoic acid
(1.07-2.64%), 7-Hexadecenoic acid (0.26-2.62%), and 9,12,15-Octadecatrienoic acid (0.1-2.56%), respectively
(Table 1). Using exogenous Si and mycorrhizal inoculation caused changes in the fatty acids (FAs), concerning
quantity and quality. Maximum saturated fatty acids (SFA) were observed in response to W,(Si,F, (52.98%). The
maximum increase in unsaturated fatty acids (UFA) was observed in W 4,Si;F, (76.06%) and W,,SiyF, (75.24%).
Polyunsaturated fatty acids (PUFA) and omega 6 showed their maximum quantities, 58.43 and 56.43%, respec-
tively, in response to W ,SiyF,. Monounsaturated fatty acids (MUFA) showed their highest content (73.17%) in
W g6SigFy, whereas omega-9 (71.71%) acquired maximum value by the W,,Si F;. Since a lower omega6/omega3
ratio reflects better quality in most food products, its best ratio in the present study was observed in response to
WigoSigF; (0.25%), W5Si,F; (1.88%), and W ,(,Si,F, (2.46%), respectively (Table 1). The integrated biosynthetic
pathways of sugars, fatty acids, as well as omega 3, 6, 7, and 9 are presented in Figs. 4 and 5.

Principle component analysis of sugars and fatty acids of G. glabra under a combination of
mycorrhiza, silicon, and drought levels. In the biplot of PC analysis, the first two PCs explained 59.9%
of variations in glucose, sucrose, fructose, and fatty acid contents as a result of the treatments (Fig. 6). The first PC
explained 39.7% of the variation as it comprised sucrose, omega-6/omega-3, omega-6, PUFA, omega-3, and SFA.
In contrast, the second PC accounted for 20.2% of the variations, comprising fructose, glucose, UFA, MUFA, and
omega-9. In the present study, the projection of vectors, representing treatments, on the two detected PCs in the
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Figure 2. HPLC analysis of (A) sucrose, (B) glucose and (C) fructose among drought stress, Si application

and mycorrhiza inoculation interactions in examined Licorice plants. According to the analysis of variance

that triple effects of fungi, drought levels and Si showed significant difference, slice method used for mean
comparisons. Mean values with the same letters are not significantly different in each treatment (p <0.05), Tukey
test. W stands for water deficit treatment (5 levels including 100% (W100), 80% (W80), 60% (W60), 40% (W40),
and 20% (W20) of field capacity), Si stands for silicon application (two levels including Si0 (no Si application)
and Sil (Si application)) and F stands for mycorrhiza inoculation (two levels including FO (no inoculation) and
F1 (inoculated)).
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Figure 3. Total starch content variation among (A) Si application and fungi inoculation interactions, (B)
various drought levels and fungi inoculation interactions and (C) various drought levels and Si application
interactions in examined Licorice plants. According to the analysis of variance that only the multiple effects of
fungi and Si showed significant difference, just its mean comparison is shown. Mean values with the same letters
are not significantly different (p <0.05), Tukey test. W stands for water deficit treatment (5 levels including 100%
(W100), 80% (W80), 60% (W60), 40% (W40), and 20% (W20) of field capacity), Si stands for silicon application
(two levels including Si0 (no Si application) and Sil (Si application)) and F stands for mycorrhiza inoculation
(two levels including FO (no inoculation) and F1 (inoculated)).

bi-plot, divided the treatments into two distinct groups. The first group comprised Wg,SiyFo, WgoSi; Fg, WioSioFo,
WeoSi,Fpy WioSioFo WioSiyFo WioSioFs WoSiyFo, WioSioFy, WioSiyEyp WiegSiyFo WiegSioFy, WoioSiyFy, and WSiF,
and in association with the first PC, it linked with soluble carbohydrate contents. Meanwhile, the second group
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Figure 4. Integrated Carbohydrate and fatty acid biosynthesis pathways [Adapted from*® with modifications].
G6P glucose 6-phosphate, ADP-GIc ADP-glucose, T6P trehalose 6- phosphate, F6P fructose 6-phosphate, GA3P
glyceraldehyde 3-phosphate, 3PGA 3-phosphoglyceric acid, PEP phosphoenolpyruvate, CoA coenzyme A, ACP
acyl-carrier protein, Lyso-PC lysophosphatidylcholine, Lyso-PA lysophosphatidic acid, DAG diacylglycerol, TAG
triacylglycerol. This figure is created by Microsoft PowerPoint software (Version 2016; Microsoft Corporation.
Retrieved from https://www.microsoft.com/en-us/microsoft-365/powerpoint).

comprised W,SigFg, W00SigF1, WigoSiiFi, WigoSi; Fo, W,oSigFy, and W,0SiF; because these treatments had a
greater association with the second PC-linked traits. The results indicated that each treatment group had a better
performance when scattered between the PC vectors (Fig. 6).

Discussion

Carbohydrates. Sugars are one of the most important quality parameters in licorice root. Present results
indicated that sugar storage in licorice roots can be induced by AM symbiosis, which is a good strategy to over-
come drought conditions. In addition to increasing product quality, sugars can protect membrane integrity,
inhibit structural changes to insoluble proteins and maintain osmotic equilibrium in plant cells under harsh
environments”. In a study on Triticum aestivum, Rhizophagus intraradices was used as an AMF to assess how
it affected sugar metabolism. It was observed that sugar and starch contents increased in mycorrhizal wheat
plants. Their results revealed changes in sugar metabolism through the modulation of starch phosphorylase,
sucrose synthase, and sucrose-phosphate synthase. Variations in the sugar contents of non-mycorrhizal inocu-
lated plants and mycorrhizal inoculated plants were ultimately reflected in the accumulation of reducing sugars
that can scavenge ROS, which is critical under stressed conditions. Thus, inoculated plants could better tolerate
drought stress?. Sucrose, as an osmolyte, is mainly produced in the leaves and is the primary form of carbo-
hydrate. Mycorrhizal inoculated licorice in the current study, showed a higher sucrose concentration, that are
aimed for long-distance transportation in the process of supplying the enormous demand for sugars under
water-deficit stress®.

Similar to the present study, higher sucrose content in inoculated plants was also observed in Pinus tabulae-
formis®® and Sorghum bicolor®'. Osmolytes can maintain the integrity of membranes against the negative impacts
of drought stress. Sinks usually trigger a demand for sugars in fungi to obtain energy from shoot tissues, which is
followed by the hydrolysis of starch to sugars in seedlings inoculated with mycorrhizal fungi. These can assist in
upholding osmotic equilibrium in plant cells, and thus preserve membrane integrity, whereby mycorrhizal fungi
can increase the sugar content of the host plant*’. Mycorrhizal colonization has often resulted in the accumulation
of osmotic solutes under drought stress by modifying the osmotic balance through the carbohydrate profile, AMF
can optimize physiological processes in the host plant®. In clover, regardless of the soil moisture, the leaves of
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AMEF seedlings, as inoculated by P. occultum, had considerably greater levels of fructose, glucose, and sucrose than
those inoculated with F mosseae. AMF colonization by F mosseae and P. occultum caused a significant increase
in sucrose, fructose, and glucose contents in plant leaf, despite drought stress, meaning that osmolytes protected
and stabilized plant macromolecules, thereby improving the ability of plants in resisting drought tolerance by
osmotic adjustment®. In addition to the effect of AMF on the carbohydrates content, mineral nutrition such as
Si, as evaluated in the current study, could be also effective on plant metabolism.

A study on sugarcane showed that Si plays a role in the synthesis and storage of sucrose. Low Si quantities can
combine effectively and physically with sucrose, thereby preventing invertase from binding to its substrate. Even
when sucrose is inverted, the putative fructose-silicate structure remains in its original state, mostly by prohibit-
ing bacteria from metabolizing fructose. Since Si was used to deal with drought stress, Si supplementation might
contribute to a higher water-uptake capacity by plants*. Higher Si levels led to greater soluble sugar concentra-
tions. In Si-treated plants, however, a higher rate of photosynthesis occurred probably due to a simultaneous
rise in soluble sugars and starch concentrations. Since epidermal cell walls are filled with a solid layer of Si, they
are inherently strong barriers against fungal infections and water loss®®. Also, since the drought stress causes
minerals insufficiency, deficiencies in plant nutrients have been reportedly alleviated by Si treatments. Another
study showed that Si reduced the sucrose content in barley leaves under drought stress, while it enhanced the
sucrose level in barley grains®’. In Oryza sativa, sucrose, fructose, and glucose contents decreased in Si-treated
seedlings. Si may restrict sugar transportation in the phloem of roots and, thus, reduce photosynthesis in the
shoots, as evidenced by their low sucrose content™.

In addition to sugars, which are known as basic osmolytes, the main type of carbohydrate storage in plants
is starch. Carbohydrates are necessary for osmoprotection and carbon storage in plants as soon as they are
exposed to drought stress. To meet this necessity, there is usually an increase in starch and sucrose catabolism,
as well as sucrose metabolism in enzymatic activity, resulting in changes to carbohydrate metabolism that usually
concerns glucose, sucrose, dextrins, and maltose production. Starch can be reduced to dextrins and maltose,
respectively, via enzymes a- and f-amylases. Meanwhile, extra carbon can be stored in two ways, either as soluble
sugars in vacuoles, as polymeric forms such as starch in plastids, or as oil molecules in vesicles®. Starch syn-
thase, branching, and debranching enzymes are required for starch synthesis, while - amylase, and a-amylase
are precursors of starch metabolism. The abiotic stress response in plants is influenced by starch metabolism,
although starch degradation has reportedly decreased because of this in some crops*. Enzymatic degradation
of plant polymeric carbohydrates like starch and cellulose into simple sugars can sometimes lead to the provi-
sion of valuable end-products in the industry*!. Similar to the present results, where a lower level of irrigation
led to lower starch content, Si-treated barley plants reportedly varied distinctively in their quantity of starch,
which enhanced dramatically under drought stress. It was observed that applying Si to barley, with the addition
of osmotic stress-induced Si transporters, causes Si to be transported to the shoots, thereby having reason to
increase starch content and to regulate ABA homeostasis, with the ultimate effect of improving plant tolerance
to stress*. In barley, drought stress was seen to have smaller effects on sugars, particularly insoluble starch,
important tricarboxylic acid cycle metabolites, 2-oxoglutarate, and fumarate, as well as glycolytic intermediates
of glucose-6phosphate, fructose-6phosphate, and 3-Phosphoglyceric acid. Drought stress caused carbohydrates
to accumulate in the leaves and be a replacement for osmotic molecules. Drought stress is known to affect glu-
cose metabolism and starch availability. Under drought stress, starch globules tend to aggregate and metabolic
rearrangements usually occur®.

Fatty acids. In organisms, FAs are are the major components of membrane lipids, while variations in FAs
saturation levels and compositions are linked to plant tolerance against drought****. Plants can aim at com-
pensating for water loss in soils with low water levels by stomatal closure, which inhibits CO, availability for
photosynthesis. Variations in fatty acid content could result from their capacity to be used as a carbon source for
fatty acid production. Fatty acid composition can vary under drought stress situations*. In a study on Folsomia
candida, drought-induced fatty acid desaturation, together with membrane-protecting cryoprotective accumu-
lation, were designated as key forms of physiological adaptations to tolerance against desiccation. Acclimation
to drought has reportedly resulted in changes to membrane fatty acids, along with a considerable decrease in
cell membrane transition temperature as this can occur expectedly in the process of plant adaption to drought.
Researchers discovered lower levels of linoleic acid in several Brassica species when they were subjected to
drought stress*®. Drought stress tends to elevate ROS levels, and plants utilize a variety of ways to cope with
the adverse outcomes of drought. Some plants can change their oil content and compositions, to compensate
for variations in water relations within the cells and organs. Drought stress can cause an increase in SFAs and a
decrease in UFAs, which reduces the fluidity of cell membrane lipids. A high concentration of UFAs should be
viewed as a key mechanism for improving plant tolerance against drought*.

Since drought stress can affect the fatty acid synthesis pathway, it also has a considerable impact on Deltal2-
fatty-acid desaturase, a key enzyme in fatty acid synthesis*.

Minerals are also effective in mitigating water-deficit stress by affecting fatty acids. A previous study showed
how Si has notable impacts on oil quantity, SFA, and the unsaturated fatty acid profile of flax'. In line with the
present study, drought stress affected rapeseed cultivars differently®. A study on Hordeum vulgare showed that
the application of Si on stressed plants enhanced the ratio of UFA/SFA in drought-tolerant cultivars, compared
to non-Si-amended treatments®. Another study showed that the composition of fatty acids can alter membrane
fluidity and activities which is important under stressed conditions. Adding Si to drought treatments significantly
reduced stearic and oleic acid levels. A study on Brassica napus revealed how drought stress reduced linolenic
acid (%) but increased oleic acid (%)>**. Another strategy for mitigating drough stress is AMF application that
is effective in nutrient availability for plants®. Research on Poncirus trifoliata showed that AMF inoculation
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caused a substantial increase in methyl oleate, methyl linoleate, and methyl linolenate concentrations in the
roots, despite severe drought conditions. In contrast, methyl stearate levels decreased in the roots under severe
drought conditions. These variations in the profile of FAs in mycorrhized roots have led to a higher unsaturation
index that reportedly reduced oxidative damage®. This causes better resistance under harsh stressed condi-
tions. In the genome of Rhizophagus irregularis, researchers have discovered genes that encode enzymes for the
breakdown and elongation of FAs. Furthermore, FAs in host plants are delivered to AMF for the maintenance of
mycorrhizal colonization, which is mediated by the adenosine triphosphate-binding cassette transporter. Thus,
FAs are crucial for AM development and for triggering plant resistance to abiotic stress. AMF could influence
the composition of FAs and the quantity of UFAs to improve drought resistance by host plants which is similary
observed in the current results®.

Conclusion

A major challenge that licorice production currently faces in the industry is drought stress that causes undesirable
variations in various metabolites’ contents and compositions. The protective effects of Si and AMF treatments
appear to be connected with the accumulation of primary and secondary metabolites and mineral absorption,
thereby improving plant quality so that licorice production could remain partly unaffected despite water-deficit
situations. As an unfavorable metabolite profile tends to reduce the quality of licorice roots and, thus, makes it
almost unsuitable for licorice processing industries, so the provision of appropriate and adequate mineral nutri-
tion, such as exogenous Si and biofertilizers such as arbuscular mycorrhiza, could offer a suitable approach to
reduce the adverse effects of water-deficits where licorice is cultivated.. These alterations to carbohydrate and
fatty acid profile and contents were to better protection of the plant against drought stress. The current findings
provide a practical foundation for the use of Si fertilizers and AMF to better enable licorice production where
irrigation systems lean toward a policy of water conservation. Exogenous application of AMF and Si can have syn-
ergistic roles in mitigating the adverse effects of water-deficit by improving quantity and quality of sugars and the
omega fatty acids in licorice. These findings bring prospective insight into world water deficit crisis conquering.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on
reasonable request.
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