

OPEN

Author Correction: Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy

Dipesh Niraula, Jamalina Jamaluddin, Martha M. Matuszak, Randall K. Ten Haken & Issam El Naqa

Correction to: *Scientific Reports* <https://doi.org/10.1038/s41598-021-02910-y>, published online 07 December 2021

The Acknowledgements section in the original version of this Article was incomplete.

“This work was partially supported by the National Institute of Health (NIH) under Grant No. R01-CA233487. I.E.N. acknowledges support from NIH under Grant Nos. R41CA243722 and R37CA222215, and support from National Institute of Biomedical Imaging and Bioengineering under Contract No. 75N92020D00018. M.M.M acknowledges support in the form of research grant from Varian Medical Systems and is the co-director of Michigan Radiation Oncology Quality Consortium (Funded by Blue Cross Blue Shield Michigan). We acknowledge the use of the IBM Q for this work. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Q team.”

now reads:

“This work was partially supported by the National Institute of Health (NIH) under Grant No. R01-CA233487. I.E.N. acknowledges support from NIH under Grant Nos. R41CA243722 and R37CA222215, and support from National Institute of Biomedical Imaging and Bioengineering under Contract No. 75N92020D00018. M.M.M acknowledges support in the form of research grant from Varian Medical Systems and is the co-director of Michigan Radiation Oncology Quality Consortium (Funded by Blue Cross Blue Shield Michigan). We acknowledge the use of the IBM Q for this work. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Q team.”

The authors also acknowledge that the RTOG0617 dataset was made available by [NCT00533949](https://www.cancer.gov/studies/ctdb/ctdb/ctdb.html?study_id=NCT00533949)-D1 from the NCTN Data Archive of the National Cancer Institute’s (NCI’s) National Clinical Trials Network (NCTN). Data were originally collected from clinical trial NCT number [NCT00533949](https://www.cancer.gov/studies/ctdb/ctdb/ctdb.html?study_id=NCT00533949) [A Randomized Phase III Comparison of Standard- Dose (60 Gy) versus High-Dose (74 Gy) Conformal Radiotherapy with Concurrent and Consolidation Carboplatin/Paclitaxel + / – Cetuximab (Ind #103,444) in Patients with Stage IIIA/IIIB Non-Small Cell Lung Cancer]. All analyses and conclusions in this manuscript are the sole responsibility of the authors and do not necessarily reflect the opinions or views of the clinical trial investigators, the NCTN, or the NCI.”

The original Article has been corrected.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

© The Author(s) 2023