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Generalizable machine learning
approach for COVID-19 mortality
risk prediction using on-admission
clinical and laboratory features
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We aimed to propose a mortality risk prediction model using on-admission clinical and laboratory
predictors. We used a dataset of confirmed COVID-19 patients admitted to three general hospitals

in Tehran. Clinical and laboratory values were gathered on admission. Six different machine learning
models and two feature selection methods were used to assess the risk of in-hospital mortality. The
proposed model was selected using the area under the receiver operator curve (AUC). Furthermore,
a dataset from an additional hospital was used for external validation. 5320 hospitalized COVID-19
patients were enrolled in the study, with a mortality rate of 17.24% (N =917). Among 82 features,
ten laboratories and 27 clinical features were selected by LASSO. All methods showed acceptable
performance (AUC > 80%), except for K-nearest neighbor. Our proposed deep neural network

on features selected by LASSO showed AUC scores of 83.4% and 82.8% in internal and external
validation, respectively. Furthermore, our imputer worked efficiently when two out of ten laboratory
parameters were missing (AUC = 81.8%). We worked intimately with healthcare professionals to
provide a tool that can solve real-world needs. Our model confirmed the potential of machine learning
methods for use in clinical practice as a decision-support system.

As of 25 September 2022, 612 million confirmed cases and 6.5 million deaths due to COVID-19 have been
reported globally (WHO, 2022)". Even after vaccination, the peaks in the incidence of COVID-19 have arisen
as new variants challenge former immunization®. Assessing the risk of COVID-19 fatality can guide clinical
decision-making by healthcare professionals®. Many studies have investigated the predictors of COVID-19 death
and severity and proposed risk stratification tools*.

Machine learning (ML), as a novel approach, can improve policy-making, forecasting, screening, drug devel-
opment, and risk stratification. Artificial intelligence (AI) can result in fair decision-making by minimizing
interobserver variability and filling the gap between healthcare resources and human workload®. Although
many ML algorithms have strived to help physicians, ML tools face several obstacles to implementation in clini-
cal practice. For instance, the clinicians’ hardship in using and interpreting computational models may hinder
the further progress of ML. Thereby, creating a reproducible easy-to-use model is vital, which can be achieved
with healthcare professionals’ assistance in model development. Moreover, training a generalizable ML needs
precise data collection and population selection. In this fashion, the ML training data set will represent the actual
population using the model in the future®.

Risk stratification of patients can indicate the most vulnerable groups and is crucial for resource allocation
and follow-up of patients®. Table 1 summarizes previous studies on the prediction of COVID-19 mortality. A
systematic review of prediction models for COVID-19 mortality showed that 70 out of 79 articles faced a high or
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Table 1. Studies with or without external validation aiming to predict prognosis of COVID-19 using clinical
and laboratory features (retrieved from review articles and search in PubMed and Scopus databases”?). LOS
length of stay, ICU intensive care unit, AUROC area under the receiver operating characteristic, LASSO

least absolute shrinkage and selection operator, ANN artificial neural network, SMOTE synthetic minor
oversampling technique, RR respiratory rate, SBP systolic blood pressure, GAM generalized additive model.
*Severity level 0 (no respiratory problem) to level 4 (in-hospital <30-day mortality). **For internal validation
the evaluation metrics on test model was retrieved. ***Organ support assumed as need for respiratory, renal, or
cardiovascular support.
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unclear risk of bias”. Even among the nine articles with a low risk of bias, external validation was not considered
in six’. Therefore, the reproducibility of ML experiments on this matter can be in question. In addition, collect-
ing a large set of predictors is time-consuming, and many studies with a large number of clinical and labora-
tory predictors tend to have a limited patient population (Table 1). On the other hand, reducing the number of
collected features may compromise a precise interpretation of the disease and its severity since COVID-19 is a
multi-organ disease®.

This study aims to propose an on-admission mortality risk prediction model and investigate its external
validation to assess the generalization of the tool. In order to increase the ease of implementation, we gather
feedback from clinicians involved in COVID-19 practice. This study is part of an observational, retrospective,
multicentric research project to investigate the epidemiological characteristics of COVID-19 patients®.

Material and methods

Data collection. We used data set of 5320 confirmed COVID-19 patients admitted to three general hospi-
tals in Tehran, Iran, from March 2020 to March 2021. A Medical team reviewed patients’ medical records and
gathered patients’ demographics, symptoms, comorbidities, admission vital signs, and outcomes. Laboratory
results were collected for all patients on the first day of admission through the hospital information system.
Confirmation of cases was based on real-time polymerase chain reaction (RT-PCR) for SARS-CoV-2 of nasal or
oropharyngeal swab samples on the first days of hospitalization. The outcome of current study was death versus
discharge from the hospital. We previously explored the epidemiology of the cohort used in this study in detail®’.

Data cleaning and imputation. Patients with any missing categorical variable or missing more than two
numerical features were removed from the dataset. Out of 88 features collected from cohort patients, includ-
ing 52 categorical features and 29 continuous features, none of the categorical features contained missing data.
Conversely, seven numerical features were dropped due to a proportion of missing values greater than 5%. Other
missing values were imputed using Python’s Sci-kit learn iterative imputer.

Feature selection. Feature selection can prevent overfitting, a sinficant problem in ML models, by elimi-
nating redundant collinear features. We recognized the most predictive values using the least absolute shrinkage
and selection operator (LASSO) regression and Boruta feature selection methods. LASSO confirmed 37 features
containing 25 categorical and 12 nominal features, and Boruta selected 24 features, all of which were nominal.
We used these groups separately as our training data features and compared the performances.

Model development. Six ML classification models were trained and fine-tuned, including support vector
machine (SVM) with Radial Basis Function (RBF) as kernel and the degree set to 3, logistic regression (LR),
k-nearest neighbors (KNN) with number of neighbors set to 5 and weights to uniform, random forest (RF) with
the number of estimators set to 100 and criterion set to Gini, gradient boosting decision tree (GBDT) with the
number of estimators set to 100, learning rate set to 0.1, and loss set to log_loss, and deep neural network (DNN)
to calculate the risk of mortality in admitted covid patients. SVM and LR were regularized using the L2-regu-
larization (Ridge regression) method. After fine-tuning, the neural network contained two hidden layers with
128 and 64 units for the first and second hidden layers, respectively. Moreover, all layers were activated using
rectified linear unit (ReLU) activation function, and the output layer contained a unit with a sigmoid activation
function. All layers except the output layer had 60% dropout. A DNN compiled with binary cross-entropy as loss
function and stochastic gradient descent with learning rate, decay, momentum, and Nesterov set to 0.01, le-7,
0.9, and true as optimizer, respectively. The ML pipeline of the proposed DNN model and its implementation
are depicted in Fig. 1.

Model training and evaluation. Two data sets were created using features confirmed by each feature
selection method. Then datasets were randomly split into training and validation sets in a ratio of 7:3 while
preserving the same proportion of mortality in all datasets due to the small percentage of mortality in datasets.

Using accuracy for evaluating model performance was inappropriate due to the skewness of the data. Preci-
sion, recall, F1-Score, sensitivity, specificity, and area under the curve (AUC) of the receiver operating charac-
teristic (ROC) score were calculated to evaluate model performance on validation datasets. Additionally, the
ROC curve visualized model performance.

After each iteration of model training and validation, we fine-tuned model parameters, including the number
of layers, number of neurons in each layer, learning rate, regularization method, and perceptron connection
dropout rate for the ANN models. Also, we tuned parameters like the number of estimators for gradient boosted
classifier, the maximum depth for the RF model, and the regularization method for SVM and LR models. These
fine-parameter changes were used to maximize the accuracy and generalizability of our AI models. Finally, we
tested our trained models’ performances on an external dataset from another tertiary hospital in a different
province of Iran to evaluate the generalizability of our models.

Effect of using iterative imputer on models’ performances. One of the most critical issues that
every ML and deep learning project on tabular data must overcome is dealing with missing data. There are sev-
eral ways to solve this problem, including filling with median, mean, arbitrary value, previous/next value, using
the most common value, and imputing the missing values using ML models. In this study, we used an iterative
multivariate imputer, which estimates the missing values in each feature using all other features in the dataset.
This is one of the most commonly used ML strategies for missing values. We evaluated the effect of the iterative
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Figure 1. Proposed deep neural network model structure and implementation (LASSO least absolute shrinkage
and selection operator, DM diabetes, COPD chronic obstructive pulmonary disease, IHD ischemic heart disease,
CVA cerebrovascular accident, CHF chronic heart failure, RA rheumatoid arthritis, GI gastrointestinal, LOC
loss of consciousness, RR respiratory rate, Hb hemoglobin, WBC white blood cell, Neut neutrophil count, Cr
creatinine, Mg magnesium, K potassium, INR international normalization ratio of prothrombin time, DNNL
deep neural network, ICUL intensive care unit).

imputer on ML models’ performances and compared it with models trained on datasets without missing values.
For this comparison, we randomly removed 20% of the numerical values in our training datasets and trained the
same ML models with the same hyperparameters on these datasets. Then we evaluated the performance metrics
of these models on the primary testing dataset to compare their performances.

Optimal cutoff point. Expert opinions of an emergency medicine professor, an internist, and two general
practitioners were collected on optimal cutoft points of the proposed model. Two systems with binary (high risk,
low risk) and ternary (very high risk, high risk, low risk) classifications were suggested. The ternary classifica-
tions can help physicians during peaks of the disease to find the most susceptible patients and allocate hospital
beds properly. The optimal cutoff scores were selected based on the optimal point of ROC and the clinician’s
opinion after reviewing the probability graph. A confusion matrix was used to visualize the performance of
cutoff scores in a randomly selected sample from the external validation dataset with 100 survived and 100
deceased cases.

Statistical analysis. Data analysis and visualization were performed using the R program. The Kolmogo-
rov-Smirnov normality test was used to evaluate the normal distribution of a variable. The Fisher exact test was
used to determine the significance of categorical features, and the Mann-Whitney U test was used to evalu-
ate the significance difference of non-parametric numerical variables. An Independent t-test was used to find
the significant difference in parametric numerical features. Cox proportional hazards model was used to find
the odds ratio (OR) of time-to-death. The categorical variables are presented as numbers and percentage, and
numerical variables are presented as mean and standard deviation (SD).

Ethical approval. All methods were performed in accordance to Helsinki protocol. The Institutional Review
Board (IRB) at the Shahid Beheshti University of Medical Science approved the study and waived informed con-
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sent gathering (IR.SBMU.RIGLD.REC.1400.014). Data were anonymized before analysis, and patient confiden-
tiality and data security were concerned.

Results

Basic characteristics. After excluding 1703 patients due to missing categorical variables or missing more
than two nominal variables, 5320 hospitalized COVID-19 patients were enrolled in the study with a mean+SD
age of 61.6+ 17.6 years. The fatality rate in the enrolled cohort was 17.24% (N =917). Patients who died due to
covid-19 were significantly older than those who survived (70.3+15.1 versus 58.6+17.1, P <0.001). The basic
characteristics of survived and mortality cohort is presented in Supplementary Table S1.

Factors associated with mortality. As depicted in Supplementary Table S2, on-admission factors associ-
ated with mortality in cox proportional hazards model were age, history of myalgia, loss of consciousness, ver-
tigo and vomiting, skin lesions, alcohol consumption, history of gastrointestinal problems, rheumatoid arthritis,
Neurologic disorders, leukocytosis, thrombocytopenia, low hemoglobin level, high CRP, low HCO;, high CPK
level, low oxygen saturation, pulse rate, and respiratory rate. The most important features associated with mor-
tality were alcohol consumption (OR 2.6) and loss of consciousness (OR 1.5). Table 2 shows the mean difference
and hazard ratio of selected features.

Feature selection methods and variable importance. LASSO and Brouta feature selection methods
were used for variable importance, and results are visualized in Supplementary Figures S1 and S2. Twenty-four
features out of 81 were confirmed by the Boruta method, mainly consisting of laboratory tests (Supplementary
Figure S1). The most important features are oxygen saturation at admission, age, neutrophil count, serum level
of creatinine, troponin, and loss of consciousness. Thirty-seven features were confirmed by the LASSO regres-
sion method, including 25 categorical features and 12 continuous variables (Supplementary Figure S2). Among
these, 23 features were positively associated with mortality, and 14 were negatively correlated with covid patients’
mortality.

Internal and external validation. The details of the model’s performance in the test datasets are summa-
rized in Table 3, and Fig. 2 shows the ROC curve of the models. Most of the trained models showed promising
performance for internal validation (AUC score>80%) except KNN, which had the lowest AUC score among
all selected models in both datasets. DNN showed the best performance, with an AUC score of 83.4% in the
LASSO-selected validation dataset and 82.6% in the Boruta dataset.

The multivariate imputation showed a promising performance on the primary test set when 2 out of 10 labora-
tory variables were missing. The change in model performance ranged from -1.4% (GBDT with LASSO features)
to 4.2% (KNN with LASSO variables), and the performance of the DNN model with LASSO features decreased
by 1.6% when imputing two missing laboratories. The generalized performance of the DNN model using LASSO
variables was confirmed in the external validation (83.4-82.8%), and the model performance change ranged
between 0.7% increase (GDBT with LASSO features) to 11.9% decrease (SVM with Brouta features) in AUC.
The confusion matrix of the proposed model (DNN using LASSO features) in the external validation dataset is
presented in Fig. 3 using binary and ternary classification (using cutoff points offered by an expert clinician).

Discussion

As of March 2022, different strains of the SARS-CoV-2 virus have caused five global surges in the number of
cases and deaths from COVID-19. It is critical to potentiate the health system struggling with managing the
resources during disease surge. The high capabilities of AT and ML algorithms in information processing can help
us improve patient management. In this study, we worked intimately with healthcare professionals to provide a
tool that can solve real-world needs. We developed a model to predict the mortality risk of COVID-19 inpatients
at admission using clinical and laboratory data. In addition, a set of 27 clinical and ten affordable, widely available
laboratories was selected in our model. Furthermore, an imputation tool is used to impute the missing labs, and
a ternary outcome classification (low, high, and very high risk) was proposed as healthcare experts’ suggestion.

Several studies have developed ML models to predict COVID-19 patients’ mortality risk. However, as dem-
onstrated in Table 1, models with high AUC scores are most likely trained on a small dataset or the data gathered
from a single medical center. Consequently, these models may ungeneralizable, and their performance can drop
in a dataset from a different center'"**-'6!8 Furthermore, our model performed relatively better or the same as
models trained on a large multicentral datasets. This higher performance may be due to the large number of
input features, which can simultaneously analyze different aspects of a patient’s health!®%1317,

COVID-19 can affect multiple organs, including the kidney, heart, lungs, brain, and blood. Hence, it can cause
death by several different organ failures®. We should consider markers from several organs of the human body
in order to predict the risk of mortality. Thus, as a novel approach, we collected and analyzed more than 80 on-
admission features representing the function of different organs. We used a relatively large dataset to train our
ML and DNN models and selected the input features using feature selection methods to eliminate collinearity.
Nevertheless, overfitting of models, especially ANN, was a substantial problem in this study due to the large
number of selected features for models’ input. One of the most important parameters that we added to prevent
them from overfitting was L2 regularization, which resulted in a good performance in the validation dataset.
Also, adding kernel regularization and 60% dropout for each layer, as well as limiting the number of neurons and
hidden layers in ANN, brought about a robust and generalizable model by preventing overfitting.
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Cox regression Mean comparison*
Feature HR Lower 95% CI | Upper 95% CI | P-value | Mortality cohort Survived cohort P-value
Demographic and habitual history
Age 1.028 | 1.023 1.034 0.001 74.00 (61.00,83.00) | 60.00 (47.00,71.00) | 0.001
Opium 0.827 | 0.581 1.178 0.293 43.0 (4.69%) 135.0 (1.06%) 0.39
Alcohol consumption 2.599 |1.235 5.469 0.012 10.0 (1.09%) 11.0 (0.09%) 0.022
Comorbidities
DM 1.09 0.936 1.27 0.266 346.0 (37.73%) 784.0 (6.17%) 0.001
IHD 1.101 | 0.927 1.309 0.272 214.0 (23.34%) 394.0 (3.10%) 0.001
Cancer 1.253 | 0.966 1.626 0.089 78.0 (8.51%) 128.0 (1.01%) 0.001
CHF 1.129 |0.761 1.675 0.546 31.0 (3.38%) 52.0 (0.41%) 0.01
COPD 1.181 |0.755 1.849 0.466 22.0 (2.40%) 47.0 (0.37%) 0.133
CVA 1.207 | 0.957 1.522 0.112 101.0 (11.01%) 134.0 (1.06%) 0.001
GI problems 1.797 | 1.037 3.113 0.037 15.0 (1.64%) 35.0 (0.28%) 0.271
Hepatitis C 1.348 |0.185 9.805 0.768 1.0 (0.11%) 4.0 (0.03%) 0.625
Alzheimer 1.038 | 0.776 1.387 0.802 63.0 (6.87%) 48.0 (0.38%) 0.001
Psychological problems 1.636 | 1.073 2.495 0.022 24.0 (2.62%) 39.0 (0.31%) 0.017
Parkinson 1.106 | 0.72 1.7 0.645 25.0 (2.73%) 24.0 (0.19%) 0.001
Medical exam and history
Respiratory rate (/min) 1.009 | 1.002 1.016 0.016 19 (18.00,22.00) 18 (18.00,20.00) | 0.001
Fever 0.936 |0.774 1.133 0.5 343 (37.40%) 1312 (10.33%) 0.001
Sore throat 0.828 | 0.481 1.426 0.496 14 (1.53%) 73 (0.57%) 0.046
Headache 0.881 |0.668 1.164 0.374 58 (6.32%) 379 (2.98%) 0.001
Vomiting 0.83 0.696 0.99 0.038 180 (19.63%) 767 (6.04%) 0.001
Myalgia 0.825 | 0.688 0.988 0.037 181 (19.74%) 895 (7.05%) 0.001
Cough 0.946 |0.811 1.104 0.481 373 (40.68%) 1402 (11.04%) 0.001
Arthralgia 0.992 |0.555 1.775 0.979 14 (1.53%) 40 (0.32%) 0.515
Insomnia 0.925 |0.38 2.253 0.864 5(0.55%) 54.0 (0.43%) 0.001
Loss of consciousness 1.499 |1.253 1.794 0.001 233 (25.41%) 179.0 (1.41%) 0.001
Rhinorrhea 1.892 | 0.926 3.868 0.08 9 (0.98%) 20.0 (0.16%) 0.303
Laboratory values
Ph (VBG) 0.651 |0.413 1.024 0.063 7.36 (7.29,7.41) 7.38 (7.34,7.42) 0.001
HCo3 (VBG) 0.971 |0.957 0.986 0.001 23.70 (20.20,27.40) | 26.00 (23.20,28.70) |0.001
Calcium 0.979 |0.919 1.042 0.501 8.50 (8.00,9.10) 8.70 (8.20,9.23) 0.001
Hemoglobin (CBC) 0.962 |0.931 0.995 0.025 11.80 (10.00,13.30) | 12.40 (11.00,13.60) | 0.001
White blood cell (CBC) 1.008 | 1.002 1.015 0.015 9.20 (6.30,13.30) 6.80 (4.90,9.70) 0.001
Neutrophil (%) (CBC) 1.019 |1.003 1.036 0.019 85.00 (78.00,90.00) | 80.00 (70.00,85.00) | 0.001
INR 1.1 0.954 1.267 0.188 1.14 (1.00,1.30) 1.07 (1.00,1.20) 0.001
Potassium 1.04 0.991 1.091 0.111 4.20 (3.80,4.60) 4.00 (3.80,4.40) 0.0001
Creatinine 1.041 |1 1.085 0.051 1.40 (1.10,2.20) 1.10 (0.90,1.40) 0.001
Magnesium 1.02 0.836 1.243 0.848 2.00 (1.80,2.20) 1.90 (1.80,2.10) 0.001

Table 2. Mean comparison and Cox regression of selected variables for inclusion in the model. VBG venous
blood gas, DM diabetic mellites, INR international normalized ratio, CBC complete blood count, IHD ischemic
heart disease, CHF chronic heart failure, COPD chronic obstructive pulmonary disease, CVA cerebrovascular
accident. *Mann-Whitney U test was performed for evaluating difference in mean values.

We selected a DNN model trained on features determined by the LASSO regression method as our proposed
model. Other studies also used LASSO method for their feature selection'**?* or prediction?*. Despite the
susceptibility of neural networks to overfitting, our DNN model performed well on the external validation due
to feature selection method, large sample sizes, and layer regularization. Among 10 studies with external valida-
tion, various ML methods were used for mortality prediction, including logistic regression'>'?, random forest'!,
regression coefficient', XGBosst'*!”!8, CatBoost!!, neural network, and DNN*°. Although decision tree was the
most common architecture in previous studies, even largescale ones, we found higher precision for DNN. This
may be due to the high number of input features and the complex interaction of predictors.

In a similar study, Gao et al. used data from 1500 patients in two centers and developed an ensembled model
called MRPMC. MROMC is composed of four ML methods of logistic regression, support vector machine,
gradient-boosted decision tree, and neural network!®. However, the AUC in external validation of MRPMC,
logistic regression, and neural network were fairly equal (91.8%, 91.3%, and 91.1%, respectively). Similarly,
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Feature selection method ‘ Model ‘ AUC score | Sensitivity | Specificity ‘ PPV ‘ NPV
Internal validation
DNN 834 62.2 92.2 70.2 | 89.2
SVM 81.6 40.6 93.9 66.3 84.2
RF 80.6 66.6 81.8 52.1 89.2
LASSO regression
GBDT | 789 58.1 83.8 51.6 87.1
KNN 69.6 31.5 88.3 444 | 813
LR 82.3 44.2 90.1 57.0 |845
DNN 82.7 51.2 88.0 59.2 84.1
SVM 81.7 42.1 90.1 59.1 82.1
RF 82.5 432 91.6 63.6 |82.6
Boruta
GBDT | 82.0 44.0 90.1 60.1 82.5
KNN 70.5 38.18 89.5 55.2 81.0
LR 82.7 41.09 90.7 60.1 81.9
Imputer validation (two out of ten missing lab values)
DNN 81.8 60.6 86 72 79.2
SVM 80 37.6 93.4 62.6 |83.4
RF 81.3 43 90.5 572 | 843
LASSO regression
GBDT |80.3 55.7 83.9 50.5 |86.5
KNN 65.4 333 89.4 482 | 819
LR 79.1 44.2 90.3 57.4 | 845
DNN 81.6 48.7 90.9 659 |83.2
SVM 79.1 37.1 93.6 67.6 80.6
RF 80.5 46.6 89.8 622 |824
Boruta
GBDT |79.3 47.1 88.5 59.6 |82.3
KNN 70.6 31.9 92.1 59.2 |79
LR 79.3 42.4 91.9 65.3 81.6
External validation
DNN 82.8 98.1 23.7 79.2 80.7
SVM 72.1 47.4 78 389 |21.6
RF 78.6 44 75.6 348 |21.1
LASSO regression
GBDT |79.6 9.5 63.2 43.3 19.1
KNN 60.1 9 75.9 52.6 22
LR 82.4 6.4 68.6 37.7 19.8
DNN 75.3 94.5 25.7 79 61.1
SVM 69.8 73.3 81.3 53.7 228
RF 71.4 5.8 82.2 49.5 |22.7
Boruta
GBDT |[71.8 89.1 74.2 50.6 |21.6
KNN 59.6 10.4 78.6 59 22.8
LR 74 6 73.2 39.8 20.8

Table 3. Model internal and external validation; and validation of imputer model for 2 out of 10 missing
lab value. DNN deep neural network, SVM supervector machine, RF random forest, GDBT gradient booster
decision tree, KNN k-nearest neighbor, LR logistic regression.

we find the neural network and logistic regression methods better for generalizable use. However, we avoided
ensemble architecture to prevent overfitting since 37 input features were selected, while Gao et al. had eight.
Also, ensemble models require longer prediction time, more computation power, and hard work for tuning.

The application of ML models in the clinic depends on the input features and prediction accuracy. Ease of
access to input features, along with high accuracy and generalization of prediction, can increase acceptance of
ML tools by healthcare workers. Selected features in the present study include 18 factors at the time of admission.
Previous studies included many of our selected features for prognosis prediction, which can imply the accuracy
of our feature importance method'*-'>141>, Laboratory markers, patient demographics, medical history, and vital
signs have been used as effective features in predicting the mortality of patients with COVID-19, similar to this
study'®!1-3 However, we excluded some variables, such as inflammatory cytokines, while others found them
predictive**~. Since we excluded some features with collinearity, the other included feature represents the effect
of this predictor on mortality.

The results of this study are applicable to managing COVID-19 inpatients with the current and upcoming
COVID-19 surges. First, validation with 20% missing data indicates the approved potential of our model when
the patient’s data is unreachable and needs imputation. Second, the model’s generalization was investigated using
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Figure 2. Receiver operator curve of models using two different feature selection.
data from a fourth hospital in a different province. The AUC of 82.8% was achieved in external validation, which
confirmed the model performance for global application. Third, we proposed ternary severity classification as
per clinician’s opinion to show the most susceptible patients with very high severity. Our model can facilitate
clinical decision-making, resource allocation, and evaluation of drug’s effectiveness by risk stratifying mortality
in COVID-19 inpatients.

Nonetheless, there are some limitations to this work that should be noted. First, even though we had a
relatively large patient population, our study was retrospective. Prospective validation of our study is required
to ascertain the results. The hospitals in our study are all in a developing country (Iran). The scarcity of medi-
cal resources in Iranian hospitals may bring about inadequate service allocated to patients. This condition can
thereby increase the mortality rate in such countries in contrast to countries with effective medical systems.
Additionally, the current model does not encompass imaging, microbiological, and histological data, which
could contribute to a more precise prognosis prediction despite the inconvenience. Socioeconomic and racial
differences, which were investigated in some studies®®*?, might as well play a role in prognosis.

In conclusion, this study shows that ML methods can predict the mortality risk of COVID-19 patients on
admission. This approves the potential of ML methods for use in clinical practice as a decision-support system.
However, effective ML models should satisfy the real-world needs of healthcare experts to increase the chance
of implementation in practice. Further studies are suggested to investigate and overcome the current barriers to
applying ML in medical practice.
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matrix (c) of external validation dataset using cutoff scores suggested by clinicians.

Data availability

The datasets used in the current study are available from the corresponding author on reasonable request. The
dataset would be unreservedly available for use as a validation dataset of other research projects, after sending
the request to the corresponding author, or SAASN. The code related to this is available at https://github.com/
SiavashShirzad/CovidAlL The code for data mining and the “Tehran COVID-19 Cohort” project information is
available at https://github.com/Sdamirsa/Tehran_COVID_Cohort. The data used in this study will be published

for non-commercial use in the future at https://github.com/Sdamirsa/Tehran_COVID_Cohort.
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