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Generalizable machine learning 
approach for COVID‑19 mortality 
risk prediction using on‑admission 
clinical and laboratory features
Siavash Shirzadeh Barough  1,4, Seyed Amir Ahmad Safavi‑Naini  1,4, Fatemeh Siavoshi  1, 
Atena Tamimi  1, Saba Ilkhani 2, Setareh Akbari  1, Sadaf Ezzati 1, Hamidreza Hatamabadi  3  
& Mohamad Amin Pourhoseingholi  1*

We aimed to propose a mortality risk prediction model using on-admission clinical and laboratory 
predictors. We used a dataset of confirmed COVID-19 patients admitted to three general hospitals 
in Tehran. Clinical and laboratory values were gathered on admission. Six different machine learning 
models and two feature selection methods were used to assess the risk of in-hospital mortality. The 
proposed model was selected using the area under the receiver operator curve (AUC). Furthermore, 
a dataset from an additional hospital was used for external validation. 5320 hospitalized COVID-19 
patients were enrolled in the study, with a mortality rate of 17.24% (N = 917). Among 82 features, 
ten laboratories and 27 clinical features were selected by LASSO. All methods showed acceptable 
performance (AUC > 80%), except for K-nearest neighbor. Our proposed deep neural network 
on features selected by LASSO showed AUC scores of 83.4% and 82.8% in internal and external 
validation, respectively. Furthermore, our imputer worked efficiently when two out of ten laboratory 
parameters were missing (AUC = 81.8%). We worked intimately with healthcare professionals to 
provide a tool that can solve real-world needs. Our model confirmed the potential of machine learning 
methods for use in clinical practice as a decision-support system.

As of 25 September 2022, 612 million confirmed cases and 6.5 million deaths due to COVID-19 have been 
reported globally (WHO, 2022)1. Even after vaccination, the peaks in the incidence of COVID-19 have arisen 
as new variants challenge former immunization2. Assessing the risk of COVID-19 fatality can guide clinical 
decision-making by healthcare professionals3. Many studies have investigated the predictors of COVID-19 death 
and severity and proposed risk stratification tools4.

Machine learning (ML), as a novel approach, can improve policy-making, forecasting, screening, drug devel-
opment, and risk stratification. Artificial intelligence (AI) can result in fair decision-making by minimizing 
interobserver variability and filling the gap between healthcare resources and human workload5. Although 
many ML algorithms have strived to help physicians, ML tools face several obstacles to implementation in clini-
cal practice. For instance, the clinicians’ hardship in using and interpreting computational models may hinder 
the further progress of ML. Thereby, creating a reproducible easy-to-use model is vital, which can be achieved 
with healthcare professionals’ assistance in model development. Moreover, training a generalizable ML needs 
precise data collection and population selection. In this fashion, the ML training data set will represent the actual 
population using the model in the future6.

Risk stratification of patients can indicate the most vulnerable groups and is crucial for resource allocation 
and follow-up of patients5. Table 1 summarizes previous studies on the prediction of COVID-19 mortality. A 
systematic review of prediction models for COVID-19 mortality showed that 70 out of 79 articles faced a high or 
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Table 1.   Studies with or without external validation aiming to predict prognosis of COVID-19 using clinical 
and laboratory features (retrieved from review articles and search in PubMed and Scopus databases7,9). LOS 
length of stay, ICU intensive care unit, AUROC area under the receiver operating characteristic, LASSO 
least absolute shrinkage and selection operator, ANN artificial neural network, SMOTE synthetic minor 
oversampling technique, RR respiratory rate, SBP systolic blood pressure, GAM generalized additive model. 
*Severity level 0 (no respiratory problem) to level 4 (in-hospital ≤ 30-day mortality). **For internal validation 
the evaluation metrics on test model was retrieved. ***Organ support assumed as need for respiratory, renal, or 
cardiovascular support.

Author, publish date,
Training dataset 
sources, country

Number of patients for 
model development Variable for prediction Outcome Proposed model

Internal** (In) 
and external (Ex) 
validation AUROC 
(95% CI)

Our model 3 centers, Iran 5320
27 clinical (history and 
examination) and 10 
laboratory variables

In-hospital mortality Deep neural network, 
LASSO

In: 83.8%
Ex: 82.8%

Studies with external validation

 Singh et al. 202110 3 centers, 8,427
10 markers selected 
from 57 laboratory, 
clinical, and demo-
graphic variables

Disease severity*
minimum redundance 
maximum relevance, 
hybrid feature selection

In: 78%
Ex: 74%

 Noy et al. 202211 1 center, Israel 417

Static and dynamic fea-
tures including demo-
graphics, background 
disease, vital signs and 
lab measurements

deterioration within the 
next 7–30 h

CatBoost (ensemble 
decision tree)

In: 84%
Ex: 74%

 Chen et al. 202112 7 centers, China 6415 4 Clinical and 4 Labora-
tory Variables In-hospital mortality Random forest, LASSO In: 90%

Ex: 89%, 90%, 81%

 Clift et al. Oct 202013 910 practices, UK 6,083,102
age, ethnicity, depriva-
tion, body mass index, 
and a range of comor-
bidities

In-hospital mortality regression coefficients, 
LASSO

AUROC is not reported, 
R squared = 73.1%

 Vaid et al. 202014 1 center, USA 1514 Age and 8 laboratory 
markers

In-hospital mortality 
(following 1,3,5,7 days) XGBoost, LASSO

In: 89% at 3 days, 85% 
at 5 and 7 days
Ex: 80% at 3 days, 79% 
at 5 days, 80% at 7 days

 Ko et al. 202015 1 center, China 361 Age, gender, and 28 
blood biomarkers In-hospital mortality

deep neural network 
and random forest 
models

In: accuracy = 93%
Ex: accuracy = 92%

 Gao et al. 202016 2 centers, China 1506 6 clinical and 2 labora-
tory biomarkers

mortality risk stratifica-
tion

Logistic regression, 
support vector machine, 
gradient boosted deci-
sion tree, and neural 
network

In: 92.4%,
Ex: 95.5%, 87.9%

 Bertsimas et al. 202017 33 centers 3,927 Age and 9 laboratory 
biomarkers In-hospital mortality XGBoost In: 90%

Ex: 87%, 92%, 80%

 Guan et al. 202118 2 centers, China 1270 2 clinical and 4 labora-
tory features In-hospital mortality Simple-tree XGBoost In:99.1%

Ex: 99.7%

 Hu et al. 202019 1 center, China 183 Age and 4 laboratory 
variables In-hospital mortality Logistic regression int:89.5%

Ex: 88.1%

Studies without external validation

 Shanbehzadeh et al. 
202220 1 center, Iran 1710

13 from 58 features 
selected including 5 
symptom, 4 laboratory, 
pleural fluid, ICU 
admission, LOS, age

In-hospital mortality ANN, back propagation Int: 85.3%
Ex: –

 Napour et al. 202221 1 center, Iran 482
ICU admit, LOS, 3 
laboratory, underly-
ing disease, 7 clinical, 
oxygen therapy,

In-hospital mortality ANN Int: 90%
Ex: –

 Das et al. 202022 CDC, Korea 3,524 Age, gender, province, 
exposure

Mortality (community 
risk)

Logistic regression with 
SMOTE

Int: 0.83
Ex: –

 Goodacre et al. 202123 70 centers, UK 20,889
Age, sex, 5 vital signs, 
performance status, 
consciousness

Mortality, organ sup-
port*** in 30 days LASSO In: 80%

Ex: –

 Knight et al. 202024 260 centers UK 35 463
Age, sex, number of 
comorbidities, RR, O2 
sat, consciousness, 2 
laboratories

Mortality risk XGBoost, GAM, LASSO In: 77%
Ex: –

 Lopez-Escobar et al. 
202125 10 centers, Spain 1955 Age, sex, O2 sat, 4 

laboratories In-hospital mortality Logistic regression In: 86%
Ex: –

 Wollensteid-Betech 
et al. 202026

All COVID-19 cases, 
Mexico 91,000

Age, sex, 8 comor-
bidities, COVID-19 test 
result, tobacco use

Mortality, hospitaliza-
tion, ICU need, ventila-
tor need

Logistic regression, 
SVM

In: 72%, 79%, 89%, and 
90% for mortality, hos-
pitalization, ICU need, 
and ventilator need
Ex: –



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2399  | https://doi.org/10.1038/s41598-023-28943-z

www.nature.com/scientificreports/

unclear risk of bias7. Even among the nine articles with a low risk of bias, external validation was not considered 
in six7. Therefore, the reproducibility of ML experiments on this matter can be in question. In addition, collect-
ing a large set of predictors is time-consuming, and many studies with a large number of clinical and labora-
tory predictors tend to have a limited patient population (Table 1). On the other hand, reducing the number of 
collected features may compromise a precise interpretation of the disease and its severity since COVID-19 is a 
multi-organ disease8.

This study aims to propose an on-admission mortality risk prediction model and investigate its external 
validation to assess the generalization of the tool. In order to increase the ease of implementation, we gather 
feedback from clinicians involved in COVID-19 practice. This study is part of an observational, retrospective, 
multicentric research project to investigate the epidemiological characteristics of COVID-19 patients27.

Material and methods
Data collection.  We used data set of 5320 confirmed COVID-19 patients admitted to three general hospi-
tals in Tehran, Iran, from March 2020 to March 2021. A Medical team reviewed patients’ medical records and 
gathered patients’ demographics, symptoms, comorbidities, admission vital signs, and outcomes. Laboratory 
results were collected for all patients on the first day of admission through the hospital information system. 
Confirmation of cases was based on real-time polymerase chain reaction (RT-PCR) for SARS-CoV-2 of nasal or 
oropharyngeal swab samples on the first days of hospitalization. The outcome of current study was death versus 
discharge from the hospital. We previously explored the epidemiology of the cohort used in this study in detail27.

Data cleaning and imputation.  Patients with any missing categorical variable or missing more than two 
numerical features were removed from the dataset. Out of 88 features collected from cohort patients, includ-
ing 52 categorical features and 29 continuous features, none of the categorical features contained missing data. 
Conversely, seven numerical features were dropped due to a proportion of missing values greater than 5%. Other 
missing values were imputed using Python’s Sci-kit learn iterative imputer.

Feature selection.  Feature selection can prevent overfitting, a sinficant problem in ML models, by elimi-
nating redundant collinear features. We recognized the most predictive values using the least absolute shrinkage 
and selection operator (LASSO) regression and Boruta feature selection methods. LASSO confirmed 37 features 
containing 25 categorical and 12 nominal features, and Boruta selected 24 features, all of which were nominal. 
We used these groups separately as our training data features and compared the performances.

Model development.  Six ML classification models were trained and fine-tuned, including support vector 
machine (SVM) with Radial Basis Function (RBF) as kernel and the degree set to 3, logistic regression (LR), 
k-nearest neighbors (KNN) with number of neighbors set to 5 and weights to uniform, random forest (RF) with 
the number of estimators set to 100 and criterion set to Gini, gradient boosting decision tree (GBDT) with the 
number of estimators set to 100, learning rate set to 0.1, and loss set to log_loss, and deep neural network (DNN) 
to calculate the risk of mortality in admitted covid patients. SVM and LR were regularized using the L2-regu-
larization (Ridge regression) method. After fine-tuning, the neural network contained two hidden layers with 
128 and 64 units for the first and second hidden layers, respectively. Moreover, all layers were activated using 
rectified linear unit (ReLU) activation function, and the output layer contained a unit with a sigmoid activation 
function. All layers except the output layer had 60% dropout. A DNN compiled with binary cross-entropy as loss 
function and stochastic gradient descent with learning rate, decay, momentum, and Nesterov set to 0.01, 1e−7, 
0.9, and true as optimizer, respectively. The ML pipeline of the proposed DNN model and its implementation 
are depicted in Fig. 1.

Model training and evaluation.  Two data sets were created using features confirmed by each feature 
selection method. Then datasets were randomly split into training and validation sets in a ratio of 7:3 while 
preserving the same proportion of mortality in all datasets due to the small percentage of mortality in datasets.

Using accuracy for evaluating model performance was inappropriate due to the skewness of the data. Preci-
sion, recall, F1-Score, sensitivity, specificity, and area under the curve (AUC) of the receiver operating charac-
teristic (ROC) score were calculated to evaluate model performance on validation datasets. Additionally, the 
ROC curve visualized model performance.

After each iteration of model training and validation, we fine-tuned model parameters, including the number 
of layers, number of neurons in each layer, learning rate, regularization method, and perceptron connection 
dropout rate for the ANN models. Also, we tuned parameters like the number of estimators for gradient boosted 
classifier, the maximum depth for the RF model, and the regularization method for SVM and LR models. These 
fine-parameter changes were used to maximize the accuracy and generalizability of our AI models. Finally, we 
tested our trained models’ performances on an external dataset from another tertiary hospital in a different 
province of Iran to evaluate the generalizability of our models.

Effect of using iterative imputer on models’ performances.  One of the most critical issues that 
every ML and deep learning project on tabular data must overcome is dealing with missing data. There are sev-
eral ways to solve this problem, including filling with median, mean, arbitrary value, previous/next value, using 
the most common value, and imputing the missing values using ML models. In this study, we used an iterative 
multivariate imputer, which estimates the missing values in each feature using all other features in the dataset. 
This is one of the most commonly used ML strategies for missing values. We evaluated the effect of the iterative 
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imputer on ML models’ performances and compared it with models trained on datasets without missing values. 
For this comparison, we randomly removed 20% of the numerical values in our training datasets and trained the 
same ML models with the same hyperparameters on these datasets. Then we evaluated the performance metrics 
of these models on the primary testing dataset to compare their performances.

Optimal cutoff point.  Expert opinions of an emergency medicine professor, an internist, and two general 
practitioners were collected on optimal cutoff points of the proposed model. Two systems with binary (high risk, 
low risk) and ternary (very high risk, high risk, low risk) classifications were suggested. The ternary classifica-
tions can help physicians during peaks of the disease to find the most susceptible patients and allocate hospital 
beds properly. The optimal cutoff scores were selected based on the optimal point of ROC and the clinician’s 
opinion after reviewing the probability graph. A confusion matrix was used to visualize the performance of 
cutoff scores in a randomly selected sample from the external validation dataset with 100 survived and 100 
deceased cases.

Statistical analysis.  Data analysis and visualization were performed using the R program. The Kolmogo-
rov–Smirnov normality test was used to evaluate the normal distribution of a variable. The Fisher exact test was 
used to determine the significance of categorical features, and the Mann–Whitney U test was used to evalu-
ate the significance difference of non-parametric numerical variables. An Independent t-test was used to find 
the significant difference in parametric numerical features. Cox proportional hazards model was used to find 
the odds ratio (OR) of time-to-death. The categorical variables are presented as numbers and percentage, and 
numerical variables are presented as mean and standard deviation (SD).

Ethical approval.  All methods were performed in accordance to Helsinki protocol. The Institutional Review 
Board (IRB) at the Shahid Beheshti University of Medical Science approved the study and waived informed con-

Figure 1.   Proposed deep neural network model structure and implementation (LASSO least absolute shrinkage 
and selection operator, DM diabetes, COPD chronic obstructive pulmonary disease, IHD ischemic heart disease, 
CVA cerebrovascular accident, CHF chronic heart failure, RA rheumatoid arthritis, GI gastrointestinal, LOC 
loss of consciousness, RR respiratory rate, Hb hemoglobin, WBC white blood cell, Neut neutrophil count, Cr 
creatinine, Mg magnesium, K potassium, INR international normalization ratio of prothrombin time, DNNL 
deep neural network, ICUL intensive care unit).
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sent gathering (IR.SBMU.RIGLD.REC.1400.014). Data were anonymized before analysis, and patient confiden-
tiality and data security were concerned.

Results
Basic characteristics.  After excluding 1703 patients due to missing categorical variables or missing more 
than two nominal variables, 5320 hospitalized COVID-19 patients were enrolled in the study with a mean ± SD 
age of 61.6 ± 17.6 years. The fatality rate in the enrolled cohort was 17.24% (N = 917). Patients who died due to 
covid-19 were significantly older than those who survived (70.3 ± 15.1 versus 58.6 ± 17.1, P < 0.001). The basic 
characteristics of survived and mortality cohort is presented in Supplementary Table S1.

Factors associated with mortality.  As depicted in Supplementary Table S2, on-admission factors associ-
ated with mortality in cox proportional hazards model were age, history of myalgia, loss of consciousness, ver-
tigo and vomiting, skin lesions, alcohol consumption, history of gastrointestinal problems, rheumatoid arthritis, 
Neurologic disorders, leukocytosis, thrombocytopenia, low hemoglobin level, high CRP, low HCO3, high CPK 
level, low oxygen saturation, pulse rate, and respiratory rate. The most important features associated with mor-
tality were alcohol consumption (OR 2.6) and loss of consciousness (OR 1.5). Table 2 shows the mean difference 
and hazard ratio of selected features.

Feature selection methods and variable importance.  LASSO and Brouta feature selection methods 
were used for variable importance, and results are visualized in Supplementary Figures S1 and S2. Twenty-four 
features out of 81 were confirmed by the Boruta method, mainly consisting of laboratory tests (Supplementary 
Figure S1). The most important features are oxygen saturation at admission, age, neutrophil count, serum level 
of creatinine, troponin, and loss of consciousness. Thirty-seven features were confirmed by the LASSO regres-
sion method, including 25 categorical features and 12 continuous variables (Supplementary Figure S2). Among 
these, 23 features were positively associated with mortality, and 14 were negatively correlated with covid patients’ 
mortality.

Internal and external validation.  The details of the model’s performance in the test datasets are summa-
rized in Table 3, and Fig. 2 shows the ROC curve of the models. Most of the trained models showed promising 
performance for internal validation (AUC score > 80%) except KNN, which had the lowest AUC score among 
all selected models in both datasets. DNN showed the best performance, with an AUC score of 83.4% in the 
LASSO-selected validation dataset and 82.6% in the Boruta dataset.

The multivariate imputation showed a promising performance on the primary test set when 2 out of 10 labora-
tory variables were missing. The change in model performance ranged from -1.4% (GBDT with LASSO features) 
to 4.2% (KNN with LASSO variables), and the performance of the DNN model with LASSO features decreased 
by 1.6% when imputing two missing laboratories. The generalized performance of the DNN model using LASSO 
variables was confirmed in the external validation (83.4–82.8%), and the model performance change ranged 
between 0.7% increase (GDBT with LASSO features) to 11.9% decrease (SVM with Brouta features) in AUC. 
The confusion matrix of the proposed model (DNN using LASSO features) in the external validation dataset is 
presented in Fig. 3 using binary and ternary classification (using cutoff points offered by an expert clinician).

Discussion
As of March 2022, different strains of the SARS-CoV-2 virus have caused five global surges in the number of 
cases and deaths from COVID-19. It is critical to potentiate the health system struggling with managing the 
resources during disease surge. The high capabilities of AI and ML algorithms in information processing can help 
us improve patient management. In this study, we worked intimately with healthcare professionals to provide a 
tool that can solve real-world needs. We developed a model to predict the mortality risk of COVID-19 inpatients 
at admission using clinical and laboratory data. In addition, a set of 27 clinical and ten affordable, widely available 
laboratories was selected in our model. Furthermore, an imputation tool is used to impute the missing labs, and 
a ternary outcome classification (low, high, and very high risk) was proposed as healthcare experts’ suggestion.

Several studies have developed ML models to predict COVID-19 patients’ mortality risk. However, as dem-
onstrated in Table 1, models with high AUC scores are most likely trained on a small dataset or the data gathered 
from a single medical center. Consequently, these models may ungeneralizable, and their performance can drop 
in a dataset from a different center11,14–16,18. Furthermore, our model performed relatively better or the same as 
models trained on a large multicentral datasets. This higher performance may be due to the large number of 
input features, which can simultaneously analyze different aspects of a patient’s health10,12,13,17.

COVID-19 can affect multiple organs, including the kidney, heart, lungs, brain, and blood. Hence, it can cause 
death by several different organ failures8. We should consider markers from several organs of the human body 
in order to predict the risk of mortality. Thus, as a novel approach, we collected and analyzed more than 80 on-
admission features representing the function of different organs. We used a relatively large dataset to train our 
ML and DNN models and selected the input features using feature selection methods to eliminate collinearity. 
Nevertheless, overfitting of models, especially ANN, was a substantial problem in this study due to the large 
number of selected features for models’ input. One of the most important parameters that we added to prevent 
them from overfitting was L2 regularization, which resulted in a good performance in the validation dataset. 
Also, adding kernel regularization and 60% dropout for each layer, as well as limiting the number of neurons and 
hidden layers in ANN, brought about a robust and generalizable model by preventing overfitting.
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We selected a DNN model trained on features determined by the LASSO regression method as our proposed 
model. Other studies also used LASSO method for their feature selection12–14,24 or prediction23. Despite the 
susceptibility of neural networks to overfitting, our DNN model performed well on the external validation due 
to feature selection method, large sample sizes, and layer regularization. Among 10 studies with external valida-
tion, various ML methods were used for mortality prediction, including logistic regression15,19, random forest11, 
regression coefficient13, XGBosst14,17,18, CatBoost11, neural network, and DNN15. Although decision tree was the 
most common architecture in previous studies, even largescale ones, we found higher precision for DNN. This 
may be due to the high number of input features and the complex interaction of predictors.

In a similar study, Gao et al. used data from 1500 patients in two centers and developed an ensembled model 
called MRPMC. MROMC is composed of four ML methods of logistic regression, support vector machine, 
gradient-boosted decision tree, and neural network16. However, the AUC in external validation of MRPMC, 
logistic regression, and neural network were fairly equal (91.8%, 91.3%, and 91.1%, respectively). Similarly, 

Table 2.   Mean comparison and Cox regression of selected variables for inclusion in the model. VBG venous 
blood gas, DM diabetic mellites, INR international normalized ratio, CBC complete blood count, IHD ischemic 
heart disease, CHF chronic heart failure, COPD chronic obstructive pulmonary disease, CVA cerebrovascular 
accident. *Mann–Whitney U test was performed for evaluating difference in mean values.

Feature

Cox regression Mean comparison*

HR Lower 95% CI Upper 95% CI P-value Mortality cohort Survived cohort P-value

Demographic and habitual history

 Age 1.028 1.023 1.034 0.001 74.00 (61.00,83.00) 60.00 (47.00,71.00) 0.001

 Opium 0.827 0.581 1.178 0.293 43.0 (4.69%) 135.0 (1.06%) 0.39

 Alcohol consumption 2.599 1.235 5.469 0.012 10.0 (1.09%) 11.0 (0.09%) 0.022

Comorbidities

 DM 1.09 0.936 1.27 0.266 346.0 (37.73%) 784.0 (6.17%) 0.001

 IHD 1.101 0.927 1.309 0.272 214.0 (23.34%) 394.0 (3.10%) 0.001

 Cancer 1.253 0.966 1.626 0.089 78.0 (8.51%) 128.0 (1.01%) 0.001

 CHF 1.129 0.761 1.675 0.546 31.0 (3.38%) 52.0 (0.41%) 0.01

 COPD 1.181 0.755 1.849 0.466 22.0 (2.40%) 47.0 (0.37%) 0.133

 CVA 1.207 0.957 1.522 0.112 101.0 (11.01%) 134.0 (1.06%) 0.001

 GI problems 1.797 1.037 3.113 0.037 15.0 (1.64%) 35.0 (0.28%) 0.271

 Hepatitis C 1.348 0.185 9.805 0.768 1.0 (0.11%) 4.0 (0.03%) 0.625

 Alzheimer 1.038 0.776 1.387 0.802 63.0 (6.87%) 48.0 (0.38%) 0.001

 Psychological problems 1.636 1.073 2.495 0.022 24.0 (2.62%) 39.0 (0.31%) 0.017

 Parkinson 1.106 0.72 1.7 0.645 25.0 (2.73%) 24.0 (0.19%) 0.001

Medical exam and history

 Respiratory rate (/min) 1.009 1.002 1.016 0.016 19 (18.00,22.00) 18 (18.00,20.00) 0.001

 Fever 0.936 0.774 1.133 0.5 343 (37.40%) 1312 (10.33%) 0.001

 Sore throat 0.828 0.481 1.426 0.496 14 (1.53%) 73 (0.57%) 0.046

 Headache 0.881 0.668 1.164 0.374 58 (6.32%) 379 (2.98%) 0.001

 Vomiting 0.83 0.696 0.99 0.038 180 (19.63%) 767 (6.04%) 0.001

 Myalgia 0.825 0.688 0.988 0.037 181 (19.74%) 895 (7.05%) 0.001

 Cough 0.946 0.811 1.104 0.481 373 (40.68%) 1402 (11.04%) 0.001

 Arthralgia 0.992 0.555 1.775 0.979 14 (1.53%) 40 (0.32%) 0.515

 Insomnia 0.925 0.38 2.253 0.864 5 (0.55%) 54.0 (0.43%) 0.001

 Loss of consciousness 1.499 1.253 1.794 0.001 233 (25.41%) 179.0 (1.41%) 0.001

 Rhinorrhea 1.892 0.926 3.868 0.08 9 (0.98%) 20.0 (0.16%) 0.303

Laboratory values

 Ph (VBG) 0.651 0.413 1.024 0.063 7.36 (7.29,7.41) 7.38 (7.34,7.42) 0.001

 HCo3 (VBG) 0.971 0.957 0.986 0.001 23.70 (20.20,27.40) 26.00 (23.20,28.70) 0.001

 Calcium 0.979 0.919 1.042 0.501 8.50 (8.00,9.10) 8.70 (8.20,9.23) 0.001

 Hemoglobin (CBC) 0.962 0.931 0.995 0.025 11.80 (10.00,13.30) 12.40 (11.00,13.60) 0.001

 White blood cell (CBC) 1.008 1.002 1.015 0.015 9.20 (6.30,13.30) 6.80 (4.90,9.70) 0.001

 Neutrophil (%) (CBC) 1.019 1.003 1.036 0.019 85.00 (78.00,90.00) 80.00 (70.00,85.00) 0.001

 INR 1.1 0.954 1.267 0.188 1.14 (1.00,1.30) 1.07 (1.00,1.20) 0.001

 Potassium 1.04 0.991 1.091 0.111 4.20 (3.80,4.60) 4.00 (3.80,4.40) 0.0001

 Creatinine 1.041 1 1.085 0.051 1.40 (1.10,2.20) 1.10 (0.90,1.40) 0.001

 Magnesium 1.02 0.836 1.243 0.848 2.00 (1.80,2.20) 1.90 (1.80,2.10) 0.001
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we find the neural network and logistic regression methods better for generalizable use. However, we avoided 
ensemble architecture to prevent overfitting since 37 input features were selected, while Gao et al. had eight. 
Also, ensemble models require longer prediction time, more computation power, and hard work for tuning.

The application of ML models in the clinic depends on the input features and prediction accuracy. Ease of 
access to input features, along with high accuracy and generalization of prediction, can increase acceptance of 
ML tools by healthcare workers. Selected features in the present study include 18 factors at the time of admission. 
Previous studies included many of our selected features for prognosis prediction, which can imply the accuracy 
of our feature importance method10–12,14,15. Laboratory markers, patient demographics, medical history, and vital 
signs have been used as effective features in predicting the mortality of patients with COVID-19, similar to this 
study10,11,28–33. However, we excluded some variables, such as inflammatory cytokines, while others found them 
predictive34–37. Since we excluded some features with collinearity, the other included feature represents the effect 
of this predictor on mortality.

The results of this study are applicable to managing COVID-19 inpatients with the current and upcoming 
COVID-19 surges. First, validation with 20% missing data indicates the approved potential of our model when 
the patient’s data is unreachable and needs imputation. Second, the model’s generalization was investigated using 

Table 3.   Model internal and external validation; and validation of imputer model for 2 out of 10 missing 
lab value. DNN deep neural network, SVM supervector machine, RF random forest, GDBT gradient booster 
decision tree, KNN k-nearest neighbor, LR logistic regression.

Feature selection method Model AUC score Sensitivity Specificity PPV NPV

Internal validation

 LASSO regression

DNN 83.4 62.2 92.2 70.2 89.2

SVM 81.6 40.6 93.9 66.3 84.2

RF 80.6 66.6 81.8 52.1 89.2

GBDT 78.9 58.1 83.8 51.6 87.1

KNN 69.6 31.5 88.3 44.4 81.3

LR 82.3 44.2 90.1 57.0 84.5

 Boruta

DNN 82.7 51.2 88.0 59.2 84.1

SVM 81.7 42.1 90.1 59.1 82.1

RF 82.5 43.2 91.6 63.6 82.6

GBDT 82.0 44.0 90.1 60.1 82.5

KNN 70.5 38.18 89.5 55.2 81.0

LR 82.7 41.09 90.7 60.1 81.9

Imputer validation (two out of ten missing lab values)

 LASSO regression

DNN 81.8 60.6 86 72 79.2

SVM 80 37.6 93.4 62.6 83.4

RF 81.3 43 90.5 57.2 84.3

GBDT 80.3 55.7 83.9 50.5 86.5

KNN 65.4 33.3 89.4 48.2 81.9

LR 79.1 44.2 90.3 57.4 84.5

 Boruta

DNN 81.6 48.7 90.9 65.9 83.2

SVM 79.1 37.1 93.6 67.6 80.6

RF 80.5 46.6 89.8 62.2 82.4

GBDT 79.3 47.1 88.5 59.6 82.3

KNN 70.6 31.9 92.1 59.2 79

LR 79.3 42.4 91.9 65.3 81.6

External validation

 LASSO regression

DNN 82.8 98.1 23.7 79.2 80.7

SVM 72.1 47.4 78 38.9 21.6

RF 78.6 44 75.6 34.8 21.1

GBDT 79.6 9.5 63.2 43.3 19.1

KNN 60.1 9 75.9 52.6 22

LR 82.4 6.4 68.6 37.7 19.8

 Boruta

DNN 75.3 94.5 25.7 79 61.1

SVM 69.8 73.3 81.3 53.7 22.8

RF 71.4 5.8 82.2 49.5 22.7

GBDT 71.8 89.1 74.2 50.6 21.6

KNN 59.6 10.4 78.6 59 22.8

LR 74 6 73.2 39.8 20.8
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data from a fourth hospital in a different province. The AUC of 82.8% was achieved in external validation, which 
confirmed the model performance for global application. Third, we proposed ternary severity classification as 
per clinician’s opinion to show the most susceptible patients with very high severity. Our model can facilitate 
clinical decision-making, resource allocation, and evaluation of drug’s effectiveness by risk stratifying mortality 
in COVID-19 inpatients.

Nonetheless, there are some limitations to this work that should be noted. First, even though we had a 
relatively large patient population, our study was retrospective. Prospective validation of our study is required 
to ascertain the results. The hospitals in our study are all in a developing country (Iran). The scarcity of medi-
cal resources in Iranian hospitals may bring about inadequate service allocated to patients. This condition can 
thereby increase the mortality rate in such countries in contrast to countries with effective medical systems. 
Additionally, the current model does not encompass imaging, microbiological, and histological data, which 
could contribute to a more precise prognosis prediction despite the inconvenience. Socioeconomic and racial 
differences, which were investigated in some studies38,39, might as well play a role in prognosis.

In conclusion, this study shows that ML methods can predict the mortality risk of COVID-19 patients on 
admission. This approves the potential of ML methods for use in clinical practice as a decision-support system. 
However, effective ML models should satisfy the real-world needs of healthcare experts to increase the chance 
of implementation in practice. Further studies are suggested to investigate and overcome the current barriers to 
applying ML in medical practice.

Figure 2.   Receiver operator curve of models using two different feature selection.
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Data availability
The datasets used in the current study are available from the corresponding author on reasonable request. The 
dataset would be unreservedly available for use as a validation dataset of other research projects, after sending 
the request to the corresponding author, or SAASN. The code related to this is available at https://​github.​com/​
Siava​shShi​rzad/​Covid​AI. The code for data mining and the “Tehran COVID-19 Cohort” project information is 
available at  https://​github.​com/​Sdami​rsa/​Tehran_​COVID_​Cohort. The data used in this study will be published 
for non-commercial use in the future at https://​github.​com/​Sdami​rsa/​Tehran_​COVID_​Cohort.
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